何康來 王振營
摘要??Bt玉米已在美洲廣泛種植20多年,成功控制了歐洲玉米螟Ostrinia nubilalis、草地貪夜蛾Spodoptera frugiperda等玉米重大害蟲為害。然而,近年來相繼報(bào)道在波多黎各、巴西、阿根廷因草地貪夜蛾產(chǎn)生抗性而導(dǎo)致一些Bt玉米抗蟲性喪失。尤其是在熱帶和亞熱帶地區(qū),多數(shù)Bt玉米品種商業(yè)化種植僅3年就喪失了對草地貪夜蛾的抗性。本文分析了草地貪夜蛾的生物學(xué)和生態(tài)學(xué)、對Bt殺蟲蛋白抗性遺傳特征和交互抗性特性、種群抗性基因頻率等內(nèi)因?qū)剐匝莼挠绊?,以及Bt玉米種植的生態(tài)環(huán)境、耕作栽培制度、Bt玉米種類、抗性治理策略實(shí)施情況等外部環(huán)境因素對抗性演化的影響。根據(jù)我國玉米種植的生態(tài)格局,提出了“整體布局,源頭治理”的抗性治理對策。即在草地貪夜蛾周年繁殖區(qū)要謹(jǐn)慎種植Bt玉米,尤其是避免種植表達(dá)Cry1Ab殺蟲蛋白的Bt玉米,以避免源頭產(chǎn)生抗性而危及溫帶玉米主產(chǎn)區(qū)。遵循差異化(不同殺蟲作用機(jī)理)選擇Bt玉米品種原則,制定精準(zhǔn)抗性監(jiān)測計(jì)劃,以高劑量庇護(hù)所為抗性治理基本策略,在Bt玉米資源有限的情況下,落實(shí)好庇護(hù)所尤為重要。
關(guān)鍵詞??草地貪夜蛾; Bt玉米; 害蟲抗性演化; 抗性治理; 對策
中圖分類號: S 435.132
文獻(xiàn)標(biāo)識碼: A
DOI: 10.16688/j.zwbh.2020224
Resistance evolution to Bt maize in the fall armyworm and
consideration on IRM strategy in China
HE Kanglai, WANG Zhenying
(State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection,
Chinese Academy of Agricultural Sciences, Beijing 100193, China)
Abstract
Bt maize has been commercialized for over 20 years in the American countries, which was successfully used to control a number of economically important insect pests such as the European corn borer, Ostrinia nubilalis, fall armyworm (FAW), Spodoptera frugiperda, etc. However, a couple of resistance cases have threatened their efficacy and resulted in the failure of field control. Whats worse, most Bt maize events/stacks varieties lost their ability to control FAW in just 3 years after their release in the tropical and subtropical agricultural ecosystems. In this paper, we reviewed the internal and external factors which drove/facilitated the rapid evolution of FAW resistance, including the biology and ecology of FAW, its inheritance of resistance, cross resistance to different Bt proteins, initial allele frequency of resistance in the field populations, agroecosystem landscape of Bt maize planting, cropping systems, Bt maize events, adaptation of insect resistance management (IRM) practices, etc. Furthermore, we suggested a “Natal Source IRM” strategy based on the integral scenario of maize cropping landscape throughout the country, i.e., careful consideration should be taken in deploying Bt maize in the tropical and subtropical regions of China (winter maize region) where FAW reproduced year-round and is the source of adults to migrate to the Yangtze River Basin, Huanghuaihai summer maize region, even up to the northern spring maize region. If the resistance evolved in the Natal Source of FAW population, it will diminish the Bt maize efficacy in the rest regions of the country. Even more care should be taken in deploying Bt maize expressing Cry1Ab protein in the winter maize region. At least, different Bt maize varieties (without cross resistance) should be used between tropical and temperate regions. In addition, IRM plans should be designed to ensure a reliable resistance monitoring program, ensure refuge compliance to make high dose refuge as a corner stone tactics under limited Bt maize resources.
Key words
Spodoptera frugiperda; Bt maize; evolution of insect resistance; IRM; strategy
草地貪夜蛾Spodoptera frugiperda,又名秋黏蟲(fall armyworm,F(xiàn)AW),2018年末入侵我國[1],2019年隨著季節(jié)變暖及玉米等作物播種由熱帶亞熱帶向溫帶依次推進(jìn),寄主的可覓性由南向北也相應(yīng)增加,草地貪夜蛾入侵逐漸向長江流域、黃淮海及西北地區(qū)蔓延,到10月份已遷移擴(kuò)散至除黑、吉、遼、青、新外的26個省(市、區(qū))1 518縣(區(qū)、市),查見幼蟲的省份22個,其中玉米草地貪夜蛾發(fā)生面積達(dá)到106.5 萬hm2[2],對我國玉米生產(chǎn)構(gòu)成嚴(yán)重威脅。與此同時(shí),科學(xué)工作者積極應(yīng)對,在入侵路徑[3]、遷飛擴(kuò)散軌跡[4]、化學(xué)防控[56]、生物防治[7]、玉米品種抗性利用等測報(bào)和防控技術(shù)方面開展了廣泛的研究。及時(shí)提出了“分區(qū)治理、聯(lián)防聯(lián)控、綜合治理”策略[8],有效地遏制了這一危險(xiǎn)性害蟲可能造成的重大災(zāi)害發(fā)生。
由于草地貪夜蛾繁殖潛力大[9],飛行與擴(kuò)散能力極強(qiáng)[10],易引起異地突發(fā)和暴發(fā)。因此,化學(xué)防控因其速效、高效和易于實(shí)施是應(yīng)急防控預(yù)案必不可少的手段。在其原發(fā)地美洲大陸草地貪夜蛾的防治已有悠久的歷史。
對全球1910年-2019年文獻(xiàn)大數(shù)據(jù)分析表明,美洲防控草地貪夜蛾以Bt玉米商業(yè)化應(yīng)用為標(biāo)志,可劃分為化學(xué)防治和綠色綜合防控兩個時(shí)期。20世紀(jì)末之前是以化學(xué)殺蟲劑為主的化學(xué)防治時(shí)期[11]。即使在其近年侵入的國家如南非、印度以及我國,亦多首選化學(xué)防治遏制其擴(kuò)散為害。因而不可避免地會面臨環(huán)境污染和抗藥性發(fā)展等問題。李永平等分析總結(jié)了草地貪夜蛾抗藥性的演化史,提出了化學(xué)防治策略[12]。
20世紀(jì)90年代后期,國外草地貪夜蛾防控進(jìn)入了以Bt玉米為主,兼有天敵釋放、生物農(nóng)藥使用等措施的綠色防控時(shí)期[11]。我國則經(jīng)歷了入侵風(fēng)險(xiǎn)分析預(yù)警,侵入后的監(jiān)測、應(yīng)急阻擊防控,到目前以生態(tài)控制和農(nóng)業(yè)防治為基礎(chǔ),生物防治和理化誘控為重點(diǎn)的持續(xù)治理探索。在天敵資源鑒定與應(yīng)用[7,13],白僵菌等微生物農(nóng)藥應(yīng)用,物理防控技術(shù)等方面取得進(jìn)展,同時(shí)還明確了幾個國產(chǎn)Bt玉米對草地貪夜蛾具有良好的殺蟲效果[14]。2020年1月20日,隨著北京大北農(nóng)生物技術(shù)有限公司和瑞豐公司的兩個國產(chǎn)轉(zhuǎn)基因抗蟲玉米獲得生產(chǎn)應(yīng)用安全證書,預(yù)示在我國玉米生產(chǎn)中應(yīng)用這一現(xiàn)代生物技術(shù)產(chǎn)品防控草地貪夜蛾指日可待。然而值得注意的是,在美洲、南非等大面積商業(yè)化種植Bt玉米的國家,相繼報(bào)道了草地貪夜蛾對不同類型的Bt玉米產(chǎn)生了抗性。本文就美洲Bt玉米的應(yīng)用與草地貪夜蛾抗性演化、抗性產(chǎn)生的內(nèi)外因進(jìn)行了分析,結(jié)合草地貪夜蛾在我國的遷移擴(kuò)散情況、玉米產(chǎn)區(qū)的生態(tài)環(huán)境、耕作栽培制度和種植的季節(jié)性規(guī)律、已獲生產(chǎn)應(yīng)用安全證書的國產(chǎn)Bt玉米資源等,針對未來生產(chǎn)中應(yīng)用Bt玉米防治草地貪夜蛾,初步提出了抗性治理策略。
1 Bt玉米應(yīng)用與草地貪夜蛾抗性的演化
20世紀(jì)90年代初,Koziel等[15]首次報(bào)道了表達(dá)Cry1Ab蛋白的Bt玉米田間高效殺蟲效果。1996年,以歐洲玉米螟Ostrinia nubilalis和巨座玉米螟Diatraea grandiosella等為靶標(biāo)害蟲的Bt玉米在北美商業(yè)化種植,包括不同公司研發(fā)的‘176 ‘MON810和‘Bt11(表達(dá)Cry1Ab殺蟲蛋白),‘DBT-418(表達(dá)Cry1Ac殺蟲蛋白), ‘CBH-351(表達(dá)Cry9C殺蟲蛋白)等產(chǎn)品,且‘MON810和‘Bt11持續(xù)種植或與后續(xù)新的轉(zhuǎn)化事件聚合使用至今。這些Bt玉米對既定靶標(biāo)害蟲的防治效果可達(dá)99%以上[1621]。雖然草地貪夜蛾和玉米穗夜蛾(CEW),即美洲棉鈴蟲Helicoverpa zea等鱗翅目夜蛾科害蟲沒有被列為主要防治靶標(biāo)對象,但在田間對這兩種害蟲亦有顯著的防治效果,心葉期被害率降低90%以上,穗期被害率降低50%~80%[2227]。表達(dá)Cry1F殺蟲蛋白的玉米‘TC1507于2001年在美國獲得種植批準(zhǔn)[28],2003年商業(yè)化種植,主要防治對象包括歐洲玉米螟[29],同時(shí)對晚播玉米上草地貪夜蛾有更好的防治效果[3032]。2013年,美國玉米帶種植表達(dá)1種Bt殺蟲蛋白的Bt玉米面積達(dá)到76%[33],美國玉米帶的主要害蟲歐洲玉米螟已得到有效控制[34],而草地貪夜蛾、美洲棉鈴蟲等害蟲在美國南部各州偶發(fā)嚴(yán)重為害[24]。為了擴(kuò)大殺蟲譜以及實(shí)施多基因抗性治理策略,疊加多基因抗蟲玉米‘MON89034(表達(dá)Cry2Aba+Cry1A.105,2009年)和聚合多基因抗蟲玉米(如‘Bt11×MIR162,2009年;‘MON89034×TC1507‘MON89034×TC1507×MON88017×DAS-59122,2010年)在美國和加拿大種植,尤其是后者不僅能防治多種鱗翅目害蟲,還能防治鞘翅目玉米切根葉甲Diabrotica[3536]。目前,全球商業(yè)化的Bt玉米多數(shù)都是疊加/聚合多個基因[37]。
波多黎各島具有獨(dú)特的熱帶農(nóng)業(yè)生態(tài)系統(tǒng),玉米周年連續(xù)種植,尤其是大面積錯期月播青貯飼料玉米。草地貪夜蛾是當(dāng)?shù)刈钪匾暮οx,周年發(fā)生且世代重疊,頻繁造成嚴(yán)重為害損失。表達(dá)Cry1F殺蟲蛋白的Bt玉米‘TC1507于2003年開始大面積商業(yè)化種植,2005年和2006年種植面積占整個玉米種植面積的80%。然而, 2006年田間出現(xiàn)‘TC1507玉米受草地貪夜蛾為害嚴(yán)重的情況,表明草地貪夜蛾已對‘TC1507玉米產(chǎn)生了田間抗性,抗性倍數(shù)超過1 000倍[3839]。抗性喪失的主要原因歸結(jié)為島嶼熱帶農(nóng)業(yè)生態(tài)環(huán)境、玉米周年持續(xù)播種、草地貪夜蛾周年繁殖和世代重疊,其次還與2006年草地貪夜蛾大暴發(fā),以及當(dāng)年天氣干旱導(dǎo)致其他寄主植物源減少有關(guān)。靶標(biāo)害蟲田間產(chǎn)生抗性直接導(dǎo)致了‘TC1507玉米在當(dāng)?shù)赝耸型S肹39]。隨后數(shù)年持續(xù)監(jiān)測數(shù)據(jù)表明,這一地區(qū)的草地貪夜蛾對‘TC1507持續(xù)呈高水平抗性,而同期監(jiān)測美國南部各州草地貪夜蛾種群對‘Cry1F殺蟲蛋白和‘TC1507玉米依然敏感[36,38,4041]。直到2013年,美國東南部的佛羅里達(dá)州和北卡羅來納州田間草地貪夜蛾種群Cry1F抗性基因頻率增高,田間出現(xiàn)非預(yù)期的存活幼蟲[42],可能是由于波多黎各島及巴西田間抗性草地貪夜蛾遷飛到美國東南部所致[4346]。
巴西玉米種植面積120萬~150萬hm2[4748],從南部的亞熱帶到中、北部的熱帶環(huán)境,年種植2~3季[4950],傳統(tǒng)的第一季(夏)玉米面積占比由61.5%(2009年)下降到34.5%(2015年),而第二季(冬)玉米面積占比已由38.5%增加到65.5%[5152],且冬玉米播種時(shí)間由當(dāng)年12月持續(xù)到翌年2月。草地貪夜蛾是當(dāng)?shù)刈钪饕暮οx[53],發(fā)生高峰通常在夏玉米季節(jié),減產(chǎn)可達(dá)17%~38%[54]。連續(xù)兩季玉米,為草地貪夜蛾搭起了發(fā)生多代、世代重疊的寄主“綠色橋梁”[38, 5557],且其發(fā)生種群密度高[5859]。表達(dá)Cry1Ab(‘Bt11和‘MON810)、Cry1F(‘TC1507)、Cry2Aba+Cry1A.105(‘MON89034)殺蟲蛋白Bt玉米先后于2008/2009、2009/2010、2010/2011生長季在巴西商業(yè)化種植[52, 6061],能高效控制草地貪夜蛾、美洲棉鈴蟲、小蔗螟Diatraea saccharalis等多種鱗翅目害蟲的為害[48,6263]。然而同樣由于熱帶、亞熱帶生態(tài)環(huán)境下連續(xù)種植多季玉米[49],害蟲連續(xù)多世代重疊,且庇護(hù)所面積實(shí)施率低[50]等,僅在商業(yè)化種植1年后,發(fā)現(xiàn)田間草地貪夜蛾已對表達(dá)Cry1F的Bt玉米產(chǎn)生了抗性[50,6465],對表達(dá)Cry1Ab的Bt玉米的抗性也逐年上升[66]。草地貪夜蛾在Bt玉米和Bt棉花田轉(zhuǎn)移為害[67],使選擇壓增加。
阿根廷玉米面積約300萬hm2。先后商業(yè)化種植表達(dá)單基因cry1Ab(‘Bt11‘MON810和‘176,1998年), cry1F(‘TC1507,2005年),vip3Aa20(‘MIR162,2011年)玉米以及多基因‘MON89034(2010年),‘MON88017(‘TC1507×MON810, 2010年),‘MON89034×MON88017(2010年)玉米、‘Bt11×MIR162(2011年)[68],主要防治草地貪夜蛾、小蔗螟等鱗翅目害蟲[6971]。由于在其北部大量種植晚季玉米,且庇護(hù)所有限,以及草地貪夜蛾發(fā)生多代且世代重疊等因素,增加了選擇壓和年選擇世代數(shù)[7273]。2013年,在阿根廷多地田間發(fā)現(xiàn)草地貪夜蛾抗表達(dá)Cry1F的Bt玉米[7475],并對表達(dá)Cry1Ab的玉米有交互抗性[76]。
2 抗性產(chǎn)生的內(nèi)因
2.1 草地貪夜蛾生物學(xué)、生態(tài)學(xué)及其對抗性演化的影響
害蟲抗性演化與其生物學(xué)、生態(tài)學(xué)習(xí)性密切相關(guān),如寄主范圍、繁殖期和繁殖力、性比、遷移擴(kuò)散行為等[77],尤其是年發(fā)生世代數(shù)[78]。草地貪夜蛾寄主植物廣泛,多種主要農(nóng)作物如玉米、棉花、大豆、高粱等都是其適宜寄主[56,67,79],草地貪夜蛾在這些作物上的生活史接近[80],在表達(dá)某一殺蟲蛋白的一種作物(如Cry1F玉米)上產(chǎn)生的抗性個體,在表達(dá)相同蛋白的其他作物(如Cry1F棉花)上不會產(chǎn)生適合度劣勢[81]。草地貪夜蛾在28℃時(shí)世代歷期約30 d,在熱帶和亞熱帶地區(qū)可年發(fā)生10代[82]。美屬波多黎各島,地理環(huán)境相對隔離,屬熱帶生態(tài)系統(tǒng),草地貪夜蛾是當(dāng)?shù)赜衩咨系淖钪饕οx,適宜的其他寄主植物少。玉米周年種植,因而對草地貪夜蛾形成了多世代周年汰選。從商業(yè)化種植表達(dá)Cry1F的Bt玉米到監(jiān)測出抗性產(chǎn)生的3~4年間,田間汰選已有30~40代[38]。中南美洲的巴西、阿根廷與波多黎各情況相似,草地貪夜蛾是當(dāng)?shù)刈钪饕挠衩缀οx,年平均發(fā)生8代以上[64,83]。加上草地貪夜蛾超強(qiáng)的繁殖力[9,82,84],極易形成高密度種群。如若出現(xiàn)對Bt玉米產(chǎn)生抗性的個體,就會在短時(shí)間產(chǎn)生大量的后代,且因其沒有或很低的抗性適合度劣勢[81,85],使群體的抗性基因頻率大量繁衍擴(kuò)充,促使抗性快速產(chǎn)生。
害蟲的遷移能力直接影響其在不同生態(tài)系統(tǒng)種群間的基因交流,尤其是不同生產(chǎn)力管理水平下,如用藥水平與綠色防控水平等,無疑會導(dǎo)致種群內(nèi)的遺傳結(jié)構(gòu)如抗藥性出現(xiàn)空間上的差異分化,如果害蟲遷移能力弱,生境相對隔離,這種分化的長期存在就可能演化出特性差異顯著的品系/生態(tài)型等。相反,如果害蟲遷移能力強(qiáng),個體在不同生境間遷移,使得不同管理水平生境下的抗性差異種群實(shí)現(xiàn)基因交流,其結(jié)果一方面遷移個體攜帶抗性基因在不同生境間得以傳播擴(kuò)散,另一方面,遷入的非抗性個體可以使遷入?yún)^(qū)域內(nèi)的汰選富集基因得到稀釋??梢姡w移能力直接影響害蟲抗性的時(shí)空演化[77]。草地貪夜蛾成蟲具有超強(qiáng)的遷移能力,在不同區(qū)域、洲際間入侵蔓延[8689],攜帶抗性基因傳播擴(kuò)散[42,44]。
在美國本土,草地貪夜蛾冬季一般僅能在佛羅里達(dá)和得克薩斯南端越冬,暖冬可在墨西哥灣沿岸地區(qū)過冬,夏季世代發(fā)育歷期28~30 d,冬季可長達(dá)3個月[90]。4月-5月佛羅里達(dá)種群(FP)北遷到佛羅里達(dá)北部及佐治亞南部;得克薩斯種群(TP)向東北遷入路易斯安那、密西西比、亞拉巴馬[4546,91];得克薩斯種群沿密西西比河流域北上到美國北部的賓夕法尼亞州等地,而佛羅里達(dá)種群則沿東海岸經(jīng)南/北卡羅來納、弗吉尼亞、賓夕法尼亞州,一般在夏末或秋初擴(kuò)散至北部[92]。美國玉米主要分布在中北部玉米帶,南部尤其是佛羅里達(dá)州玉米種植面積很小[91]。由于冬春季(1月-5月)在佛羅里達(dá)種植大面積(>12萬hm2)的馬鈴薯Solanum tuberosum L.、甘藍(lán)Brassica oleracea L.var.capitata等蔬菜,后續(xù)種植綠肥作物高粱蘇丹草(高粱和蘇丹草的雜交種)Sorghum bicolor(L.)[93],因此,在佛羅里達(dá)有大量的非玉米庇護(hù)所。南部極小面積玉米上越冬種群北遷到佛羅里達(dá)北部非玉米綠肥寄主時(shí)的死亡率高。由于草地貪夜蛾在美國溫帶玉米帶不能越冬,而在美國本土,尤其是玉米帶,玉米為單季種植,玉米生長期草地貪夜蛾僅能繁殖1~2代,僅在局地零星重發(fā)生,不會出現(xiàn)周年多世代頻繁汰選。即使出現(xiàn)抗性個體,在冬季到來時(shí)不能完成下一世代,因而不能在種群中遺傳。
值得注意的是,在巴西報(bào)道了草地貪夜蛾抗性問題后,很快在阿根廷、巴拉圭、烏拉圭、哥倫比亞等也發(fā)現(xiàn)田間Bt作物防治失效問題[53]。除當(dāng)?shù)責(zé)釒Лh(huán)境、庇護(hù)所不足的高壓頻繁汰選外,外來攜帶抗性基因成蟲遷入可能也是原因之一[94]。
害蟲幼蟲的轉(zhuǎn)移擴(kuò)散規(guī)律會顯著影響其對Bt玉米抗性演化,尤其是在采用“種子混合”庇護(hù)所法的情景下。幼蟲在Bt與非Bt植株間的轉(zhuǎn)移為害將有利于其抗性產(chǎn)生[95]。一方面幼蟲由非Bt玉米植株轉(zhuǎn)移至Bt玉米植株,導(dǎo)致死亡率顯著增加,從而減少了庇護(hù)所種群密度[9697];另一方面,抗性雜合個體或攜帶微小抗性基因的個體由Bt植株轉(zhuǎn)移到非Bt植株,將導(dǎo)致其沒有攝食足夠的Bt蛋白,不能滿足高劑量庇護(hù)所抗性治理策略的“高劑量”先決條件而存活[9899],從而富集種群中的抗性基因,加劇抗性演化[100]。此外,Bt蛋白在玉米組織的時(shí)空表達(dá)存在差異[101],幼蟲在植株上的不同部位間的轉(zhuǎn)移,尤其是對植株不同生長發(fā)育時(shí)期的器官組織有選擇性時(shí),亦會影響其存活率[102],以及在非Bt植株上的抗性雜合體(尤其是不完全隱性遺傳)或攜帶微小抗性基因的大齡幼蟲轉(zhuǎn)移到Bt植株(即使對初孵幼蟲是“高劑量”)也能存活,提高抗性基因頻率[103]。由此可見,幼蟲的遷移擴(kuò)散行為將直接影響庇護(hù)所設(shè)置策略。草地貪夜蛾有顯著的株間轉(zhuǎn)移習(xí)性,但多數(shù)發(fā)生在同行(50%)及鄰近(1.1 m)植株間(91.4%)[104]。
草地貪夜蛾對一些Bt蛋白的抗性間不存在交互抗性,如Cry1F、Cry1Ab與Vip3Aa20, Cry1F與Cry2Ab等,因此在多個不同Bt玉米同時(shí)商業(yè)化種植的景觀生態(tài)下,其難以克服不同殺蟲蛋白在時(shí)/空疊加(輪換)。這可能是美國玉米帶轉(zhuǎn)基因玉米防治草地貪夜蛾依然有效的原因之一[39,105106]。
2.2 抗性遺傳特征
抗性遺傳學(xué)特征直接關(guān)系到抗性演化速率,是抗性治理的基礎(chǔ)。在田間出現(xiàn)抗性之前,有關(guān)草地貪夜蛾對Bt玉米表達(dá)的主要?dú)⑾x蛋白Cry1Ab、Cry1Ac、 Cry1F、Vip3Aa、Cry2Ab等的抗性遺傳特征幾乎沒有報(bào)道。自從Storer等[39]首次報(bào)道草地貪夜蛾在波多黎各田間對Cry1F玉米產(chǎn)生抗性以來,已有多個分離自巴西、阿根廷、美國本土東南部州及波多黎各島等地的Cry1F抗性種群的遺傳特征報(bào)道(表1)。總的來看,草地貪夜蛾對Cry1F玉米的抗性為常染色體、隱性或不完全隱性遺傳,僅在美國北卡羅來納州普利茅斯分離的種群為顯性或不完全顯性。無母系效應(yīng)。抗性由單基因或1簇緊密連鎖的基因控制。抗性產(chǎn)生較快,且田間抗性產(chǎn)生后,即使消除選擇壓,抗性依然能穩(wěn)定遺傳[39,81]。多地Cry1F抗性草地貪夜蛾種群沒有抗性相關(guān)的適合度劣勢。對Cry1Ab、Cry1Ac存在低水平交互抗性, 對Cry1Aa、Vip3Aa、Cry2Ab、Cry2Aa、Cry1Ba沒有交互抗性[107]。相比之下,對表達(dá)Cry1Ab的Bt玉米的抗性報(bào)道較少,該抗性為常染色體1個以上基因控制的隱性遺傳,有抗性適合度劣勢。對‘MON89034玉米抗性為常染色體多基因控制的隱性遺傳,存在抗性相關(guān)的適合度劣勢。對表達(dá)Vip3Aa20玉米的抗性為常染色體單基因或1簇緊密連鎖基因控制的隱性遺傳,顯著的抗性相關(guān)適合度劣勢。
2.3 抗性基因頻率
在草地貪夜蛾對‘TC1507玉米田間產(chǎn)生抗性被報(bào)道之前,自然種群的抗性基因頻率并沒有相關(guān)監(jiān)測數(shù)據(jù)報(bào)道。自報(bào)道田間出現(xiàn)抗性之后,在巴西、美國多地對抗性基因頻率進(jìn)行了檢測。雖然商業(yè)化種植前,草地貪夜蛾田間種群對Cry1F抗性的基因頻率未知,但從后來各國多年監(jiān)測數(shù)據(jù)可以看出,草地貪夜蛾對Cry1F抗性基因頻率上升有明顯的地理差異,在熱帶亞熱帶生態(tài)系統(tǒng)的波多黎各、巴西、阿根廷抗性基因頻率上升非???,其次是美國南部的佛羅里達(dá)等,而在美國北卡羅來納則相對慢(表2)。這與年發(fā)生世代數(shù)相關(guān)。雖然草地貪夜蛾對Vip3Aa20的抗性基因頻率監(jiān)測數(shù)據(jù)較少,但可以看出其上升相對較慢。說明不同殺蟲蛋白之間抗性基因頻率有一定差異。
3 抗性產(chǎn)生的外因
3.1 熱帶亞熱帶農(nóng)田生態(tài)系統(tǒng)有利于抗性產(chǎn)生
熱帶亞熱帶地區(qū),一般降水豐富,溫度適宜作物周年生長,復(fù)種指數(shù)高,常出現(xiàn)“反季”作物種植,如我國玉米等南繁育/制種、冬季種植鮮食甜糯玉米就是利用熱帶周年可種植的生態(tài)條件,在溫帶地區(qū)不能應(yīng)季生產(chǎn)時(shí)的反季種植。由于制/育種、鮮食、飼用等不同目的需要,同一地區(qū)存在多個播期/生育期田塊的景觀格局,為草地貪夜蛾的周年連續(xù)繁殖提供了豐富的易覓寄主[126]。在巴西,不同作物組成嵌合周年生長農(nóng)田景觀,包括大豆、玉米、小麥、棉花等,其中玉米、棉花和大豆都是Bt作物[58]。尤其在同一地區(qū)不同播期連續(xù)種植同一轉(zhuǎn)基因玉米或轉(zhuǎn)相同或相似Bt基因作物,如表達(dá)Cry1Ab玉米、Cry1Ac棉花、Cry1Ac大豆、Cry1F玉米、Cry1Ac+Cry1F棉花、Vip3Aa20玉米以及Vip3Aa19棉花等[58,64,67,79],必然出現(xiàn)連續(xù)多代汰選,提高抗性演化風(fēng)險(xiǎn)。
3.2 表達(dá)蛋白種類及表達(dá)量
高劑量庇護(hù)所是目前應(yīng)用最廣、最有效的抗性治理策略。庇護(hù)所起作用的關(guān)鍵前提之一是產(chǎn)品表達(dá)的Bt蛋白達(dá)到“高劑量”,即表達(dá)的劑量能夠殺死隱性敏感純合(ss)個體和雜合(sr)個體,僅有抗性純合個體可能存活[100]。這一措施有效延緩了多種害蟲抗性產(chǎn)生,如煙芽夜蛾Heliothis virescens、棉紅鈴蟲Pectinophora gossypiella[127128]、歐洲玉米螟等[34]。Cry1Ab蛋白對草地貪夜蛾等夜蛾科害蟲毒力相對較低[129130],雖然表達(dá)Cry1Ab玉米(‘MON810和‘Bt11)能有效控制草地貪夜蛾的為害,抑制幼蟲生長,尤其是在蟲口密度高的情況下能顯著減少產(chǎn)量損失,但最終幼蟲死亡率與對照差異不顯著[22,131133],即沒有達(dá)到高劑量,甚或沒有將草地貪夜蛾列為轉(zhuǎn)cry1Ab基因Bt玉米的靶標(biāo)害蟲[134]。巴西2010年-2015年多地監(jiān)測數(shù)據(jù)表明,盡管不同地區(qū)草地貪夜蛾種群對Cry1Ab的敏感性存在顯著性差異,但平均敏感性逐年下降[66]。Cry1F蛋白對草地貪夜蛾有較高的毒力和更好的防治效果[3032],然而其在田間的表現(xiàn)也沒有達(dá)到高劑量的要求[116]。聚合2個或多個具有不同殺蟲譜且作用機(jī)理不同基因的Bt玉米,如‘MON89034‘TC1507×MON89034以及‘TC1507×MON810等被認(rèn)為既能擴(kuò)大殺蟲譜,又能延緩抗性產(chǎn)生[35,135136],然而有研究結(jié)果表明單基因Cry1F和Cry1Ab玉米與聚合多基因玉米對草地貪夜蛾等的防效并沒有顯著差異[36,106]。值得注意的是,有研究報(bào)道Cry1F抗性草地貪夜蛾對‘MON89034產(chǎn)生了抗性[137],且Cry1F與Cry1A.105間存在交互抗性,將影響聚合多基因的抗性治理作用效果[118]。
‘MIR162玉米表達(dá)Vip3Aa20殺蟲蛋白,其與Cry類蛋白作用機(jī)理不同[138],且對鱗翅目夜蛾科多種害蟲如草地貪夜蛾、美洲棉鈴蟲有很高的毒力[139141],尤其是對Cry1F、Cry1Ab、Cry1Ac、Cry2Ab抗性草地貪夜蛾有很高的毒力,即沒有交互抗性[142144]。值得關(guān)注的是,目前為止,表達(dá)單一Vip3Aa20或與Cry類聚合的玉米產(chǎn)品是唯一沒有出現(xiàn)田間草地貪夜蛾產(chǎn)生抗性而防控失效的產(chǎn)品[58]。
3.3 有效的抗性治理措施缺失
自從McGaughey首次報(bào)道印度谷螟Plodia interpunctella(Hübner)對Bt制劑產(chǎn)生抗性[145],尤其是發(fā)現(xiàn)小菜蛾P(guān)lutella xylostella在田間對Bt制劑產(chǎn)生抗性后[145],害蟲對Bt作物的抗性問題在商業(yè)化應(yīng)用伊始就備受重視。有學(xué)者曾預(yù)測,如若缺乏相應(yīng)的抗性治理對策,Bt作物種植2~4年靶標(biāo)害蟲將產(chǎn)生抗性[100,146]。因此,美國在轉(zhuǎn)基因抗蟲作物商業(yè)化種植的同時(shí),提出實(shí)施“高劑量庇護(hù)所”的抗性治理策略[28,100]。轉(zhuǎn)基因抗蟲作物商業(yè)化種植初期,抗性治理策略的落實(shí)是自愿的,但很快成為美國環(huán)保署(USA-EPA)頒布的強(qiáng)制性要求,即在種植Bt作物的同時(shí),要求種植5%~20%的非轉(zhuǎn)基因作物作為庇護(hù)所。這一策略在北美的實(shí)施,有效地避免或延緩了靶標(biāo)害蟲產(chǎn)生抗性[147],被各國科學(xué)家普遍認(rèn)同是轉(zhuǎn)基因抗蟲作物靶標(biāo)害蟲抗性治理的根本策略[148151]。
目前抗性治理策略主要包括高劑量庇護(hù)所策略、聚合多基因策略、IPM策略等。其中聚合多基因策略依賴于可用的Bt基因產(chǎn)品。而高劑量庇護(hù)所策略和IPM策略則需要種植者根據(jù)生產(chǎn)實(shí)際加以落實(shí)。
高劑量庇護(hù)所策略有效性的前提條件是種植必要面積的庇護(hù)所。
縱觀轉(zhuǎn)cry1F和cry1Ab玉米在波多黎各、巴西、阿根廷等中南美洲國家因草地貪夜蛾產(chǎn)生抗性而防治失效,其原因之一就是沒有種植足夠的庇護(hù)所,使得高劑量庇護(hù)所這一抗性治理基本策略得不到落實(shí)。雖然巴西生物技術(shù)行業(yè)協(xié)會制定并推廣了科學(xué)的IRM策略[152],但庇護(hù)所在巴西種植業(yè)者中難以落實(shí)[58,64]。據(jù)巴西種業(yè)協(xié)會估計(jì),庇護(hù)所落實(shí)率不到20%[58]。
4 我國Bt玉米利用與草地貪夜蛾抗性治理策略的思考
種植Bt玉米可為農(nóng)民帶來巨大的直接經(jīng)濟(jì)效益[34]。2020年初2個國產(chǎn)轉(zhuǎn)基因抗蟲玉米產(chǎn)品‘DBN9936(表達(dá)Cry1Ab殺蟲蛋白)和‘瑞豐125(表達(dá)Cry1Ab/Cry2Aj殺蟲蛋白)獲得在北方春玉米區(qū)的生產(chǎn)應(yīng)用安全證書[153],將我國轉(zhuǎn)基因玉米的研發(fā)應(yīng)用向前推進(jìn)了一大步,為亞洲玉米螟Ostrinia furnacalis、黏蟲Mythimna separata、草地貪夜蛾等我國玉米主要鱗翅目害蟲提供了可供選擇的防治新途徑。基于全球種植Bt玉米的歷史與害蟲抗性演化與治理經(jīng)驗(yàn),盡早依據(jù)我國生產(chǎn)力水平、種植制度、農(nóng)田景觀生態(tài)類型以及蟲害發(fā)生為害規(guī)律等,制定適宜的害蟲抗性治理策略,是確保這一技術(shù)能長期持續(xù)有效應(yīng)用的前提。筆者認(rèn)為,應(yīng)用Bt玉米防治草地貪夜蛾及其抗性治理策略應(yīng)重點(diǎn)考慮以下幾點(diǎn)。
4.1 整體布局,源頭治理
我國玉米主產(chǎn)區(qū)分布北起東北(黑龍江)、穿越華北、南至西南(云貴高原南端)地帶,由南到北面積遞增,播期從春到冬,耕作栽培制度由多季到單季。由此構(gòu)成了草地貪夜蛾以玉米為寄主的可覓性時(shí)空分布路線圖。結(jié)合2019年我國草地貪夜蛾監(jiān)測數(shù)據(jù)表明,其發(fā)生區(qū)可劃分為周年繁殖區(qū)——北遷過渡區(qū)——重點(diǎn)防范區(qū)(黃淮海夏玉米區(qū))——潛在為害區(qū)(北方玉米區(qū))[2,4]。以發(fā)生時(shí)序劃分為越冬區(qū)(南方冬玉米區(qū))——春末遷入?yún)^(qū)(江淮)——夏季遷入?yún)^(qū)(黃淮海夏玉米區(qū))——秋季遷入?yún)^(qū)(北方玉米區(qū))。這與草地貪夜蛾在美國玉米帶發(fā)生、遷移擴(kuò)散為害規(guī)律相似[9192]。因此,應(yīng)按照整體布局,源頭治理的原則,做好周年繁殖蟲源區(qū)抗性治理,以達(dá)到整體解決草地貪夜蛾對Bt玉米的抗性問題。
南方冬玉米面積約10萬hm2 [2],主要種植鮮食玉米,是草地貪夜蛾的周年繁殖區(qū),世代重疊,年發(fā)生6~8代。如果在此區(qū)域種植Bt玉米,草地貪夜蛾將會面臨連續(xù)世代高頻汰選抗性,導(dǎo)致抗性演化風(fēng)險(xiǎn)增加。加之境外蟲源地越南和菲律賓是Bt玉米(‘Bt11‘MON810‘MON89034‘TC1507)種植國以及緬甸是Bt棉(表達(dá)Cry1Ac殺蟲蛋白)種植國[2,3,37,51],草地貪夜蛾在這些國家可周年繁殖,多代的汰選壓容易導(dǎo)致當(dāng)?shù)夭莸刎澮苟陮t玉米產(chǎn)生抗性,攜帶抗性基因的個體隨季風(fēng)遷入我國南方玉米區(qū),使得春夏季遷移擴(kuò)散蟲源攜帶抗性基因北上,勢必對其他玉米種植區(qū)尤其是夏玉米區(qū)Bt玉米的利用構(gòu)成嚴(yán)重威脅。因此,在草地貪夜蛾周年繁殖區(qū)應(yīng)謹(jǐn)慎種植Bt玉米(尤其是應(yīng)避免種植表達(dá)Cry1Ab的Bt玉米),以避免源頭產(chǎn)生抗性而危及黃淮海夏玉米區(qū)乃至北方春玉米主產(chǎn)區(qū)。在種植Bt玉米的情況下,盡管春、夏、秋遷入?yún)^(qū)草地貪夜蛾也會面臨抗性汰選,但其后代不能越冬,因而抗性基因不能在種群中累積遺傳,目前尚未見草地貪夜蛾在秋季回遷到周年繁殖區(qū)的文獻(xiàn)報(bào)道。
如果要在南方冬玉米區(qū)應(yīng)用Bt玉米防治草地貪夜蛾等害蟲,在Bt玉米種類選擇上應(yīng)采取“差異化”原則,即選擇與其他種植區(qū)沒有交互抗性(殺蟲作用機(jī)理不同)的Bt玉米品種(應(yīng)避免選擇表達(dá)Cry1Ab及其類似的Cry1類殺蟲蛋白的Bt玉米),以使周年繁殖區(qū)北遷攜帶抗性基因的個體,在遷入?yún)^(qū)的不同Bt玉米上成為敏感個體。這與草地貪夜蛾抗藥性治理要在不同省份盡量做到“藥劑品種、施用時(shí)間和空間不同”[12]類似。
4.2 長期精準(zhǔn)的抗性監(jiān)測計(jì)劃
技術(shù)上應(yīng)針對生產(chǎn)上即將推廣應(yīng)用的Bt玉米種類,盡早摸清草地貪夜蛾自然種群的敏感基線、抗性基因頻率(包括基因型檢測[154156]和表型檢測),明確其對不同Bt玉米產(chǎn)品表達(dá)Bt蛋白的抗性和交互抗性問題,建立抗性監(jiān)測計(jì)劃。同時(shí)應(yīng)密切關(guān)注境外遷入蟲源地Bt玉米種植情況,包括Bt玉米種類,種植制度,草地貪夜蛾的汰選史,當(dāng)?shù)乇O(jiān)測抗性情況,外來蟲源的敏感性測定等。精準(zhǔn)的抗性監(jiān)測將為抗性演化預(yù)測、抗性治理措施有效性評價(jià)提供及時(shí)可靠的科學(xué)依據(jù)。
4.3 切實(shí)落實(shí)好庇護(hù)所策略
美國20多年的成功實(shí)踐經(jīng)驗(yàn)證明,高劑量庇護(hù)所是靶標(biāo)害蟲抗性治理的根本性策略[147,157]。理論上高劑量是指Bt作物植株表達(dá)的Bt殺蟲蛋白量能殺死靶標(biāo)害蟲種群中100%的ss個體和95%的sr個體[100]。在抗性產(chǎn)生前,這一量化指標(biāo)實(shí)際是無法準(zhǔn)確得到的。因此,提出以表達(dá)量≥25×LC99.9劑量作為可操作高劑量指標(biāo)[148,158160]。評價(jià)一個產(chǎn)品是否高劑量,與評價(jià)方法有關(guān)。Burkness等報(bào)道了田間‘MIR162及‘MIR162×Bt11甜玉米上多年多點(diǎn)試驗(yàn)結(jié)果,草地貪夜蛾無存活幼蟲,轉(zhuǎn)基因玉米殺蟲效果達(dá)到高劑量水平[141]。Niu等報(bào)道了2個草地貪夜蛾Cry1A.105抗性品系在Cry1A.105玉米離體葉片上表現(xiàn)為隱性或不完全隱性遺傳,然而在整株玉米上表現(xiàn)為中等或不完全顯性遺傳[161],甚至在‘MON89034植株上也一樣[162],說明了田間評價(jià)的重要性。目前,國產(chǎn)轉(zhuǎn)基因玉米多以亞洲玉米螟、黏蟲為靶標(biāo),而草地貪夜蛾作為新入侵害蟲沒有被列為靶標(biāo)。張丹丹等報(bào)道了‘C0030.3.5(表達(dá)Cry1Ab蛋白)玉米離體葉片對草地貪夜蛾1齡幼蟲的致死率<66%,‘DBN3601和‘DBN5608(表達(dá)Cry1Ab+Vip3Aa蛋白)對1~2齡幼蟲的致死率達(dá)到100%,3齡幼蟲的死亡率84%~95%[14]。是否達(dá)到高劑量,有待進(jìn)一步田間試驗(yàn)評價(jià)。
由于有限的可利用Bt玉米資源,這一措施的實(shí)施重點(diǎn)在于庇護(hù)所的落實(shí)。我們知道,‘TC1507‘MON810‘Bt11等對于草地貪夜蛾都沒有達(dá)到高劑量水平。但在美國本土應(yīng)用已有20多年,現(xiàn)在依然有效,其中一個重要的原因是庇護(hù)所得到較好的落實(shí)[147]。
參考文獻(xiàn)
[1] 郭井菲, 靜大鵬, 太紅坤, 等. 草地貪夜蛾形態(tài)特征及與3種玉米田為害特征和形態(tài)相近鱗翅目昆蟲的比較[J]. 植物保護(hù), 2019, 45(2): 712.
[2] 姜玉英, 劉 杰, 謝茂昌, 等. 2019年我國草地貪夜蛾擴(kuò)散為害規(guī)律觀測[J]. 植物保護(hù), 2019, 45(6): 1019.
[3] 吳秋琳, 姜玉英, 吳孔明. 草地貪夜蛾緬甸蟲源遷入中國的路徑分析[J]. 植物保護(hù), 2019, 45(2): 16.
[4] 吳秋琳, 姜玉英, 胡 高, 等. 中國熱帶和南亞熱帶地區(qū)草地貪夜蛾春夏兩季遷飛軌跡的分析[J]. 植物保護(hù), 2019, 45(3): 19.
[5] 趙勝園, 孫小旭, 張浩文, 等. 常用化學(xué)殺蟲劑對草地貪夜蛾防效的室內(nèi)測定[J]. 植物保護(hù), 2019, 45(3): 1014.
[6] 趙勝園, 楊現(xiàn)明, 楊學(xué)禮, 等. 8種農(nóng)藥對草地貪夜蛾的田間防治效果[J]. 植物保護(hù), 2019, 45(4): 7478.
[7] 趙旭, 朱凱輝, 張柱亭, 等. 夜蛾黑卵蜂對草地貪夜蛾田間防效的初步評價(jià)[J]. 植物保護(hù), 2020, 46(1): 7477.
[8] 楊普云, 朱曉明, 郭井菲, 等. 我國草地貪夜蛾的防控對策與建議[J]. 植物保護(hù), 2019, 45(4): 16.
[9] 趙勝園, 楊現(xiàn)明, 和偉, 等. 草地貪夜蛾卵巢發(fā)育分級與繁殖潛力預(yù)測方法 [J]. 植物保護(hù), 2019, 45(6): 2834.
[10]葛世帥, 何莉梅, 和偉, 等. 草地貪夜蛾的飛行能力測定[J]. 植物保護(hù), 2019, 45(4): 2833.
[11]李紅梅, 萬敏, 顧蕊, 等. 基于文獻(xiàn)計(jì)量學(xué)的重大入侵害蟲草地貪夜蛾的研究動態(tài)分析[J]. 植物保護(hù), 2019, 45(4): 3442.
[12]李永平, 張帥, 王曉軍, 等. 草地貪夜蛾抗藥性現(xiàn)狀及化學(xué)防治策略[J]. 植物保護(hù), 2019, 45(4): 1419.
[13]寧素芳, 周金成, 張柱亭, 等. 貴州省黔東南地區(qū)發(fā)現(xiàn)草地貪夜蛾的5種寄生性天敵及其兩種重寄生蜂[J]. 植物保護(hù), 2019, 45(6): 3942.
[14]張丹丹, 吳孔明. 國產(chǎn)Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米對草地貪夜蛾的抗性測定[J]. 植物保護(hù), 2019, 45(4): 5460.
[15]KOZIEL M G, BELAND G L, BOWMAN C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis [J]. Nature Biotechnology, 1993, 11(2): 194200.
[16]GRAEBER J V, NAFZIGER E D, MIES D W. Evaluation of transgenic, Bt-containing corn hybrids [J]. Journal of Production Agriculture, 1999, 12(4): 659663.
[17]LAUER J, WEDBERG J. Grain yield of initial Bt corn hybrid introductions to farmers in the northern corn belt [J]. Journal of Production Agriculture, 1999, 12(3): 373376.
[18]ARCHER T L, SCHUSTER G, PATRICK C, et al. Whorl and stalk damage by European and southwestern corn borers to four events of Bacillus thuringiensis transgenic maize [J]. Crop Protection, 2000, 19(3): 181190.
[19]ARCHER T L, PATRICK C, SCHUSTER G, et al. Ear and shank damage by corn borers and corn earworms to four events of Bacillus thuringiensis transgenic maize [J]. Crop Protection, 2001, 20(2): 139144.
[20]HE Kanglai, WANG Zhenying, ZHOU Darong, et al. Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology, 2003, 96(3): 935940.
[21]BURKNESS E C, HUTCHISON W D, BOLIN P C, et al. Field efficacy of sweet corn hybrids expressing a Bacillus thuringiensis toxin for management of Ostrinia nubilalis (Lepidoptera: Crambidae) and Helicoverpa zea (Lepidoptera: Noctuidae) [J]. Journal of Economic Entomology, 2001, 94(1): 197203.
[22]LYNCH R E, WISEMAN B R, PLAISTED D, et al. Evaluation of transgenic sweet corn hybrids expressing CryIA (b) toxin for resistance to corn earworm and fall armyworm (Lepidoptera: Noctuidae) [J]. Journal of Economic Entomology, 1999, 92(1): 246252.
[23]BUNTIN G D, ALL J N, LEE R D, et al. Plant-incorporated Bacillus thuringiensis resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) in corn [J]. Journal of Economic Entomology, 2004, 97(5): 16031611.
[24]BUNTIN G D, FLANDERS K L, LYNCH R E. Assessment of experimental Bt events against fall armyworm and corn earworm in field corn [J]. Journal of Economic Entomology, 2004, 97(2): 259264.
[25]WILLIAMS W P, SAGERS J B, HANTEN J A, et al. Transgenic corn evaluated for resistance to fall armyworm and southwestern corn borer [J]. Crop Science, 1997, 37(3): 957962.
[26]WILLIAMS W P, BUCKLEY P M, SAGERS J B, et al. Evaluation of transgenic corn for resistance to corn earworm (Lepidoptera: Noctuidae), fall armyworm (Lepidoptera: Noctuidae), and southwestern corn borer (Lepidoptera: Crambidae) in a laboratory bioassay [J]. Journal of Agricultural Entomology, 1998, 15(2): 105112.
[27]STORER N P, VAN DUYN J W, KENNEDY G G. Life history traits of Helicoverpa zea (Lepidoptera: Noctuidae) on non-Bt and Bt transgenic corn hybrids in eastern North Carolina [J]. Journal of Economic Entomology, 2001, 94(5): 12681279.
[28]U S Environmental Protection Agency. Biopesticides registration action document for Bacillus thuringiensis plant-incorporated protectants (October 16, 2001) [EB/OL]. http:∥wwwepagov/pesticides/biopesticides/reds/brad_bt_ pip2htm, 2001.
[29]CHAMBERS J A, JELEN A, GILBERT M P, et al. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai [J]. Journal of Bacteriology, 1991, 173(13): 39663976.
[30]SIEBERT M W, BABOCK J M, NOLTING S, et al. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae) [J]. Florida Entomologist, 2008, 91(4): 555565.
[31]SIEBERT M W, TINDAL K V, LEONARD B R, et al. Evaluation of corn hybrids expressing Cry1F (Herculex I insect protection) against fall armyworm (Lepidoptera: Noctuidae) in the southern United States [J]. Journal of Entomological Science, 2008, 43(1): 4151.
[32]BUNTIN G D. Corn expressing Cry1Ab or Cry1F endotoxin for fall armyworm and corn earworm (Lepidoptera: Noctuidae) management in field corn for grain production [J]. Florida Entomologist, 2008, 91(4): 523530.
[33]NAAS. National Agricultural Statistics Service. Acreage. ISSN: 19491522 [EB/OL]. United States Department of Agricultural, National Agricultural Statistics Service, Washington, DC, 2013. https:∥downloads.usda.library.cornell.edu/usdaesmis/files/jo98zb09z/3197xp47r/z603r0644/Acre-06-28-2013.txt.
[34]HUTCHISON W D, BURKNESS E C, MITCHELL P D, et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers [J]. Science, 2010, 330(6001): 222225.
[35]STORER N P, THOMPSON G D, HEAD G P. Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops [J]. GM Crops Food, 2012, 3(3): 154162.
[36]SIEBERT M W, NOLTING S P, HENDRIX W, et al. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests [J]. Journal of Economic Entomology, 2012, 105(5): 18251834.
[37]ISAAA. Global status of commercialized biotech/GM crops: 2018 [J]. ISAAA Briefs, 2018, 54: iii+143.
[38]STORER N P, KUBISZAK M E, ED KING J, et al. Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico [J]. Journal of Invertebrate Pathology, 2012, 110(3): 294300.
[39]STORER N P, BABCOCK J M, SCHLENZ M, et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico [J]. Journal of Economic Entomology, 2010, 103(4): 10311038.
[40]NIU Ying, MEAGHER R L, YANG Fei, et al. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes [J]. Florida Entomologist, 2013, 96(3): 701713.
[41]NIU Ying, YANG Fei, DANGAL V, et al. Larval survival and plant injury of Cry1 F-susceptible,-resistant, and-heterozygous fall armyworm (Lepidoptera: Noctuidae) on non-Bt and Bt corn containing single or pyramided genes [J]. Crop Protection, 2014, 59: 2228.
[42]HUANG Fangneng, QURESHI J A, MEAGHER R L, et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize [J/OL]. PLoS ONE, 2014, 9(11): e112958.
[43]NAGOSHI R N, PIERRE S, MEAGHER R L, et al. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida [J]. Annals of the Entomological Society of America, 2007, 100(3): 395402.
[44]NAGOSHI R N, MEAGHER R L, JENKINS D A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations [J]. Journal of Economic Entomology, 2010, 103(2): 360367.
[45]NAGOSHI R N, MEAGHER R L. Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration [J]. Florida Entomologist, 2008, 91(4): 546554.
[46]NAGOSHI R N, MEAGHER R L, FLANDERS K, et al. Using haplotypes to monitor the migration of fall armyworm (Lepidopte-ra: Noctuidae) corn-strain populations from Texas and Florida [J]. Journal of Economic Entomology, 2008, 101(3): 742749.
[47]JAMES C. Global status of commercialized biotech/GM crops: 2011 [R]. ISAAA Briefs, 2011, 43: Viii+325.
[48]FARIAS J R, COSTA E C, GUEDES J V, et al. Managing the sugarcane borer, Diatraea saccharalis, and corn earworm, Helicoverpa zea, using Bt corn and insecticide treatments [J]. Journal of Insect Science, 2013, 13(109):110.
[49]MARTINELLI S, OMOTO C. Resistência de insetos a plantas geneticamente modificadas [J]. Biotecnol Ciênc Desenvolvimento, 2005, 34: 6777.
[50]FARIAS J R, HORIKOSHI R J, SANTOS A C, et al. Geographical and temporal variability in susceptibility to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil [J]. Journal of Economic Entomology, 2014, 107(6): 21822189.
[51]JAMES C. 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015 [R]. ISAAA Briefs, 2015, 51: vi+272.
[52]JAMES C. Global status of commercialized biotech/GM crops: 2009 [R]. ISAAA Briefs, 2009, 41: x + 290.
[53]BLANCO C A, CHIARAVALLE W, DALLA-RIZZA M, et al. Current situation of pests targeted by Bt crops in Latin America [J]. Current Opinion in Insect Science, 2016, 15: 131138.
[54]FERNANDES O D, PARRA J R P, NETO A F, et al. Effect of the genetically modified corn MON810 on fall armyworm, Spodoptera frugiperda (J.E.Smith,1797) (Lepidoptera: Noctuidae) [J]. Revista Brasileira de Milho e Sorgo, 2003, 2: 2535.
[55]BUSATO O R, GRTZMACHER A D, GARCIA M S, et al. Compared biology of Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) populations in corn and rice leaves [J]. Neotropical Entomology, 2005, 34: 743750.
[56]MONTEZANO D G, SPECHT A, SOSA-GMEZ D R, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas [J]. African Entomology, 2018, 26(2): 286300.
[57]HORIKOSHI R J, BERNARDI D, BERNARDI O, et al. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management [J/OL]. Scientific Reports, 2016, 6: 34864.
[58]FATORETTO J C, MICHEL A P, SILVA FILHO M C, et al. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil [J]. Journal of Integrated Pest Management, 2017, 8(1): 17; 110.
[59]PINHEIRO J C A, PDUA L E M, PORTELA G L F, et al. Biologia comparada de Spodoptera frugiperda (J.E. Smith, 1797) visando ao seu zoneamento ecológico no estado do Piauí [J]. Caatinga, 2008, 21: 197203.
[60]JAMES C. Global status of commercialized biotech/GM crops: 2008 [R]. ISAAA Briefs, 2008, 39: 243.
[61]CTNBIO. Liberacao comercial de milho geneticamente modificado resistente a insetos [J/OL]. Comissao Técnica Nacional de Biossegurana, 2011, http:∥www.ctnbio.gov.br/index.php/content/view/14784.html.
[62]OKUMURA R S, MARIANO D C, DALLACORT R, et al. Agronomic efficiency of Bacillus thuringiensis (Bt) maize hybrids in pests control on Lucas do Rio Verde city, State of Mato Grosso, Brazil [J]. African Journal of Agricultural Research, 2013, 8(19): 22322239.
[63]LOURENO A L F, FERNANDES M G. Evaluation of Cry1Ab and Cry1F Bt maize genotypes for the control of Spodoptera frugiperda (J.E. Smith. 1797) (Lepidoptera: Noctuidae) under field conditions [J]. Cient Jaboticabal, 2013, 41: 164188.
[64]FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil [J]. Crop Protection, 2014, 64: 150158.
[65]FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil [J]. Pest Management Science, 2016, 72(12): 22952302.
[66]OMOTO C, BERNARDI O, SALMERON E, et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil [J]. Pest Management Science, 2016, 72(9): 17271736.
[67]MARTINELLI S, BARATA R M, ZUCCHI M I, et al. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil [J]. Journal of Economic Entomology, 2006, 99(2): 519526.
[68]JAMES C. Global status of commercialized biotech/GM Crops: 2014 [R]. ISAAA Briefs, 2014(49): vi+259.
[69]TRIGO E J, CAP E J. Ten years of genetically modified crops in Argentine agriculture [R]. ArgenBio Report, 2006: 152.
[70]GRIMI D A, PARODY B, RAMOS M L, et al. Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina [J]. Pest Management Science, 2018, 74(4): 905913.
[71]SIGNORINI A M, ABRATTI G, GRIMI D, et al. Management of field-evolved resistance to Bt maize in Argentina: a multi-institutional approach [J/OL]. Frontiers in Bioengineering and Biotechnology, 2018, 6.DOI:10.3389/fbioe.2018.00067.
[72]TRUMPER E V. Resistencia de insectos a cultivos transgénicos con propiedades insecticidas. Teoría, estado del arte y desafíos para la República Argentina [J]. Agriscientia, 2014, 31: 109126.
[73]ARGENBIO. Grfico de evolución de las superficies sembradas con OGM en la Argentina, enporcentajes [R/OL]. http:∥www.argenbio.org/adc/uploads/2017/Argentina_Evolucion_superficie_cultivos_GM_totalcada_cultivo.pdf.2019.
[74]BALBI E I, FLORES F. Evaluasssción del dao causado por el “Cogollero de maíz” (Spodoptera frugiperda) y presencia de la “Isoca de la espiga” (Helicoverpa zea) en diferentes híbridos de maíztransgénico [R/OL]. http:∥inta.gob.ar/documentos/evaluacion-del-danocausado-por-el-cogollero-de-maiz-spodoptera-frugiperda-y-presenciade-la-isoca-de-la-espiga-helicoverpa-zea-en-diferentes-hibridos-de-maiztransgenico.2015.
[75]CHANDRASENA D I, SIGNORINI A M, ABRATTI G, et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F delta-endotoxin in Spodoptera frugiperda populations from Argentina [J]. Pest Management Science, 2017, 74(3): 746754.
[76]MURUA M G, VERA M A, MICHEL A, et al. Performance of field-collected Spodoptera frugiperda(Lepidoptera: Noctuidae) strains exposed to different transgenic and refuge maize hybrids in Argentina [J]. Journal of Insect Science, 2019, 19(6): 17.
[77]莫建初, 莊佩君, 唐振華. 遷移對害蟲抗性演化的影響[J]. 昆蟲學(xué)報(bào), 2000, 43(2): 143151.
[78]TABASHNIK B E, CROFT B A. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors [J]. Environmental Entomology, 1982, 11(6): 11371144.
[79]MARTINELLI S, CLARK P L, ZUCCHI M I, et al. Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil [J]. Bulletin of Entomological Research, 2007, 97(3): 225231.
[80]BARROS E M, TORRES J B, BUENO A F. Oviposition, development, and reproduction of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) fed on different hosts of economic importance [J]. Neotropical Entomology, 2010, 39(6): 9961001.
[81]JAKKA S R, KNIGHT V R, JURAT-FUENTES J L. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae) [J]. Journal of Economic Entomology, 2014, 107(1): 342351.
[82]PRASANNA B M, HUESING J E, EDDY R, et al. Fall armyworm in Africa: a guide for integrated pest management. Manuals [M]. CABI, 2018.
[83]BUSATO G R, GRTZMACHER A D, GARCIA M S, et al. Biologia comparada de populaces de Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) em folhas de milho e arroz [J]. Neotropical Entomology, 2005, 34: 743750.
[84]ACHARYA B, HEAD G P, PRICE P A, et al. Fitness costs and inheritance of Cry2Ab2 resistance in Spodoptera frugiperda (J.E.Smith) [J]. Journal of Invertebrate Pathology, 2017, 149: 814.
[85]SANTOS-AMAYA O F, TAVARES C S, RODRIGUES J V, et al. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda [J]. Pest Management Science, 2017, 73(1): 3543.
[86]PAIR S D, RAULSTON J R, SPARKS A N, et al. Fall armyworm distribution and population dynamics in the southeastern States [J]. Florida Entomologist, 1986, 69(3): 468487.
[87]GOERGEN G, KUMAR P L, SANKUNG S B, et al. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J.E.Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa [J/OL]. PLoS ONE, 2016, 11(10): e0165632.
[88]郭井非, 趙建周, 何康來, 等. 警惕危險(xiǎn)性害蟲草地貪夜蛾入侵中國[J]. 植物保護(hù), 2018, 44(6): 110.
[89]NAGOSHI R N, ROSAS-GARCIA N M, MEAGHER R L, et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, south America, and the United States and their implications to migratory behavior [J]. Journal of Economic Entomology, 2015, 108(1): 135144.
[90]SPARKS A N. A review of the biology of the fall armyworm [J]. Florida Entomologist, 1979, 62(2): 8287.
[91]WESTBROOK J K, NAGOSHI R N, MEAGHER R L, et al. Modeling seasonal migration of fall armyworm moths [J]. International Journal Biometeorology, 2016, 60(2): 255267.
[92]NAGOSHI R N, FLEISCHER S, MEAGHER R L. Texas is the overwintering source of fall armyworm in central Pennsylvania: implications for migration into the northeastern United States [J]. Environmental Entomology, 2009, 38(6): 15461554.
[93]MEAGHER R L, NAGOSHI R N, STUHL C, et al. Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants [J]. Florida Entomologist, 2004, 87(4): 454460.
[94]MONNERAT R, MARTINS E, QUEIROZ P, et al. Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis cry toxins [J]. Applied and Environmental Microbiology, 2006, 72(11): 70297035.
[95]RAZZE J M, MASON C E, PIZZOLATO T D. Feeding behavior of neonate Ostrinia nubilalis (Lepidoptera: Crambidae) on Cry1Ab Bt corn: implications for resistance management [J]. Journal of Economic Entomology, 2011, 104(3): 806813.
[96]ONSTAD D W, GOULD F. Modeling the dynamics of adaptation to transgenic maize by European corn borer (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology, 1998, 91(3): 585593.
[97]DAVIS P M, ONSTAD D W. Seed mixtures as a resistance management strategy for European corn borers (Lepidoptera: Crambidae) infesting transgenic corn expressing Cry1Ab protein [J]. Journal of Economic Entomology, 2000, 93(3): 937948.
[98]CARROLL M W, HEAD G, CAPRIO M. When and where a seed mix refuge makes sense for managing insect resistance to Bt plants [J]. Crop Protection, 2012, 38: 7479.
[99]WANGILA D S, LEONARD B R, GHIMIRE M N, et al. Occurrence and larval movement of Diatraea saccharalis (Lepidoptera: Crambidae) in seed mixes of non-Bt and Bt pyramid corn [J]. Pest Management Science, 2013, 69(10): 11631172.
[100]GOULD F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology [J]. Annual Review of Entomology, 1998, 43: 701726.
[101]NGUYEN H T, JEHLE J A. Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810 [J]. Journal of Plant Diseases and Protection, 2007, 114(2): 8287.
[102]PANNUTI L E R, BALDIN E L L, HUNT T E, et al. On-plant larval movement and feeding behavior of fall armyworm (Lepidoptera: Noctuidae) on reproductive corn stages [J]. Environmental Entomology, 2016, 45(1): 192200.
[103]MIRALDO L L, BERNARDI O, HORIKOSHI R J, et al. Functional dominance of different aged larvae of Bt-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) on transgenic maize expressing Vip3Aa20 protein [J]. Crop Protection, 2016, 88: 6571.
[104]PANNUTI L E R, PAULA-MORAES S V, HUNT T E, et al. Plant-to-plant movement of Striacosta albicosta (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize (Zea mays) [J]. Journal of Economic Entomology, 2016, 109(3): 11251131.
[105]BERNARDI O, BERNARDI D, AMADO D, et al. Resistance risk assessment of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein expressed in corn [J]. Journal of Economic Entomology, 2015, 108(6): 27112719.
[106]REISIG D D, AKIN D S, ALL J N, et al. Lepidoptera (Crambidae, Noctuidae, and Pyralidae) injury to corn containing single and pyramided Bt traits, and blended or block refuge, in the southern United States [J]. Journal of Economic Entomology, 2015, 108(1): 157165.
[107]VELEZ A M, SPENCER T A, ALVES A P, et al. Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) [J]. Bulletin of Entomological Research, 2013, 103(6): 700713.
[108]JAKKA S R, KNIGHT V R, JURAT-FUENTES J L. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides [J]. Journal of Invertebrate Pathology, 2014, 122: 5254.
[109]CAMARGO A M, CASTANERA P, FARINOS G P, et al. Comparative analysis of the genetic basis of Cry1F resistance in two strains of Spodoptera frugiperda originated from Puerto Rico and Florida [J]. Journal of Invertebrate Pathology, 2017, 146: 4752.
[110]DANGAL V, HUANG Fangneng. Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E.Smith), collected from Puerto Rico and Florida [J]. Journal of Invertebrate Pathology, 2015, 127: 8186.
[111]LI Guoping, REISIG D, MIAO Jin, et al. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) [J/OL]. PLoS ONE, 2016, 11(4): e0154492.
[123]NIU Ying, HEAD G P, PRICE P A, et al. Inheritance and fitness costs of Cry1A.105 resistance in two strains of Spodoptera frugiperda (J.E. Smith) [J]. Crop Protection, 2018, 110: 229235.
[124]HUANG Fangneng, QURESHI J A, HEAD G P, et al. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida [J]. Crop Protection, 2016, 83: 8389.
[125]SANTOS-AMAYA O F, TAVARES C S, RODRIGUES J V C, et al. Magnitude and allele frequency of Cry1F resistance in field populations of the fall armyworm (Lepidoptera: Noctuidae) in Brazil [J]. Journal of Economic Entomology, 2017, 110(4): 17701778.
[126]太紅坤, 郭井菲, 張峰, 等. 草地貪夜蛾在云南冬季甜玉米上的生物學(xué)習(xí)性及為害狀觀察[J]. 植物保護(hù), 2019, 45(5): 9195.
[127]TABASHNIK B E, BREVAULT T, CARRIERE Y. Insect resistance to Bt crops: lessons from the first billion acres [J]. Nature Biotechnology, 2013, 31(6): 510521.
[128]WAN Peng, XU Dong, CONG Shengbo, et al. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(21): 54135418.
[129]李國平, 姬婷婕, 孫小旭, 等. 入侵云南草地貪夜蛾種群對5種常用Bt蛋白的敏感性評價(jià)[J]. 植物保護(hù), 2019, 45(3):1520.
[130]LUTTRELL R G, WAN L, KNIGHTEN K. Variation in susceptibility of Noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis [J]. Journal of Economic Entomology, 1999, 92(1): 2132.
[131]CHILCUTT C F, ODVODY G N, CORREA J C, et al. Effects of Bacillus thuringiensis transgenic corn on corn earworm and fall armyworm (Lepidoptera: Noctuidae) densities [J]. Journal of Economic Entomology, 2007, 100(2): 327334.
[132]BUNTIN G D. Corn expressing Cry1Ab endotoxin for management of fall armyworm and corn earworm (Lepidoptera: Noctuidae) in silage production [J]. Journal of Entomological Science, 2010, 45(3): 283295.
[133]BUNTIN G D, LEE R D, WILLSON D M, et al. Evaluation of yieldgard transgenic resistance for control of fall armyworm and corn earworm (Lepidoptera: Noctuidae) on corn [J]. Florida Entomologist, 2001, 84(1): 3742.
[134]BOKONON-GANTA A, BERNAL J S, PIETRANTONIO P V, et al. Survivorship and development of fall armyworm, Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae), on conventional and transgenic maize cultivars expressing Bacillus thuringiensis Cry9C and Cry1A(b) endotoxins [J]. International Journal of Pest Management, 2003, 49(2): 169175.
[135]RULE D M, NOLTING S P, PRASIFKA P L, et al. Efficacy of pyramided Bt proteins Cry1F, Cry1A105, and Cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States [J]. Journal of Economic Entomology, 2014, 107(1): 403409.
[136]WAQUIL J M, DOURADO P M, DE CARVALHO R A, et al. Management of lepidopteran pests in maize crop using the Bt pyramided event Cry1A.105 and Cry2Ab2 [J]. Pesquisa Agropecuaria Brasileira, 2013, 48(12): 15291537.
[137]SANTOS-AMAYA O F, RODRIGUES J V, SOUZA T C, et al. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events [J/OL]. Scientific Reports, 2015, 5: 18243.
[138]LEE M K, WALTERS F S, HART H, et al. Mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin [J]. Applied and Environmental Microbiology, 2003, 69(8): 46484657.
[139]HERNANDEZ-MARTINEZ P, HERNANDEZ-RODRIGUEZ C S, RIE J V, et al. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests [J]. Journal of Invertebrate Pathology, 2013, 113(1): 7881.
[140]ESTRUCH J J, WARREN G W, MULLINS M A, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects [J].Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11): 53895394.
[141]BURKNESS E C, DIVELY G, PATTON T, et al. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management [J]. GM Crops, 2010, 1(5): 337343.
[142]YANG Fei, KERNS D L, HEAD G P, et al. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda [J]. Pest Management Science, 2017, 73(12): 24952503.
[143]YANG Fei, HUANG Fangneng, QURESHI J A, et al. Susceptibility of Louisiana and Florida populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) to transgenic Agrisure (R) Viptera (TM) 3111 corn [J]. Crop Protection, 2013, 50: 3739.
[144]ZHU Chengqi, NIU Ying, ZHOU Yiwan, et al. Survival and effective dominance level of a Cry1A.105/Cry2Ab2-dual gene resistant population of Spodoptera frugiperda (J.E.Smith) on common pyramided Bt corn traits [J]. Crop Protection, 2019, 115: 8491.
[145]MCGAUGHEY W H. Insect resistance to the biological insecticide Bacillus thuringiensis [J]. Science, 1985, 229(4709): 193195.
[146]TABASHNIK B E, CARRIERE Y, DENNEHY T J, et al. Insect resistance to transgenic Bt crops: Lessons from the laboratory and field [J]. Journal of Economic Entomology, 2003, 96(4): 10311038.
[147]HUANG Fangneng, ANDOW D A, BUSCHMAN L L. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America [J]. Entomologia Experimentalis et Applicata, 2011, 140(1): 116.
[148]BATES S L, ZHAO J Z, ROUSH R T, et al. Insect resistance management in GM crops: past, present and future [J]. Nature Biotechnology, 2005, 23(1): 5762.
[149]BAMBAWALE O M, TANWAR R K, SHARMA O P, et al. Impact of refugia and integrated pest management on the performance of transgenic (Bacillus thuringiensis) cotton (Gossypium hirsutum) [J]. Indian Journal of Agricultural Sciences, 2010, 80(8): 730736.
[150]TABASHNIK B E, GASSMANN A J, CROWDER D W, et al. Insect resistance to Bt crops: evidence versus theory [J]. Nature Biotechnology, 2008, 26(2): 199202.
[151]SANAHUJA G, BANAKAR R, TWYMAN R M, et al. Bacillus thuringiensis: a century of research, development and commercial applications [J]. Plant Biotechnology Journal, 2011, 9(3): 283300.
[152]AGROBIO. Brazilian Biotechnology Industry Association 2016. IRM advertising campaign [EB/OL].http:∥boaspraticasagronomicas.com.br/.2016.
[153]中華人民共和國農(nóng)業(yè)農(nóng)村部. 2019年農(nóng)業(yè)轉(zhuǎn)基因生物安全證書(生產(chǎn)應(yīng)用)批準(zhǔn)清單(一)[EB/OL].http:∥www.moa.gov.cn/ztzl/zjyqwgz/spxx/201912/P020200121588032501444.pdf.2020.
[154]ANDOW D A, ALSTAD D N, PANG Y H, et al. Using an F2 screen to search for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae) [J]. Journal of Economic Entomology, 1998, 91(3): 579584.
[155]GOULD F, ANDERSON A, JONES A, et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(8): 35193523.
[156]MAHON R J, DOWNES S, JAMES W, et al. Why do F1 screens estimate higher frequencies of Cry2Ab resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) than do F2 screens? [J]. Journal of Economic Entomology, 2010, 103(2): 472481.
[157]REAY-JONES F P, BESSIN R T, BREWER M J, et al. Impact of Lepidoptera (Crambidae, Noctuidae, and Pyralidae) pests on corn containing pyramided Bt traits and a blended refuge in the southern United States [J]. Journal of Economic Entomology, 2016, 109(4): 18591871.
[158]GOULD F. Potential and problems with high-dose strategies for pesticidal engineered crops [J]. Biocontrol Science and Technology, 1994, 4(4): 451461.
[159]KURTZ R W, MCCAFFERY A, OREILLY D. Insect resistance management for Syngentas VipCot transgenic cotton [J]. Journal of Invertebrate Pathology, 2007, 95(3): 227230.
[160]CAPRIO M A, SUMERFORD D V, SIMS S R. Evaluating transgenic plants for suitability in pest and resistance management programs [M]∥LACEY L A, KAYA H K. Field manual of techniques in invertebrate pathology. Dordrecht, Netherlands; Kluwer Academic Press, 2000: 805828.
[161]NIU Ying, HEAD G P, PRICE P A, et al. Performance of Cry1A.105-selected fall armyworm (Lepidoptera: Noctuidae) on transgenic maize plants containing single or pyramided Bt genes [J]. Crop Protection, 2016, 88: 7987.
[162]NIU Ying, GUO Jianguo, HEAD G P, et al. Phenotypic performance of nine genotypes of Cry1A.105/Cry2Ab2 dual-gene resistant fall armyworm on non-Bt and MON 89034 maize [J]. Pest Management Science, 2019, 75(8): 21242132.
(責(zé)任編輯:張文蔚)
收稿日期: 20200429?? 修訂日期: 20200502
基金項(xiàng)目:中國農(nóng)業(yè)科學(xué)院重大科研任務(wù)(CAAS-ZDRW202007)
通信作者?E-mail:klhe@ippcaas.cn