姚勇 于勝堯 紀(jì)文濤 李妍 李卓凡
摘? 要:柴北緣烏蘭地區(qū)出露有大量早古生代中低壓泥質(zhì)麻粒巖。據(jù)巖石學(xué)和礦物化學(xué)研究,將烏蘭地區(qū)早古生代泥質(zhì)麻粒巖變質(zhì)作用劃分為兩期。其中峰期變質(zhì)階段礦物組合為Grt1+Bt1+Sil+Kfs+Pl+Qtz+melt,退變質(zhì)階段礦物組合為Bt2+Ms+Grt2+H2O±Pl±Qtz。通過對泥質(zhì)麻粒巖樣品進(jìn)行鋯石LA-ICP-MS U-Pb定年,獲得泥質(zhì)麻粒巖峰期變質(zhì)時代為(482±3) Ma。為厘清烏蘭地區(qū)早古生代泥質(zhì)麻粒巖變質(zhì)演化歷史,揭示麻粒巖變質(zhì)機(jī)制,通過相平衡模擬技術(shù)和黑云母Ti溫度計,獲得烏蘭地區(qū)早古生代泥質(zhì)麻粒巖峰期和退變質(zhì)溫壓條件分別為:710 ℃~730 ℃/5~6.2 kbar和560 ℃~650 ℃/5~6.2 kbar。由于巖漿的冷卻使其退變質(zhì)階段經(jīng)歷等壓降溫變質(zhì)作用。
關(guān)鍵詞:柴北緣;烏蘭地區(qū);早古生代;麻粒巖相
研究表明,柴北緣經(jīng)歷了洋殼俯沖到陸殼俯沖及俯沖板片折返的整個過程[1-4]。目前對南祁連洋形成時間、演化過程等仍存在爭議[1-8]。關(guān)于柴北緣變質(zhì)巖的研究主要集中在高壓-超高壓變質(zhì)巖,特別是榴輝巖,前人已做了較詳細(xì)工作。如榴輝巖變質(zhì)年齡為420~460 Ma,陸殼榴輝巖原巖年齡為820~850 Ma,洋殼榴輝巖原巖年齡為500~540 Ma[9-14]。榴輝巖、泥質(zhì)變質(zhì)巖和石榴橄欖巖中發(fā)現(xiàn)柯石英和金剛石等超高壓變質(zhì)礦物,揭示柴北緣陸殼俯沖深度超過200 km[1,7,15-17]。本文以烏蘭地區(qū)早古生代泥質(zhì)麻粒巖為研究對象,通過野外觀察、巖相學(xué)特征研究,結(jié)合鋯石U-Pb定年及相平衡模擬技術(shù),確定烏蘭地區(qū)早古生代泥質(zhì)麻粒巖變質(zhì)時代及溫壓條件,厘清變質(zhì)演化歷史,并探討了烏蘭地區(qū)麻粒巖形成機(jī)制及動力學(xué)背景。
1? 地質(zhì)背景
柴北緣位于青藏高原北部,以烏蘭-魚卡斷層為界被分為兩個構(gòu)造單元,南部為超高壓變質(zhì)帶,北部為歐龍布魯克微陸塊。柴北緣超高壓變質(zhì)帶中出露有大量超高壓變質(zhì)巖石,如榴輝巖、高壓麻粒巖和泥質(zhì)片麻巖等,變質(zhì)時代集中在420~460 Ma[9-14]。自西向東分為4個超高壓單元:魚卡-榴輝巖片麻巖單元、綠梁山石榴橄欖巖-高壓麻粒巖單元、錫鐵山榴輝巖-片麻巖單元和都蘭榴輝巖-片麻巖單元[9,18]。歐龍布魯克微陸塊變質(zhì)基底主要由3部分組成:古元古代德令哈雜巖、古元古代達(dá)肯達(dá)坂群及中元古代萬洞溝組[9,19-21]。
烏蘭地區(qū)位于歐龍布魯克微陸塊東段,巖石組合主要為花崗片麻巖、副片麻巖、花崗巖,基性侵入巖、二輝麻粒巖、角閃巖等以透鏡體形式出露于副片麻巖中(圖1)[21-22]。早古生代烏蘭地區(qū)經(jīng)弧巖漿作用和麻粒巖相變質(zhì)作用,巖漿巖主要包括輝長巖和花崗巖。康珍等認(rèn)為肯得隆溝基性巖漿巖是由古生代俯沖熔-流體與富集巖石圈地幔發(fā)生交代作用形成的[23]。孫嬌鵬通過對長英質(zhì)片麻巖和透輝二長變粒巖等研究[24],認(rèn)為早古生代宗務(wù)隆構(gòu)造帶起始時間不晚于497 Ma。Wang et al.利用傳統(tǒng)溫壓計得到烏蘭地區(qū)早古生代麻粒巖峰期溫壓為718 ℃ ~729 ℃和4.6~5.3 kbar[25],P-T軌跡為逆時針。Li et al.通過相平衡模擬方法得出研究區(qū)麻粒巖峰期變質(zhì)條件為800 ℃~900 ℃和5.5~7 kbar[26],認(rèn)為烏蘭地區(qū)早古生代麻粒巖經(jīng)順時針P-T軌跡。
2 樣品描述
2.1? 巖相學(xué)特征
泥質(zhì)麻粒巖WL18-4-6.1,風(fēng)化面呈黑色,新鮮面呈灰白色(圖2-a,b),片麻理發(fā)育,產(chǎn)狀190°∠42°,主要由石榴子石(10%~15%)、黑云母(15%~20%)、矽線石(5%~10%)、白云母(3%~5%)、斜長石、鉀長石、石英等礦物組成,長石和石英總含量超過60%,副礦物為鋯石、鈦鐵礦和獨(dú)居石,礦物簡寫參見Kretz(1983)[27]。黑云母多呈黃褐色,有兩種形態(tài),一種呈簇狀或片狀,顆粒較大,邊緣處常發(fā)生破碎形成破碎條帶,常有小顆粒石榴子石、矽線石和鈦鐵礦發(fā)育在大顆粒的黑云母聚集區(qū)域(圖2-c,d),暗示此類黑云母可能發(fā)生了脫水熔融反應(yīng)[28-29]:
Bt+Qtz±Pl→Grt+Sil+Kfs+Ilm+melt;
另一種黑云母呈針柱狀,顆粒較小,常出現(xiàn)在大顆粒石榴子石邊緣或裂隙里(圖2-e)。矽線石也有兩種形態(tài),一種為大顆粒斑晶,內(nèi)部包含黑云母、鈦鐵礦等包裹體,邊部還存在白云母,可能發(fā)生了如下反應(yīng)[30]:Sil+Kfs+H2O→Ms+Pl+Qtz;
另一種矽線石呈針柱狀,常出現(xiàn)在其它礦物周圍,可能代表其形成較晚(圖2-d)。石榴子石呈半自形-自形斑晶,裂隙較發(fā)育,裂隙處通常被小顆粒黑云母填充,邊緣部位常發(fā)育長石、石英、小顆粒黑云母和針柱狀矽線石(圖3-e,f),指示石榴子石可能發(fā)生了如下反應(yīng)[31]:Grt±Kfs±m(xù)elt→Bt+Sil+Qtz±Pl。
長石呈他形-半自形,在正交偏光鏡下,斜長石具明顯聚片雙晶,鉀長石具特征性卡式雙晶,石英多呈他形與長石交錯出現(xiàn)。
2.2? 礦物化學(xué)
在巖相學(xué)基礎(chǔ)上,本文對泥質(zhì)麻粒巖中代表性礦物進(jìn)行化學(xué)成分分析,結(jié)果見表1。
2.2.1? 石榴子石
石榴子石化學(xué)成分以高FeO為主要特征,MgO、CaO和MnO相對較低。石榴子石4種端元組分中,鐵鋁榴石(Alm)含量最高,鎂鋁榴石(Prp)、鈣鋁榴石(Grs)、錳鋁榴石(Sps)含量相對較低。(Alm+Sps)-Grs-Prp圖解中,泥質(zhì)麻粒巖石榴子石都落入鐵鋁榴石區(qū)域(圖3-a)。另石榴子石核部到邊部化學(xué)成分發(fā)生了明顯變化,鎂鋁榴石含量從核部到邊部逐漸降低,鐵鋁榴石含量從核部到邊部逐漸升高,鈣鋁榴石含量基本保持不變(圖3-b),這些端元組分變化表明巖石經(jīng)等壓降溫變質(zhì)作用。
2.2.2? 黑云母
黑云母有兩種形態(tài):簇狀或片狀的大顆粒黑云母與針柱狀小顆粒黑云母,兩者礦物化學(xué)成分存在顯著差異。大顆粒黑云母TiO2含量較高,一般為2.23%~3.11%,反映較高的變質(zhì)溫度;小顆粒黑云母TiO2含量較低,一般小于2%,反映相對低的變質(zhì)溫度。另兩者M(jìn)gO、FeO略有差異,大顆粒黑云母MgO相對略低,F(xiàn)eO相對略高。在黑云母分類圖解中,所有測試點(diǎn)都落在鐵黑云母區(qū)域(圖3-c)。
2.2.3? 長石
斜長石Na2O含量9.80%~10.77%,CaO含量2.14%~3.19%,K2O含量0.16%~0.36%。鉀長石Na2O含量0.92%~2.17%,CaO含量0.01%~0.07%,K2O含量13.74%~15.45%。An-Ab-Or長石分類圖解中,所有斜長石測試點(diǎn)都落在高更長石中,鉀長石都屬透長石(圖3-d)。
在巖相學(xué)及礦物化學(xué)研究基礎(chǔ)上,本文將泥質(zhì)麻粒巖分為兩個變質(zhì)階段。峰期礦物組合為Grt1+Bt1+Sil+Kfs+Pl+Qtz+melt,退變質(zhì)礦物組合為Bt2+ Ms+Grt2+Sil+H2O±Pl±Qtz。
3? 峰期變質(zhì)作用P-T條件
本文選取烏蘭地區(qū)泥質(zhì)麻粒巖進(jìn)行P-T條件相平衡模擬,相平衡模擬技術(shù)采用Perple_X6.7.9計算程序[32],熱力學(xué)數(shù)據(jù)庫選擇hp62ver.dat[33]。涉及的礦物及熔體活度模型包括:melt(G)、Gt(W)、Mica(CHA1)、Bio(HP)、feldspar、Ilm(WPH),選擇的化學(xué)體系為Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2(NCKFSMASHT) 。據(jù)詳細(xì)薄片觀察并結(jié)合相應(yīng)電子探針數(shù)據(jù),我們得到相平衡模擬的有效全巖組分:SiO2=60.34%,Al2O3=13.52%,CaO=0.55%,MgO=3.00%, FeO=11.69%,K2O=1.70%,Na2O=1.63%,TiO2=4.19%,H2O=2.70%。樣品中的H2O據(jù)薄片中礦物體積百分含量估算。
據(jù)相平衡模擬結(jié)果(圖4),固相線出現(xiàn)于710 ℃~800 ℃;白云母穩(wěn)定存在溫度小于710 ℃~800 ℃,且壓力大于5 kbar區(qū)域;黑云母在溫度大于760 ℃后完全消失;斜長石在溫度大于840 ℃后完全消失;金紅石穩(wěn)定出現(xiàn)于8 kbar之上;鈦鐵礦一般出現(xiàn)于9 kbar之下;石榴子石、鉀長石和石英穩(wěn)定在絕大多數(shù)溫壓范圍內(nèi)。烏蘭泥質(zhì)麻粒巖峰期礦物組合為Grt+Bt+Sil+Kfs+Pl+Qtz+melt,結(jié)合峰期石榴子石礦物成分等值線(XCa=Ca/(Ca+Mg+Fe)=0.013~0.016, XMg=Mg/(Ca+Mg+Fe)=0.12~0.15),得出烏蘭地區(qū)泥質(zhì)麻粒巖峰期P-T條件為710 ℃~730 ℃和5~6.2 kbar。
另利用黑云母Ti溫度計得出烏蘭地區(qū)泥質(zhì)麻粒巖峰期變質(zhì)溫度為660 ℃~720 ℃[34],退變質(zhì)溫度為560 ℃~650 ℃。因此,我們推測烏蘭地區(qū)泥質(zhì)麻粒巖峰期變質(zhì)P-T條件為710 ℃~730 ℃和5~6.2 kbar,退變質(zhì)P-T條件為:560 ℃~650 ℃和5~6.2 kbar。
4? 鋯石U-Pb定年結(jié)果
本文對烏蘭地區(qū)泥質(zhì)麻粒巖樣品WL18-4-6.1進(jìn)行系統(tǒng)定年研究,得到33個有效測試點(diǎn),鋯石U-Pb測試結(jié)果見表2。鋯石CL圖像顯示,樣品WL18-4-6.1鋯石以渾圓狀、橢圓狀或不規(guī)則狀為主,斑雜狀結(jié)構(gòu)或補(bǔ)丁狀結(jié)構(gòu),內(nèi)部多為弱分帶或面狀分帶,沒有明顯核邊結(jié)構(gòu)和巖漿振蕩環(huán)帶(圖5)。鋯石顆粒較大,一般100~150 μm,長寬比為1:1~2:1。鋯石顆粒Th含量78×10-6~328×10-6,U含量465×10-6~5221×10-6, 相對應(yīng)的Th/U為0.03~0.33(絕大多數(shù)小于0.25)。結(jié)合鋯石形態(tài)特征,我們認(rèn)為樣品WL18-4-6.1鋯石為典型變質(zhì)鋯石。33個測試點(diǎn)給出的206Pb/238U年齡在(467±5) Ma和(499±7) Ma,相應(yīng)的加權(quán)平均年齡為(482±3) Ma,MSWD=0.23(圖6),即烏蘭地區(qū)泥質(zhì)麻粒巖變質(zhì)年齡為(482±3) Ma。
5? 討論
5.1? 烏蘭地區(qū)麻粒巖變質(zhì)時代
通過鋯石LA-ICP-MS U-Pb定年和SHRIMP U-Pb定年等方法,可準(zhǔn)確測出變質(zhì)巖變質(zhì)時代。但變質(zhì)過程中,鋯石生長可發(fā)生在變質(zhì)作用的任何階段,包括進(jìn)變質(zhì)階段、峰期變質(zhì)階段和退變質(zhì)階段[35-37]。由于后期退變質(zhì)作用或巖漿作用影響,會對變質(zhì)鋯石生長階段的判斷產(chǎn)生干擾,準(zhǔn)確的劃分變質(zhì)鋯石形成時的變質(zhì)階段已成為變質(zhì)巖年代學(xué)中的重點(diǎn)與難點(diǎn)。本文將烏蘭地區(qū)泥質(zhì)麻粒巖劃分出兩個變質(zhì)期次:峰期變質(zhì)階段和退變質(zhì)階段,通過鋯石LA-ICP-MS U-Pb定年,獲得烏蘭地區(qū)泥質(zhì)麻粒巖的變質(zhì)時代為(482±3) Ma,與前人獲得的烏蘭地區(qū)麻粒巖的峰期變質(zhì)時代(469~475 Ma)基本一致[25,26]。另我們對研究區(qū)與泥質(zhì)麻粒巖伴生的基性麻粒巖進(jìn)行研究,發(fā)現(xiàn)基性麻粒巖的麻粒巖相與角閃巖相的過渡時間為~475 Ma(待發(fā)表資料),因此,我們推測(482±3) Ma為烏蘭地區(qū)泥質(zhì)麻粒巖的麻粒巖相(即峰期變質(zhì)作用)的變質(zhì)時代。
5.2? 變質(zhì)機(jī)制的探討
前人研究表明,柴北緣地區(qū)記錄了從洋殼俯沖到陸殼俯沖及隨后俯沖板片折返的整個過程,并形成一條典型超高壓變質(zhì)帶,與烏蘭地區(qū)同期的高溫低壓變質(zhì)帶構(gòu)成雙變質(zhì)帶[25,26,38]。但關(guān)于烏蘭地區(qū)高溫低壓變質(zhì)帶中出露的麻粒巖的變質(zhì)演化過程存在不同認(rèn)識,制約了對高溫低壓變質(zhì)帶的進(jìn)一步理解及對區(qū)域構(gòu)造演化的認(rèn)識。Wang et al.認(rèn)為烏蘭地區(qū)泥質(zhì)麻粒巖經(jīng)逆時針P-T軌跡[25],Li et al.認(rèn)為烏蘭地區(qū)麻粒巖經(jīng)順時針P-T軌跡[26]。但順時針的P-T軌跡通常包括升溫階段,并在隨后發(fā)生近等溫降壓變質(zhì)作用,與本文樣品WL18-4-6.1所經(jīng)歷的等壓降溫變質(zhì)作用過程明顯不同。因此,本文更傾向于烏蘭地區(qū)泥質(zhì)麻粒巖經(jīng)逆時針的P-T軌跡的變質(zhì)演化過程。最近,在烏蘭南部地區(qū)賽壩溝識別出一套自南向北分別呈洋殼、海山和海溝環(huán)境的洋殼性質(zhì)的巖石組合[39],從構(gòu)造環(huán)境的空間地理位置上看,烏蘭地區(qū)處于陸弧環(huán)境;區(qū)域上還存在大量與烏蘭地區(qū)泥質(zhì)麻粒巖變質(zhì)作用時間同期的弧巖漿巖。因此,我們推測烏蘭地區(qū)早古生代洋殼俯沖時期處于陸弧位置。
綜合前人研究成果,認(rèn)為早古生代南祁連洋向北俯沖到歐龍布魯克微陸塊之下,大量海水進(jìn)入俯沖通道中,與地幔楔中的物質(zhì)交代發(fā)生熔融,產(chǎn)生大量弧巖漿。隨后,弧巖漿發(fā)生上涌,為泥質(zhì)麻粒巖的原巖提供大量的熱能,促使泥質(zhì)麻粒巖原巖發(fā)生麻粒巖相變質(zhì)作用,隨著巖漿的冷卻,泥質(zhì)麻粒巖受熱減少,溫度逐降降低,并發(fā)生退變質(zhì)作用(圖7)。
6? 結(jié)論
(1)柴北緣烏蘭地區(qū)早古生代經(jīng)南祁連洋向北俯沖所導(dǎo)致的麻粒巖相變質(zhì)作用,泥質(zhì)麻粒巖峰期變質(zhì)時代為(482±3) Ma。
(2)泥質(zhì)麻粒巖峰期變質(zhì)P-T條件為710 ℃~730 ℃和5~6.2 kbar,退變質(zhì)P-T條件為560 ℃~650 ℃和5~6.2 kbar,經(jīng)逆時針的P-T軌跡。
參考文獻(xiàn)
[1]? ? Song, S.G., Niu, Y.L., Su, L., et al. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogeny recycling: the example of the North Qaidam UHPM belt, NW China[J]. Earth Sci,Rev,2014, 129 (1):59-84.
[2]? ? Song S.G., Bi H.Z., Qi S.S., et al. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent[J]. Journal of Petrology,2018, 1-18.
[3]? ? Song S.G., Niu Y.L., Zhang G.B., et al. Two epochs of eclogite metamorphism link ‘cold oceanic subduction and ‘hot continental subduction, the North Qaidam UHP belt, NW China[J]. Geological Society London Special Publications,2019, 474, 275-289.
[4]? ? Zhang, J.X., Yu, S.Y., Mattinson, C.G., Early Paleozoic polyphase metamorphism in northern Tibet, China[J]. Gondwana Res,2017, 41, 267-289.
[5]? ? Zhang G.B., Zhang L.F., Andrew G. C. From oceanic subduction to continental collision: An overview of HP-UHP metamorphic rocks in the North Qaidam UHP belt, NW China[J]. J. Asian Earth Sci,2013, 63, 98-111.
[6]? ? Zhang G.B., Trevor Ireland, Zhang L.F., et al. Zircon geochemistry of two contrasting types of eclogite: Implications for the tectonic evolution of the North Qaidam UHPM belt, northern Tibet[J]. Gondwana Research,2016, 35, 27-39.
[7]? ? Zhang C., BadeThomas, Zhang L.F., et al. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China: From Grenville-age orogeny to early-Paleozoic ultrahigh-pressure metamorphism[J].Gondwana Research,2017,41, 290-300.
[8]? ? Yang Liming, Song Shuguang, Mark B., et.al. Oceanic accretionary belt in theWest Qinling Orogen: Links between the Qinling and Qilian orogens, China. Gondwana Research,2018, 64, 137-162.
[9]? ? Yu S.Y., Li S.Z., Zhang J.X., et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China[J]. Earth-Science Reviews,2019, 191, 190-211.
[10]? Zhang, L., Chen, R.X., Zheng, Y.F., et al. The tectonic transition from oceanic subduction to continental subduction: Zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet[J]. Lithos,2016, 244:122-139.
[11]? Ren, Y.F., Chen, D.L., Kelsey, D.E., et al. Petrology and geochemistry of the lawsonite (pseudomorph)-bearing eclogite in Yuka terrane, North Qaidam UHPM belt: an eclogite facies metamorphosed oceanic slice[J]. Gondwana Res,2017, 42: 220-242.
[12]? Zhang, J.X., Meng, F.C., Yang, J.S., Eclogitic metapelites in the western segment of the north Qaidam Mountains:evidence on "in situ" relationship between eclogite and its country rock[J]. Sci. China,2004, 47 (12):1102-1112.
[13]? Zhang, C., Zhang, L.F., Van Roermund, H., et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. J. Asian Earth Sci,2011, 42 (4):752-767.
[14]? Zhou G.S., Zhang J.X., Yu S.Y., et al. Metamorphic evolution of eclogites and associated metapelites from the Yuka terrane in the North Qaidam ultrahigh pressure metamorphic belt, NW China: Constraints from phase equilibrium modeling[J]. Journal of Asian Earth Sciences,2019,173:161-175.
[15]? Song, S.G., Zhang, L.F., Niu, Y.L., Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China[J]. Am. Mineral,2004, 89 (8-9), 1330-1336.
[16]? Song, S.G., Zhang, L.F., Niu, Y.L., et al. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: a record of complex histories from oceanic lithosphe[J] Sci. Lett,2005,? 234 (1-2), 99-118.
[17]? Xiong, Q., Zheng, J.P., Griffin, W.L., et al. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the North Qaidam terrane (western China): Meso-Neoproterozoic crust-mantle coupling and early Paleozoic convergent plate-margin processes[J]. Precambrian Res,2011,187 (1-2), 33-57.
[18]? Zhang, J.X., Mattinson, C.G., Meng, F.C., et al. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: evidence from zircon U-Pb geochronology[J]. Geol. Soc. Am. Bull,2008,120 (5-6):732-749
[19]? 陸松年,于海峰,金巍,等.塔里木古大陸東緣的微大陸塊體群[J].巖石礦物學(xué)雜志,21(4):317-326.
[20]? Lu S.N., Li H.K, Zhang C.L., et al.. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research,2008, 160: 94-107.
[21]? Chen, N.S., Liao, F.X., Wang, L., et al. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent[J]. Precambrian Res,2013, 228:102-116.
[22]? Lu Z.L., Zhang J.X., Chris Mattinson. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China[J]. Journal of Metamorphic Geology, 2018, 36, 653-666.
[23]? 康珍,姜常義,凌錦蘭,等. 青海省烏蘭地區(qū)肯得隆富鈦鐵礦鎂? ?鐵-超鎂鐵質(zhì)巖體的巖石與礦石成因[J].巖石學(xué)報,2015,31(8):? ? ? 2193-2210.
[24]? 孫嬌鵬,陳世悅,彭淵,等. 柴達(dá)木盆地北緣宗務(wù)隆構(gòu)造帶早古? ?生代鋯石SHRIMP 年齡的測定及其地質(zhì)意義[J]. 地質(zhì)評論,? ? ? ? ? ? ? ? ?2015,61(4):743-751.
[25]? Wang Q.Y., Dong Y.J., Pan Y.M, et al. Early Paleozoic Granulite-Facies Metamorphism and Magmatism in the Northern Wulan Terrane of the Quanji Massif: Implications for the Evolution of the Proto-Tethys Ocean in Northwestern China[J]. Journal of Earth Science, 2018, 29(5): 1081-1101
[26]? Li X.C., Niu M.L., Chris Yakymchuk, et al. A paired metamorphic belt in a subduction-to-collision orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China[J]. Journal of Metamorphic Geology, 2019,1-30.
[27]? Kretz. Appendix: Symbols for Rock-Forming Minerals,1983, 309-318.
[28]? 張建新,于勝堯,李云帥,等.原特提斯洋的俯沖、增生及閉合: 阿爾金-祁連-柴北緣造山系早古生代增生/碰撞造山作用[J]. 巖石學(xué)報,2015, 31(12):3531-3554.
[29]? Liu F.L., Liu L.S., Cai J., et al. A widespread Paleoproterozoic partial melting event within the Jiao-Liao-Ji Belt, North China Craton: Zircon U-Pb dating of granitic leucosomes within pelitic granulites and its tectonic implications[J]. Precambrian Research. 2017, http://dx.doi.org/10.1016/j.precamres,2017,10.017
[30]? Cai J., Liu F.L., Liu P.H., et al. Metamorphic P-T path and tectonic implications of peliticgranulites from the Daqingshan Complex of the Khondalite Belt,North China Craton[J].2014, 241: 161-184.
[31]? Pati?no Douce, A.E., Johnston, A.D., Phase equilibria and melt productivityin the pelitic system: implications for the origin of peraluminous granitoidsand aluminous granulites[J].Contributions to Mineralogy and Petrology,1991, 107,202-218.
[32]? Connolly J.A.D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation[J]. Earth and Planetary Science Letters, 2005, 236(1-2): 524-541.
[33]? Holland & Powell. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology,2011,29(3):33-383.
[34]? Wu C.M., Chen H.X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60: 116-121.
[35]? Yakymchuk, C., Brown, M. Behaviour of zircon and monazite during crustal melting[J]. Journal of the Geological Society, 2014, 171(4):465-479.
[36]? Skora, S., Lapen, T. J., Baumgartner, L. P., et al. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy[J]. Earth and Planetary Science Letters, 2009, 287(3):402-411.
[37]? Zhang, R., Liou, J., & Ernst, W. The Dabie-Sulu continental collision zone: A comprehensive review[J].Gondwana Research,2009, 16(1),1-26.
[38]? 李秀財,牛漫蘭,閆臻,等.青海省烏蘭縣早古生代低壓高溫變質(zhì)巖: 柴北緣存在雙變質(zhì)帶? [J]. 科學(xué)通報,2015, 60(35) : 3501-3513.
[39]? 曹泊,閆臻,付長厽,等. 柴北緣賽壩溝增生雜巖組成與變形特征[J].巖石學(xué)報,2019,35(4):1015-1032.
The Early Paleozoic Middle-Low Pressure Granulite-Facies Metamorphism: The Evidence from Pelitic Granulite in Wulan Area
Yao Yong1, Yu Shengrao1,2, Ji Wentao1, Li Yan1,Li Zhuofan1
(1.Key Laboratory of Submarine Geosciences and Prospecting Techniques, MOE, Institute for Advanced Ocean Study, College of Marine Geosciences, Ocean University of China, Qingdao,Shandong, 266100, China;2.Laboratory for Marine Geology and Environment, Qingdao National Laboratory for Marine Science and Technology, Qingdao,Shandong,266237, China)
Abstract: The Early Paleozoic middle-low pressure pelitic granulite was exposed in the Wulan area in the northern Qaidam. Petrological and geochronological studies reveal that the Early Paleozoic pelitic granulite in Wulan area underwent two stages metamorphism. The peak mineral assemblage of pelitic granulite is garnet + biotite + sillimanite + K-feldspar +plagioclase + quartz + melt. The retrograde mineral assemblage consists of biotite + muscovite + garnet + H2O ± plagioclase ± quartz. The LA-ICP-MS U-Pb dating of zircons indicate that the granulite-facies metamorphic age is 482 ± 3 Ma. In order to reveal the metamorphic evolutionary history and metamorphic mechanism of the Early Paleozoic pelitic granulite in Wulan area, we conclude the pelitic granulite metamorphic P-T conditions by phase equilibria and the result of Ti-in-biotite thermometer. And the P-T conditions of the peak granulite-facies metamorphism and retrograde metamorphism are 710℃-730℃/5-6.2 kbar and 560℃-650℃/5-6.2 kbar, respectively. Duo to the cooling of magma, the pelitic granulite underwent isobaric cooling metamorphism during retrograde metamorphism.
Key words:? The northern Qaidam; Wulan area; Early Paleozoic; Granulite-facies