張永德 文露婷 羅洪林 林勇 杜雪松 余艷玲 韋孜娜 黃姻
摘要:【目的】通過(guò)高通量測(cè)序技術(shù)調(diào)研卵形鯧鲹基因組數(shù)據(jù)并開發(fā)SSR分子標(biāo)記,為卵形鯧鲹全基因組測(cè)序與組裝、種質(zhì)資源保護(hù)利用及良種選育提供技術(shù)支撐?!痉椒ā客ㄟ^(guò)Illumina Hiseq 2500測(cè)序平臺(tái)對(duì)卵形鯧鲹基因組進(jìn)行調(diào)研,采用K-mer方法對(duì)基因組大小、雜合率、G+C含量及序列重復(fù)性等進(jìn)行分析,從調(diào)研數(shù)據(jù)中分析SSR的分布特征,篩選出多態(tài)性SSR位點(diǎn),并對(duì)卵形鯧鲹養(yǎng)殖群體進(jìn)行遺傳多樣性分析。【結(jié)果】卵形鯧鲹基因組大小為642.68 Mb,雜合率為0.31%,重復(fù)序列比例為30.19%,G+C含量為41.45%,提示卵形鯧鲹基因組為簡(jiǎn)單基因組。基因組初步組裝結(jié)果顯示,Contig總長(zhǎng)度為627.23 Mb,N50、N90分別為8.21和1.71 Mb;Scalffold總長(zhǎng)度為628.19 Mb,N50、N90分別為10.19和2.04 Mb。從卵形鯧鲹基因組調(diào)研數(shù)據(jù)中共檢測(cè)出190121條SSR序列,SSR序列分布密度為295.8條/Mb。在所有SSR序列中,以二核苷酸重復(fù)基元最多(115557條),占60.78%;其次是三核苷酸重復(fù)基元(54839條),占28.84%;六核苷酸重復(fù)基元最少(1172條),占0.62%。在二核苷酸重復(fù)基元中以TG和AC的重復(fù)數(shù)較多,分別占二核苷酸重復(fù)基元總數(shù)的22.99%和21.76%。從合成的50對(duì)SSR引物中篩選獲得29對(duì)多態(tài)性SSR引物,采用這29對(duì)SSR引物對(duì)卵形鯧鲹群體進(jìn)行遺傳多樣性分析,結(jié)果發(fā)現(xiàn)29個(gè)SSR位點(diǎn)共檢測(cè)到98個(gè)等位基因,其有效等位基因數(shù)(Ne)為1.3998~3.9123(平均為2.6690),期望雜合度(He)為0.2856~0.7444(平均為0.5965),多態(tài)信息含量(PIC)為0.2647~0.6968(平均為0.5195);在29個(gè)SSR位點(diǎn)中,高度多態(tài)性位點(diǎn)(PIC>0.50)有15個(gè),其余14個(gè)為中度多態(tài)性位點(diǎn)(0.25 關(guān)鍵詞: 卵形鯧鲹;基因組;核苷酸重復(fù)基元;SSR分子標(biāo)記;遺傳多樣性 中圖分類號(hào): S965.331? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)05-0983-12 Abstract:【Objective】High throughput sequencing was used to survey the genome data of Trachinotus ovatus and develop SSR molecular markers to provide an effective basis for? whole genome sequencing and assembling,protection and utilization of germplasm resources and selective breeding of T. ovatus. 【Method】Illumina Hiseq 2500 sequencing platform was used to survey the T. ovatus genome,and K-mer was used to analyze the genome size, heterozygosity rate, G+C content and sequence repeatability.The distribution characteristics of SSR were analyzed from the survey data. The polymorphic SSR loci were screened and the genetic polymorphism of T. ovatus population was analyzed. 【Result】The genome size of T. ovatus was 642.68 Mb, with a 0.31% heterozygosity rate and 30.19% repeated sequence proportion, and the G+C content was 41.45%, indicating that the T. ovatus genome was a simple genome. Preliminary genome assembly results showed that the total length of contig was 627.23 Mb, N50 and N90 were 8.21 Mb and 1.71 Mb, respectively, while the total length of Scalffold was 628.19 Mb, N50 and N90 were 10.19 Mb and 2.04 Mb, respectively. A total of 190121 SSR sequences were detected from the genomic survey data, with a SSR sequence distribution density of 295.8 SSRs/Mb. Among all SSR sequences, dinucleotide repeat motifs were the most common SSRs, accounting for 60.78%(115557) of the total SSR sequences; followed by trinucleotide repeat motifs, accounting for 28.84%(54839); hexanucleotide repeat motifs were the least, accounting for 1.96%(1172). Among the dinucleotide repeating motifs, TG and AC had the highest frequency in dinucleotide motifs, accounting for 22.99% and 21.76% of the total number of dinucleotiderepeating motifs, respectively. A total of 29 polymorphic SSR primers were screened from 50 SSR primers, and the genetic polymorphism analysis was conducted on 64 T. ovatus with these 29 SSR primers.The results showed that a total of 98 alleles were detec-ted in 29 SSR loci. The effective allele number (Ne) was 1.3998-3.9123 (average 2.6690), the expected heterozygosity (He) was 0.2856-0.7444 (average 0.5965), and the polymorphic information content(PIC) was 0.2647-0.6968(average 0.5195). Among the 29 SSR loci, there were 15 highly polymorphic loci (PIC>0.50), and the remaining 14 were modera-tely polymorphic loci (0.25 Key words: Trachinotus ovatus; genome; nucleotide repeat motif; SSR molecular marker; genetic diversity Foundation item: Guangxi Innovation Driven Development Project(Guike AA17204080-3,Guike AA18242031-2); Basic Research Project of Guangxi Public Welfare Research Institute(CXIF-2016-03) 0 引言 【研究意義】卵形鯧鲹(Trachinotus ovatus)又稱金鯧,為暖水性中上層魚類,主要分布于印度洋、太平洋、大西洋及非洲沿岸的熱帶和亞熱帶水域,在我國(guó)南海、東海和黃海均有分布(陳偉洲等,2007;Xie et al.,2014;黃小林等,2018)。卵形鯧鲹屬于高蛋白低脂肪魚類,富含多種蛋白及其他營(yíng)養(yǎng)成分,歷來(lái)被視為名貴食用魚類(區(qū)又君和李加兒,2005),且具有生長(zhǎng)速度快、食性簡(jiǎn)單及飼料轉(zhuǎn)化率高等特點(diǎn),是我國(guó)海水集約化養(yǎng)殖的主要品種之一。目前,國(guó)內(nèi)外學(xué)者針對(duì)卵形鯧鲹的研究主要集中在飼料與營(yíng)養(yǎng)(Wang et al.,2014;胡海濱等,2019)、生長(zhǎng)發(fā)育(黃小林等,2018;Liu et al.,2019)、免疫與病害(熊向英等,2018;Sun et al.,2019)及其分子生物學(xué)(侯樹鑒等,2018;Wu et al.,2019)等方面,而有關(guān)其遺傳育種的研究鮮見報(bào)道。遺傳育種工作的滯后,導(dǎo)致近年來(lái)卵形鯧鲹出現(xiàn)明顯的種質(zhì)退化現(xiàn)象,具體表現(xiàn)為遺傳多樣性、生長(zhǎng)性能、抗逆及抗病性降低,而魚苗和魚種死亡率逐年升高等(彭敏等,2011)。因此,急需開展卵形鯧鲹種質(zhì)資源多樣性及遺傳育種等相關(guān)研究,為加快良種選育及促進(jìn)其養(yǎng)殖業(yè)健康發(fā)展提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】分子生物技術(shù)的快速發(fā)展為開展卵形鯧鲹分子標(biāo)記輔助選擇(MAS)及更高層次的分子設(shè)計(jì)育種提供了可能,而缺乏基因組信息及分子標(biāo)記是限制開展卵形鯧鲹MAS的主要因素。在現(xiàn)有的分子標(biāo)記中,微衛(wèi)星(SSR)分子標(biāo)記因具有重復(fù)性高、等位基因豐富、共顯性及基因組覆蓋度高等特點(diǎn),已發(fā)展成為物種遺傳多樣性分析和連鎖作圖最常用的方法(Jiao et al.,2012;凌士鵬等,2018;陳海玲等,2019),但SSR分子標(biāo)記具有種質(zhì)特異性,需提前進(jìn)行篩選開發(fā)(趙彥花等,2019)。隨著轉(zhuǎn)錄組測(cè)序技術(shù)的快速發(fā)展及測(cè)序成本的進(jìn)一步降低,大量魚類相繼完成全基因組測(cè)序工作,如虹鱒(Oncorhynchus mykiss)(Berthelot et al.,2014)、尼羅羅非魚(Oreochromis niloticus)(Brawand et al.,2014)、半滑舌鰨(Cynoglossus semilaevis)(Chen et al.,2014)、菊黃東方鲀(Takifugu flavidus)(Gao et al.,2014)、大黃魚(Larimichthys crocea)(Wu et al.,2014)、鯉(Cyprinus carpio)(Xu et al.,2014)、草魚(Ctenopharyngodon idellus)(Wang et al.,2015)、亞洲龍魚(Scleropages formosus)(Bian et al.,2016)、斑點(diǎn)雀鱔(Lepisosteus oculatus)(Braasch et al.,2016)、大菱鲆(Scophthalmus maximus)(Figueras et al.,2016)、大西洋鮭(Salmo salar)(Lien et al.,2016)、海馬(Hippocampus erectus)(Lin et al.,2016)、翻車魚(Mola mola)(Pan et al.,2016)、暹羅斗魚(Betta splendens)(Fan e al.,2018)、條石鯛(Oplegnathus fasciatus)(Xiao et al.,2019)、西藏高原鰍(Triplophysa tibetana)(Yang et al.,2019)和多鱗白甲魚(Onychostoma macrolepis)(Sun et al.,2020)等,為這些水生生物的養(yǎng)殖適應(yīng)性進(jìn)化研究提供了大數(shù)據(jù)支撐,其生長(zhǎng)、生殖、性別決定、抗病及抗逆等經(jīng)濟(jì)性狀相關(guān)基因挖掘研究也取得重要進(jìn)展,有效推動(dòng)了全基因組選擇育種、分子模塊設(shè)計(jì)育種、轉(zhuǎn)基因和基因編輯等新型分子育種技術(shù)的快速發(fā)展?!颈狙芯壳腥朦c(diǎn)】對(duì)于無(wú)參考基因組的物種而言,通過(guò)基因組調(diào)研數(shù)據(jù)開發(fā)SSR分子標(biāo)記是一種相對(duì)高效的方法(Zhou et al.,2013)。此外,基因組調(diào)研可提供有關(guān)基因組結(jié)構(gòu)的信息,包括基因組大小、雜合率、G+C含量和重復(fù)序列含量等,為物種全基因組測(cè)序及序列組裝提供參考依據(jù)。但至今鮮見有關(guān)卵形鯧鲹基因組調(diào)研及其SSR分子標(biāo)記開發(fā)的研究報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)Illumina Hiseq 2500測(cè)序平臺(tái)對(duì)卵形鯧鲹基因組進(jìn)行調(diào)研,采用K-mer方法對(duì)基因組的大小、雜合率、G+C含量及序列重復(fù)性等信息進(jìn)行分析,從調(diào)研數(shù)據(jù)中挖掘SSR的分布特征,篩選出多態(tài)性SSR位點(diǎn),并對(duì)卵形鯧鲹養(yǎng)殖群體進(jìn)行遺傳多樣性分析,以期為卵形鯧鲹全基因組測(cè)序與組裝、種質(zhì)資源保護(hù)利用及良種選育提供技術(shù)支撐。 1 材料與方法 1. 1 樣品采集與基因組DNA提取 從深圳海域人工養(yǎng)殖的卵形鯧鲹群體中隨機(jī)選取65尾,在無(wú)菌條件下采集其肌肉組織。其中,1份肌肉樣品用于基因組測(cè)序,另外64份肌肉樣品用于群體遺傳多樣性分析。按照天根海洋動(dòng)物組織基因組DNA提取試劑盒說(shuō)明進(jìn)行卵形鯧鲹基因組DNA提取,并采用NanoDrop 2000超微量分光光度計(jì)(ThermalFisher,美國(guó))檢測(cè)DNA濃度,以1.5%瓊脂糖凝膠電泳檢測(cè)DNA質(zhì)量。檢測(cè)合格的DNA置于 -20 ℃冰箱中保存?zhèn)溆谩?/p> 1. 2 基因組測(cè)序及特征分析 隨機(jī)取1尾卵形鯧鲹的DNA樣品,通過(guò)Covaris超聲波破碎儀隨機(jī)打斷成長(zhǎng)度為230 bp的片段,經(jīng)末端修復(fù)、加poly(A)、加測(cè)序接頭、純化及PCR擴(kuò)增等構(gòu)建小片段文庫(kù)。采用Illumina Hiseq 2500測(cè)序平臺(tái)進(jìn)行PE雙末端測(cè)序,測(cè)得的原始數(shù)據(jù)經(jīng)數(shù)據(jù)質(zhì)控和過(guò)濾后,采用K-mer(K=17)對(duì)獲得的有效數(shù)據(jù)(Clean data)進(jìn)行統(tǒng)計(jì)分析,估計(jì)基因組大小、雜合率及重復(fù)率等基因組特征。采用SOAPdenovo 2.01對(duì)卵形鯧鲹測(cè)序基因組進(jìn)行初步組裝,統(tǒng)計(jì)G+C含量和覆蓋深度(Luo et al.,2012)。 1. 3 SSR序列查找及引物設(shè)計(jì) 采用MISA程序搜索檢測(cè)樣品DNA序列中的SSR序列,包括二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸重復(fù)基元(Beier et al.,2017),共重復(fù)4次。對(duì)獲得的SSR序列進(jìn)行過(guò)濾,去除距離過(guò)近的SSR序列,最后運(yùn)用Primer 3.0設(shè)計(jì)SSR引物(K?ressaar et al.,2018),并挑選其中50對(duì)SSR引物委托生工生物工程(上海)股份有限公司合成。 1. 4 SSR位點(diǎn)篩選 采用天根生化科技(北京)有限公司的Golden Easy PCR System-KT221試劑,以合成的SSR引物對(duì)卵形鯧鲹進(jìn)行PCR擴(kuò)增,反應(yīng)體系20.0 μL:2×Reaction Mix 10.0 μL,H2O 7.0 μL,上、下游引物(10 ?mol/L)各1.0 μL,DNA模板1.0 μL。擴(kuò)增程序:95 ℃預(yù)變性4 min;95 ℃ 30 s,56~65 ℃ 30 s,72 ℃ 1 min,進(jìn)行30個(gè)循環(huán);72 ℃延伸2 min。PCR擴(kuò)增產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測(cè)后,挑選特異性強(qiáng)、重復(fù)性好、條帶清晰的SSR引物再進(jìn)行梯度PCR擴(kuò)增,確定其退火溫度。以pBR322/MSP I為Marker,隨機(jī)選取20尾卵形鯧鲹DNA進(jìn)行SSR引物多態(tài)性篩選,經(jīng)PCR擴(kuò)增、8% SDS-PAGE電泳、0.1%硝酸銀染色及2% NaOH顯色后,采用伯樂凝膠成像系統(tǒng)進(jìn)行拍照,以Bio-Rad Quantity One讀取片段大小,分析各SSR引物的多態(tài)性。 1. 5 卵形鯧鲹群體遺傳多樣性分析 以篩選出具有多態(tài)性的29對(duì)SSR引物對(duì)64尾卵形鯧鲹群體進(jìn)行PCR擴(kuò)增及PAGE檢測(cè)分析,讀取片段大小。利用PopGen32計(jì)算卵形鯧鲹群體的遺傳多樣性參數(shù),包括等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、期望雜合度(He)、Hardy-Weinberg平衡遺傳偏離概率(PHWE);采用PICcalc程序(Nagy et al.,2012)計(jì)算各SSR位點(diǎn)的多態(tài)信息含量(PIC)。 2 結(jié)果與分析 2. 1 卵形鯧鲹基因組測(cè)序及基因組大小估計(jì)結(jié)果 采用卵形鯧鲹基因組DNA構(gòu)建一個(gè)230 bp小片段文庫(kù),通過(guò)Illumina Hiseq 2500測(cè)序平臺(tái)進(jìn)行PE雙末端測(cè)序,共獲得49.12 G的原始測(cè)序數(shù)據(jù),其中Q20、Q30分別為95.53%和91.46%,測(cè)序錯(cuò)誤率為0.04%,說(shuō)明建庫(kù)測(cè)序成功。對(duì)原始測(cè)序數(shù)據(jù)進(jìn)行數(shù)據(jù)質(zhì)控和過(guò)濾,獲得48.63 G的有效數(shù)據(jù)。隨機(jī)抽取過(guò)濾后的高質(zhì)量數(shù)據(jù),采用BLAST比對(duì)NCBI核苷酸數(shù)據(jù)庫(kù)(NT庫(kù)),結(jié)果發(fā)現(xiàn)獲得的有效數(shù)據(jù)不存在明顯外源污染。對(duì)測(cè)序數(shù)據(jù)進(jìn)行K-mer分析,結(jié)果(圖1)發(fā)現(xiàn)在深度為65時(shí)出現(xiàn)主峰值,總K-mer為42406776346,計(jì)算得到卵形鯧鲹基因組大小為652.41 Mb,修正后的基因組大小為642.68 Mb。基因組雜合率為0.31%,重復(fù)序列比例為30.19%。 2. 2 卵形鯧鲹基因組初步組裝情況 采用SOAPdenovo 2.01對(duì)卵形鯧鲹測(cè)序基因組進(jìn)行初步組裝(K-mer=41),統(tǒng)計(jì)結(jié)果見表1。其中,Contig總長(zhǎng)度為627.23 Mb,N50、N90分別為8.21和1.71 Mb,序列最大長(zhǎng)度為95.96 Mb;Scalffold總長(zhǎng)度為628.19 Mb,N50、N90分別為10.19和2.04 Mb,序列最大長(zhǎng)度為126.91 Mb,基因組G+C含量為41.45%。選取500 bp以上的Contigs,根據(jù)其G+C分布及覆蓋深度信息繪制散點(diǎn)圖(圖2),其中紅色部分為散點(diǎn)圖中點(diǎn)密度較大的部分。從圖2右側(cè)的Contig覆蓋深度分布情況可看出,在Contig覆蓋深度為47處為純合峰,圖中紅色散點(diǎn)聚集區(qū)域是G+C的主要分布區(qū)域;圖2上方的G+C含量主峰約出現(xiàn)在41%處,與計(jì)算得到的基因組G+C含量一致,且紅色散點(diǎn)也分布在G+C含量為41%的附近。在Contig覆蓋深度為70~110、G+C含量為30%~50%的區(qū)域和Contig覆蓋深度為130~170、G+C含量為30%~50%的區(qū)域,出現(xiàn)小部分的G+C集中區(qū)域,推測(cè)這些區(qū)域?yàn)槁研析K鲹基因組中的重復(fù)區(qū)域。 2. 3 卵形鯧鲹基因組SSR特征分析結(jié)果 在卵形鯧鲹基因組數(shù)據(jù)中,過(guò)濾掉位于Contig序列兩端的SSR序列(距離Contig序列兩端小于100 bp)后,共檢測(cè)出190121條SSR序列,分布密度為295.8條/Mb。對(duì)SSR序列長(zhǎng)度分布進(jìn)行統(tǒng)計(jì),結(jié)果(圖3)發(fā)現(xiàn)SSR重復(fù)序列長(zhǎng)度主要集中在11~24 bp。在所有SSR序列中,以二核苷酸重復(fù)基元最多,為115557條,占60.78%;其次是三核苷酸重復(fù)基元,為54839條,占28.84%;六核苷酸重復(fù)基元最少,僅1172條,占0.62%(圖4)。在5種核苷酸重復(fù)基元分布(圖5)方面,以出現(xiàn)4次重復(fù)的核苷酸重復(fù)基元最常見(44778條,占23.55%),其次是6次重復(fù)(32615條,占17.15%)和7次重復(fù)(19014條,占10.00%),而出現(xiàn)20次以上重復(fù)的核苷酸重復(fù)基元僅有6652條(占3.50%)。此外,在二核苷酸重復(fù)基元中以TG和AC的重復(fù)數(shù)較多,分別占二核苷酸重復(fù)基元總數(shù)的22.99%和21.76%;三核苷酸重復(fù)基元以GAG和AAT的重復(fù)數(shù)較多,分別占三核苷酸重復(fù)基元總數(shù)的4.84%和4.81%;四核苷酸重復(fù)基元以AAAT的重復(fù)數(shù)最多,占四核苷酸重復(fù)基元總數(shù)的7.36%;五核苷酸重復(fù)基元以AATTG的重復(fù)數(shù)最多,占五核苷酸重復(fù)基元總數(shù)的2.93%;六核苷酸重復(fù)基元以CTGATT的重復(fù)數(shù)最多,占六核苷酸重復(fù)基元總數(shù)的5.72%。 2. 4 卵形鯧鲹SSR位點(diǎn)篩選及評(píng)估結(jié)果 以卵形鯧鲹基因組DNA為模板,采用合成的50對(duì)SSR引物進(jìn)行PCR擴(kuò)增與退火溫度篩選,結(jié)果表明,有31對(duì)SSR引物能擴(kuò)增出清晰的目的條帶,且重復(fù)性較好,對(duì)應(yīng)的退火溫度介于56.1~64.1 ℃(表2)。SSR引物多態(tài)性篩選結(jié)果顯示,只有TOSR037和TOSR043這2對(duì)SSR引物的擴(kuò)增產(chǎn)物為單態(tài)性,其余29對(duì)SSR引物的擴(kuò)增條帶均呈多態(tài)性。 2. 5 卵形鯧鲹群體的遺傳多樣性 采用篩選出的29對(duì)SSR引物分別對(duì)64尾卵形鯧鲹進(jìn)行PCR擴(kuò)增(圖6)及遺傳多樣性分析,結(jié)果(表3)顯示,29個(gè)SSR位點(diǎn)共檢測(cè)到98個(gè)等位基因,平均每個(gè)SSR位點(diǎn)的Na為3.3793,Ne為2.6690,He為0.5965,PIC為0.5195。在29個(gè)SSR位點(diǎn)中,高度多態(tài)性位點(diǎn)(PIC>0.50)有15個(gè),其余14個(gè)為中度多態(tài)性位點(diǎn)(0.25 3 討論 3. 1 卵形鯧鲹基因組的基本特征 Illumina、Pacific Biosciences和Ion Torrent等高通量測(cè)序技術(shù)的出現(xiàn)與改進(jìn),以及序列組裝算法的進(jìn)步,使得以低成本高效獲得動(dòng)植物全基因組序列成為可能(Quail et al.,2012)。近十年來(lái),各種動(dòng)植物基因組序列的數(shù)量呈指數(shù)增長(zhǎng),極大促進(jìn)了生命科學(xué)的快速發(fā)展。但不同物種的基因組大小及復(fù)雜程度差異明顯,對(duì)基因組序列組裝、測(cè)序價(jià)格及測(cè)序周期均會(huì)產(chǎn)生直接影響。大西洋鮭基因組是四倍體,其基因組大小高達(dá)2.97 Gb(Lien et al.,2016);太平洋牡蠣基因組大小雖然只有559 Mb,但其SNP序列分布密度較高,約1.22條/100 bp(Zhang et al.,2012);東方牡蠣(Crassostrea virginica)種群的SNP序列分布密度更高,每100 bp就有4.20條(Zhang and Guo,2010)或1.85條(Eierman and Hare,2014)。蝦蟹類的核苷酸重復(fù)基元數(shù)較多,其中凡納濱對(duì)蝦(Litopenaeus vannamei)的核苷酸重復(fù)基元占其基因組的80%以上(Yu et al.,2015)。當(dāng)遇到復(fù)雜的核苷酸重復(fù)序列或擴(kuò)增不良的區(qū)域時(shí),高通量測(cè)序技術(shù)的短讀長(zhǎng)和擴(kuò)增偏好性均可能導(dǎo)致裝配碎片化。如GC富集或GC貧乏區(qū)通常擴(kuò)增效果較差,而對(duì)基因組序列質(zhì)量產(chǎn)生明顯影響,且對(duì)準(zhǔn)確性的影響大于完整性(Aird et al.,2011)。這也是造成目前蝦類和貝類參考基因組較少,且其基因組序列組裝質(zhì)量通常低于魚類的重要原因。基因組的大小、雜合率、G+C含量及重復(fù)序列比例等信息均可通過(guò)K-mer分析進(jìn)行估計(jì)(Shi et al.,2018;Song et al.,2018)。本研究采用K-mer對(duì)卵形鯧鲹基因組進(jìn)行分析,得知卵形鯧鲹基因組大小為642.68 Mb,雜合率為0.31%,重復(fù)序列比例為30.19%,G+C含量為41.45%。從K-mer分析指標(biāo)來(lái)看,卵形鯧鲹基因組不算大,其雜合率和重復(fù)序列處于中低水平,G+C含量合適,總體上屬于簡(jiǎn)單基因組,后續(xù)可進(jìn)行全基因組測(cè)序。卵形鯧鲹基因組序列的初步組裝結(jié)果顯示,Contig總長(zhǎng)度為627.23 Mb,N50、N90分別為8.21和1.71 Mb;Scalffold總長(zhǎng)度為628.19 Mb,N50、N90分別為10.19和2.04 Mb,即序列組裝效果良好。 3. 2 卵形鯧鲹的SSR分布特征 SSR廣泛分布于真核生物基因組中,在個(gè)體和種群水平上均會(huì)表現(xiàn)出多態(tài)性(Gadgil et al.,2017)。在大多數(shù)物種基因組中,具有短核苷酸重復(fù)基元(單核苷酸~三核苷酸)的序列較長(zhǎng)核苷酸重復(fù)基元(四核苷酸~六核苷酸)的序列更豐富(Jessy et al.,2011)。本研究在卵形鯧鲹基因組調(diào)研數(shù)據(jù)中共檢測(cè)出190121條SSR序列,SSR序列分布密度為295.8條/Mb。在所有SSR序列中,隨著核苷酸重復(fù)基元的增加,其數(shù)量迅速減少,其中以二核苷酸重復(fù)基元最多(115557條),占60.78%,而六核苷酸重復(fù)基元最少(1172條),僅占0.62%,與胡子鯰(Clarias batrachus)(Srivastava et al.,2016)和長(zhǎng)體圓鲹(Decapterus macrosoma)(孔嘯蘭等,2019)等魚類的研究結(jié)果相似,但與大西洋鮭魚、大西洋鱈魚(Gadus morhua)及紅鰭東方鲀(Takifugu rubripes)等魚類存在差異(Jiang et al.,2014)。說(shuō)明不同物種的SSR序列存在偏好性。在脊椎動(dòng)物中,二核苷酸重復(fù)基元GT和AC被認(rèn)為是最常見的SSR重復(fù)基元(Zardoya et al.,1996)??讎[蘭等(2019)對(duì)長(zhǎng)體圓鲹的研究結(jié)果顯示,二核苷酸重復(fù)基元占總SSR序列的53.39%,其中AC/GT類型占二核苷酸重復(fù)基元的68.40%。在本研究中,卵形鯧鲹基因組二核苷酸重復(fù)基元同樣以TG和AC的重復(fù)數(shù)最多,合計(jì)占二核苷酸重復(fù)基元總數(shù)的44.75%。但相瑜等(2013)研究發(fā)現(xiàn),三疣梭子蟹基因組二核苷酸重復(fù)基元以CT和AG的重復(fù)數(shù)較多,合計(jì)占50.00%。這可能與物種間的差異及其選擇進(jìn)化機(jī)制不同有關(guān),且不同基因組區(qū)域中的SSR可能具有不同特征,從而執(zhí)行不同的功能(Sonah et al.,2011)。 3. 3 卵形鯧鲹SSR分子標(biāo)記的開發(fā) 目前,SSR引物的獲得主要有以下途徑:近緣物種引物借鑒法、直接分離法及數(shù)據(jù)庫(kù)搜索法。對(duì)于親緣關(guān)系非常近的屬內(nèi)種間生物而言,其SSR引物可共用,可根據(jù)已發(fā)表文獻(xiàn)或已發(fā)布序列信息尋找所需的目的引物(Das et al.,2018)。相對(duì)于大多數(shù)研究基礎(chǔ)較薄弱的物種,則必須從目標(biāo)物種的基因組DNA中直接分離出具有多態(tài)性的SSR位點(diǎn)。常見的SSR分子標(biāo)記分離方法主要有經(jīng)典法、富集法、省略篩庫(kù)法、ISSR片段擴(kuò)增法和數(shù)據(jù)庫(kù)檢索法5種(孫立元,2014)。陳秀荔等(2010)利用生物素—磁珠吸附微衛(wèi)星富集法篩選獲得35個(gè)卵形鯧鲹SSR分子標(biāo)記;孫立元(2014)在采用FIASCO法構(gòu)建卵形鯧鲹微衛(wèi)星富集文庫(kù)的基礎(chǔ)上,測(cè)序篩選出21個(gè)多態(tài)性SSR位點(diǎn)。對(duì)于一些已公布全基因組數(shù)據(jù)的物種,則可直接檢索其基因組數(shù)據(jù)而獲得SSR位點(diǎn),極大提升了SSR分子標(biāo)記開發(fā)的效率。 近年來(lái),高通量測(cè)序技術(shù)的發(fā)展有效提升了快速且低成本獲得基因組重要測(cè)序深度和覆蓋范圍的能力(Zhou et al.,2014),從而更全面準(zhǔn)確地發(fā)現(xiàn)物種SSR位點(diǎn)信息。與傳統(tǒng)的SSR分子標(biāo)記開發(fā)方法相比,高通量測(cè)序更具成本效益,省時(shí)且功能強(qiáng)大(Jiang et al.,2015),通過(guò)高通量測(cè)序獲得的基因組或轉(zhuǎn)錄組數(shù)據(jù)是SSR分子標(biāo)記開發(fā)的重要資源(Song et al.,2018;Park et al.,2019;Wang et al.,2019)。與轉(zhuǎn)錄組SSR相比,基因組SSR的多態(tài)性更高,且在基因組中分布廣泛,從而獲得更好的圖譜覆蓋率(Wang et al.,2011)。本研究對(duì)卵形鯧鲹基因組調(diào)研數(shù)據(jù)進(jìn)行分析,共檢測(cè)出190121個(gè)SSR序列,并從測(cè)試的50個(gè)SSR位點(diǎn)中成功鑒定出29個(gè)多態(tài)性SSR位點(diǎn)(58.00%)??梢?,利用高通量測(cè)序技術(shù)可獲得數(shù)量龐大且類型豐富的卵形鯧鲹SSR序列,有助于開展其種群遺傳學(xué)、遺傳作圖及數(shù)量性狀基因座位(QTL)等相關(guān)研究,進(jìn)而為實(shí)現(xiàn)卵形鯧鲹分子輔助育種提供技術(shù)支撐。 3. 4 卵形鯧鲹群體的遺傳多樣性 開展SSR分子標(biāo)記研究可為揭示魚類的遺傳變異和種群結(jié)構(gòu)提供重要信息,但群體遺傳變異和種群結(jié)構(gòu)同時(shí)受遷移、選擇、遺傳漂移及地理隔絕等因素的影響。種群遺傳多樣性是生物生存和發(fā)展的一個(gè)重要因素(Diz and Presa,2009),遺傳多樣性喪失會(huì)降低種群應(yīng)對(duì)環(huán)境變化的能力。在種群遺傳多樣性研究中,Ne、He和PIC是3個(gè)常用的遺傳多樣性評(píng)價(jià)參數(shù)。在本研究中,卵形鯧鲹群體的Ne為1.3998~3.9123(平均為2.6690),He為0.2856~0.7444(平均為0.5965),PIC為0.2647~0.6968(平均為0.5195),與趙永貞等(2014)對(duì)南海區(qū)4個(gè)卵形鯧鲹群體的研究結(jié)果相似,說(shuō)明卵形鯧鲹具有較豐富的遺傳多樣性,與該物種目前所處的現(xiàn)狀基本吻合。由于卵形鯧鲹屬于群游動(dòng)物,雌雄魚單獨(dú)交配成功率極低,且性別難以通過(guò)常規(guī)方法準(zhǔn)確判斷,因此難以開展大規(guī)模的家系選育,致使一些養(yǎng)殖場(chǎng)直接將野生群體馴化后進(jìn)行繁育,從而促使卵形鯧鲹種群保持了較高的遺傳多樣性。但本研究的Hardy-Weinberg平衡性檢測(cè)結(jié)果顯示,29個(gè)SSR位點(diǎn)中僅TOSR008位點(diǎn)處于Hardy-Weinberg平衡狀態(tài),TOSR049位點(diǎn)顯著偏離Hardy-Weinberg平衡狀態(tài),其余27個(gè)SSR位點(diǎn)則極顯著偏離Hardy-Weinberg平衡狀態(tài)。當(dāng)群體規(guī)模較大時(shí),基因頻率主要受遷移、選擇及同型交配等因素的影響。本研究選取的卵形鯧鲹群體近年來(lái)未進(jìn)行遷移或混雜,造成SSR位點(diǎn)Hardy-Weinberg平衡性丟失的主要原因可能是同型交配或群體內(nèi)選擇,提示稀有等位基因或?qū)⒚媾R較高的丟失風(fēng)險(xiǎn),進(jìn)而導(dǎo)致種群遺傳多樣性降低和物種衰退。因此,要保持卵形鯧鲹種群遺傳多樣性,防止等位基因進(jìn)一步丟失,必須做好以下措施:(1)不應(yīng)通過(guò)無(wú)序養(yǎng)殖和育種計(jì)劃開展卵形鯧鲹的繁育及育種研究;(2)保持較大的有效種群數(shù)量,以提高大量成魚對(duì)繁殖的貢獻(xiàn);(3)采用適當(dāng)監(jiān)控手段,如遺傳分子標(biāo)記等監(jiān)控遺傳變異,尤其是稀有等位基因的改變;(4)借鑒現(xiàn)代遺傳育種技術(shù)開展種群選育工作,保護(hù)稀有等位基因,防止種群近交而衰退。 4 結(jié)論 卵形鯧鲹基因組為簡(jiǎn)單基因組,利用基因組調(diào)研數(shù)據(jù)可實(shí)現(xiàn)SSR分子標(biāo)記大規(guī)模開發(fā),且新開發(fā)的SSR分子標(biāo)記可用于卵形鯧鲹群體遺傳多樣性分析。 參考文獻(xiàn): 陳海玲,路雪林,葉泉清,唐紹清. 2019. 基于SSR標(biāo)記探討三種金花茶植物的遺傳多樣性和遺傳結(jié)構(gòu)[J]. 廣西植物,39(3):318-327. [Chen H L,Lu X L,Ye Q Q,Tang S Q. 2019. Genetic diversity and structure of three yellow Camellia species based on SSR markers[J]. Guihaia,39(3):318-327.] 陳偉洲,許鼎盛,王德強(qiáng),鄧用謀,佘忠明,丘廣艷,李遠(yuǎn)友. 2007. 卵形鯧鲹人工繁殖及育苗技術(shù)研究[J]. 臺(tái)灣海峽,26(3):435-442. [Chen W Z,Xu D S,Wang D Q,Deng Y M,She Z M,Qiu G Y,Li Y Y. 2007. Study on the spawning and hatching technique for Trachinotus ovatus[J]. Journal of Oceanography in Taiwan Strait,26(3):435-442.] 陳秀荔,肖群平,陳曉漢,彭敏,李詠梅. 2010. 卵形鯧鲹微衛(wèi)星分子標(biāo)記的篩選[J]. 武漢大學(xué)學(xué)報(bào)(理學(xué)版),56(5):564-569. [Chen X L,Xiao Q P,Chen X H,Peng M,Li Y M. 2010. Screening of microsatellite molecular marker in Trachinotus ovatus[J]. Journal of Wuhan University(Na-tural Science Edition),56(5):564-569.] 侯樹鑒,黎江,胡舒,何肇強(qiáng),廖永巖,朱鵬,陸專靈,韋友傳. 2018. 卵形鯧鲹組織蛋白酶L基因的克隆及其表達(dá)分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(6):1215-1222. [Hou S J,Li J,Hu S,He Z Q,Liao Y Y,Zhu P,Lu Z L,Wei Y C. 2018. Cloning and expression analysis of cathepsin L gene in Trachinotus ovatus[J]. Journal of Southern Agriculture,49(6):1215-1222.] 胡海濱,解綬啟,錢雪橋,贠彪,莊界成. 2019. 飼料中添加玉米蛋白粉或雞肉粉替代部分魚粉對(duì)卵形鯧鲹生長(zhǎng)性能的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),31(6):2752-2764. [Hu H B,Xie S Q,Qian X Q,Yun B,Zhuang J C. 2019. Effects of dietary corn gluten meal or poultry meal partially repla-cing fish meal on growth performance of golden pompano (Trachinotus ovatus)[J]. Chinese Journal of Animal Nutrition,31(6):2752-2764.] 黃小林,張殿昌,林黑著,黃忠,虞為,楊育凱,李濤. 2018. 池塘養(yǎng)殖卵形鯧鲹早期形態(tài)性狀與體質(zhì)量的灰色關(guān)聯(lián)分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(5):1016-1022. [Huang X L,Zhang D C,Lin H Z,Huang Z,Yu W,Yang Y K,Li T. 2018. Grey relational analysis between early morphological traits and body weight of Trachinotus ovatus bred in pond[J]. Journal of Southern Agriculture,49(5):1016-1022.] 孔嘯蘭,李敏,陳作志,龔玉艷,張俊,張鵬. 2019. 基于RAD-seq技術(shù)的長(zhǎng)體圓鲹二、三核苷酸重復(fù)微衛(wèi)星標(biāo)記開發(fā)與評(píng)價(jià)[J]. 南方水產(chǎn)科學(xué),15(3):97-103. [Kong X L,Li M,Chen Z Z,Gong Y Y,Zhang J,Zhang P. 2019. Deve-lopment and evaluation of di-/tri-nucleotide-repeated microsatellites by RAD-seq in Decapterus macrosoma[J]. South China Fisheries Science,15(3):97-103.] 凌士鵬,孫萍,林賢銳,沈建生. 2018. 基于SSR標(biāo)記的桃種質(zhì)資源遺傳多樣性研究[J]. 江西農(nóng)業(yè)學(xué)報(bào),30(11):14-18. [Ling S P,Sun P,Lin X R,Shen J S. 2018. A study on genetic diversity of peach germplasm resources based on SSR markers[J]. Acta Agriculturae Jiangxi,30(11):14-18.] 彭敏,陳曉漢,陳秀荔,蔣偉明,楊春玲,李詠梅. 2011. 卵形鯧鲹養(yǎng)殖群體與野生群體遺傳多樣性的AFLP分析[J]. 西南農(nóng)業(yè)學(xué)報(bào),24(5):1987-1991. [Peng M,Chen X H,Chen X L,Jiang W M,Yang C L,Li Y M. 2011. Genetic diversity of wild and cultured Trachinotus ovatus populations by AFLP markers[J]. Southwest China Journal of Agricultural Sciences,24(5):1987-1991.] 區(qū)又君,李加兒. 2005. 卵形鯧鲹的早期胚胎發(fā)育[J]. 中國(guó)水產(chǎn)科學(xué),12(6):786-788. [Ou Y J,Li J E. 2005. Early embryonic development in Trachinotus ovatus[J]. Journal of Fishery Sciences of China,12(6):786-788.] 孫立元. 2014. 卵形鯧鲹分子標(biāo)記的篩選與應(yīng)用[D]. 上海:上海海洋大學(xué). [Sun L Y. 2014. The screening and application of molecular markers in Trachinotus ovatus[D]. Shanghai:Shanghai Ocena University.] 相瑜,任麗平,王日昕. 2013. 三疣梭子蟹微衛(wèi)星標(biāo)記的篩選及特征分析[J]. 浙江海洋學(xué)院學(xué)報(bào)(自然科學(xué)版),32(5):421-426. [Xiang Y,Ren L P,Wang R X. 2013. Isolation and characterization microsatellite markers in Portunus trituberculatus[J]. Journal of Zhejiang Ocean University(Natural Science),32(5):421-426.] 熊向英,黃國(guó)強(qiáng),王志成,文雪. 2018. 廣西卵形鯧鲹海豚鏈球菌基因分型、耐藥譜型以及毒力基因檢測(cè)[J]. 水產(chǎn)學(xué)報(bào),42(4):586-595. [Xiong X Y,Huang G Q,Wang Z C,Wen X. 2018. Molecular typing,antibiogram type and detection of virulence genes of Stereptococcus iniae strains isolated from golden pompano(Tranchinotus ovatus) in Guangxi Province[J]. Journal of Fisheries of China,42(4):586-595.] 趙彥花,區(qū)又君,溫久福,李加兒,周慧. 2019. 基于轉(zhuǎn)錄組測(cè)序技術(shù)的黃唇魚SSR分子標(biāo)記篩選[J]. 南方農(nóng)業(yè)學(xué)報(bào),50(9):2078-2087. [Zhao Y H,Ou Y J,Wen J F,Li J E,Zhou H. 2019. Development of SSR markers in Bahaba flavolabiata by transcriptome sequencing[J]. Journal of Southern Agriculture,50(9):2078-2087.] 趙永貞,陳秀荔,李詠梅,彭敏,楊春玲,韋嬪媛,彭金霞,陳曉漢. 2014. 南海區(qū)卵形鯧鲹遺傳多樣性的研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),27(4):1786-1790. [Zhang Y Z,Chen X L,Li Y M,Peng M,Yang C L,Wei P Y,Peng J X,Chen X H. 2014. Genetic polymorphism of Trachinotus ovatus in Nanhai district[J]. Southwest China Journal of Agricultural Sciences,27(4):1786-1790.] Aird D,Ross M G,Chen W S,Danielsson M,F(xiàn)ennell T,Russ C,Jaffe D B,Nusbaum C,Gnirke A. 2011. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries[J]. Genome Biology,12(2):R18. doi:10.1186/gb-2011-12-2-r18. Beier S,Thiel T,Münch T,Scholz U,Mascher M. 2017. MISA-web:A web server for microsatellite prediction[J]. Bioinformatics,33(16):2583-2585. Berthelot C,Brunet F,Chalopin D,Juanchich A,Bernard M,No?l B,Bento P,Silva C D,Labadie K,Alberti A,Aury J M,Louis A,Dehais P,Bardou P,Montfort J,Klopp C,Cabau C,Gaspin C,Thorgaard G H,Boussaha M,Quillet E,Guyomard R,Galiana D,Bobe J,Volff J N,Genêt C,Wincker P,Jaillon O,Crollius H R,Guiguen Y. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates[J]. Nature Communications,5:3657. doi:10.1038/ncomms4657. Bian C,Hu Y C,Ravi V,Kuznetsova I S,Shen X Y,Mu X D,Sun Y,You X X,Li J,Li X F,Qiu Y,Tay B H,Thevasagayam N M,Komissarov A S,Trifonov V,Kabilov M,Tupikin A,Luo J R,Liu Y,Song H M,Liu C,Wang X J,Gu D G,Yang Y X,Li W J,Polgar G,F(xiàn)an G Y,Zeng P,Zhang H,Xiong Z J,Tang Z J,Peng C,Ruan Z Q,Yu H,Chen J M,F(xiàn)an M J,Huang Y,Wang M,Zhao X M,Hu G J,Yang H M,Wang J,Wang J,Xu X,Song L S,Xu G C,Xu P,Xu J M,O'Brien S J,Orbán L,Venkatesh B,Shi Q. 2016. The Asian arowana(Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts[J]. Scientific Reports,6:24501. doi:10.1038/srep24501. Braasch I,Gehrke A R,Smith J J,Kawasaki K,Manousaki T,Pasquier J,Amores A,Desvignes T,Batzel P,Catchen J,Berlin A M,Campbell M S,Barrell D,Martin K J,Mulley J F,Ravi V,Lee A P,Nakamura T,Chalopin D,F(xiàn)an S H,Wcisel D,Ca?estro C,Sydes J,Beaudry F E G,Sun Y,Hertel J,Beam M J,F(xiàn)asold M,Ishiyama M,Johnson J,Kehr S,Lara M,Letaw J H,Litman G W,Litman R T,Mikami M,Ota T,Saha N R,Williams L,Stadler P F,Wang H,Taylor J S,F(xiàn)ontenot Q,F(xiàn)errara A,Searle S M J,Aken B,Yandell M,Schneider I,Yoder J A,Volff J N,Meyer A,Amemiya C T,Venkatesh B,Holland P W H,Guiguen Y,Bobe J,Shubin N H, Palma F D,Alf?ldi J,Lindblad-Toh K,Postlethwait J H. 2016. The spotted gargenome illuminates vertebrate evolution and facilitates human-teleost comparisons[J]. Nature Genetics,48(4):427-437. Brawand D,Wagner C E,Li Y I,Malinsky M,Keller I,F(xiàn)an S H,Simakov O,Ng A Y,Lim Z W,Bezault E,Turner-Maier J,Johnson J,Alcazar R,Noh H J,Russell P,Aken B,Alf?ldi J,Amemiya C,Azzouzi N,Baroiller J F,Barloy-Hubler F,Berlin A,Bloomquist R,Carleton K L,Conte M A,D'Cotta H,Eshel O,Gaffney L,Galibert F,Gante H F,Gnerre S,Greuter L,Guyon R,Haddad N S,Haerty W,Harris R M,Hofmann H A,Hourlier T,Hulata G,Jaffe D B,Lara M,Lee A P,MacCallum I,Mwaiko S,Nikaido M,Nishihara H,Ozouf-Costaz C,Penman D J,Przybylski D,Rakotomanga M,Renn S C P,Ribeiro F J,Ron M,Salzburger W,Sanchez-Pulido L,Santos M E,Searle S,Sharpe T,Swofford R,Tan F J,Williams L,Young S,Yin S Y,Okada N,Kocher T D,Miska E A,Lander E S,Venkatesh B,F(xiàn)ernald R D,Meyer A,Ponting C P,Streelman J T,Lindblad-Toh K,Seehausen O,Di Palma F. 2014. The genomic substrate for adaptive radiation in African cichlid fish[J]. Nature,513(7518):375-381. Chen S L,Zhang G J,Shao C W,Huang Q F,Liu G,Zhang P,Song W T,An N,Chalopin D,Volff J N,Hong Y H,Li Q Y,Sha Z X,Zhou H L,Xie M S,Yu Q L,Liu Y,Xiang H,Wang N,Wu K,Yang C G,Zhou Q,Liao X L,Yang L F,Hu Q M,Zhang J L,Meng L,Jin L J,Tian Y S,Lian J M,Yang J F,Miao G D,Liu S S,Liang Z,Yan F,Li Y Z,Sun B,Zhang H,Zhang J,Zhu Y,Du M,Zhao Y W,Schartl M,Tang Q S,Wang J. 2014. Whole-genomesequence of a flatfish provides insights into ZW sexchromosome evolution and adaptation to a benthiclifestyle[J]. Nature Genetics,46(3):253-260. Das R,Arora V,Jaiswal S,Iquebal M A,Angadi U B,F(xiàn)atma S,Singh R,Shil S,Rai A,Kumar D. 2018. PolyMorph-Predict:A universal web-tool for rapid polymorphic mi-crosatellite marker discovery for whole genome and transcriptome data[J]. Frontiers in Plant Science,9:1966. doi:10.3389/fpls.2018.01966. Diz A P,Presa P. 2009. The genetic diversity pattern of Mytilus galloprovincialis in Galician Rías(NW Iberian estua-ries)[J]. Aquaculture,287(3-4):278-285. Eierman L E,Hare M P. 2014. Transcriptomic analysis of candidate osmoregulatory genes in the eastern oyster Crassos-trea virginica[J]. BMC Genomics,15(1):503. doi:10. 1186/1471-2164-15-503. Fan G Y,Judy C,Ma K L,Yang B R,Zhang H,Yang X W,Shi C C,Law H C H,Ren Z T,Xu Q W,Liu Q,Wang J H, Chen W B,Shao L B,Gon?alves D,Ramos A,Cardoso S D,Guo M,Cai J,Xu X,Wang J,Yang H M,Liu X,Wang Y T. 2018. Chromosome-level reference genome of the Siamese fighting fish Betta splendens,a model species for the study of aggression[J]. Gigascience,7(11):giy087. doi:10.1093/gigascience/giy087. Figueras A,Robledo D,Corvelo A,Hermida M,Pereiro P,Rubiolo J A,Gómez-Garrido J,Carreté L,Bello X,Gut M,Gut I G,Marcet-Houben M,F(xiàn)orn-Cuní G,Galán B,García J L,Abal-Fabeiro J L,Pardo B G,Taboada X,F(xiàn)ernández C,Vlasova A,Hermoso-Pulido A,Guigó R,?lvarez-Dios J A,Gómez-Tato A,Vi?as A,Maside X,Gabaldón T,Novoa B,Bouza C,Alioto T,Martínez P. 2016. Whole genome sequencing of turbot(Scophthalmus maximus;Pleuronectiformes):A fish adapted to demersal life[J]. DNA Research,23(3):181-192. Gadgil R,Barthelemy J,Lewis T,Leffak M. 2017. Replication stalling and DNA microsatellite instability[J]. Biophysical Chemistry,225:38-48. doi:10.1016/j.bpc.2016. 11.007. Gao Y,Gao Q,Zhang H,Wang L L,Zhang F C,Yang C Y,Song L S. 2014. Draft sequencing and analysis of the genome of pufferfish Takifugu flavidus[J]. DNA Research,21(6):627-637. Jessy L,Murat C,Morin E,Tacon L F,Martin F. 2011. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome,with development of microsatellite markers[J]. Current Genetics,57(2):75-88. Jiang Q,Li Q,Yu H,Kong L F. 2014. Genome-wide analysis of simple sequence repeats in marine animals-A comparative approach[J]. Marine Biotechnology,16(5):604-619. Jiang Q,Wang F,Tan H W,Li M Y,Xu Z S,Tan G F,Xiong A S. 2015. De novo transcriptome assembly,gene annotation,marker development,and miRNA potential target genes validation under abiotic stresses in Oenanthe java-nica[J]. Molecular Genetics and Genomics,290(2):671-683. Jiao Y,Jia H M,Li X W,Chai M L,Jia H J,Chen Z,Wang G Y,Chai C Y,van de Weg E,Gao Z S. 2012. Development of simple sequence repeat(SSR) markers from a genome survey of Chinese bayberry(Myrica rubra)[J]. BMC Genomics,13(1):201. doi:10.1186/1471-2164-13-201. K?ressaar T,Lepamets M,Kaplinski L,Raime K,Andreson R,Remm M. 2018. Primer3_masker:Integrating masking of template sequence with primer design software[J]. Bioinformatics,34(11):1937-1938. Lien S,Koop B F,Sandve S R,Miller J R,Kent M P,Nome T,Hvidsten T R,Leong J S,Minkley D R,Zimin A,Grammes F,Grove H,Gjuvsland A,Walenz B,Hermansen R A,von Schalburg K,Rondeau E B,Genova A D,Samy J K,Olav Vik J,Vigeland M D,Caler L,Grimholt U,Jentoft S,V?ge D I,de Jong P,Moen T,Baranski M,Palti Y,Smith D R,Yorke J A,Nederbragt A J,Tooming-Klunderud A,Jakobsen K S,Jiang X T,F(xiàn)an D D,Hu Y,Liberles D A,Vidal R,Iturra P,Jones S J M,Jonassen I,Maass A,Omholt S W,Davidson W S. 2016. The Atlanticsalmon genome provides insights into rediploidization[J]. Nature,533(7602):200-205. Lin Q,F(xiàn)an S H,Zhang Y H,Xu M,Zhang H X,Yang Y L,Lee A P,Woltering J M,Ravi V,Gunter H M,Luo W,Gao Z X,Lim Z W,Qin G,Schneider R F,Wang X,Xiong P W,Li G,Wang K,Min J M,Zhang C,Qiu Y,Bai J,He W M,Bian C,Zhang X H,Shan D,Qu H Y,Sun Y,Gao Q,Huang L M,Shi Q,Meyer A,Venkatesh B. 2016. The seahorse genome andthe evolution of its specialized morphology[J]. Nature,540(7633):395-399. Liu B,Guo H Y,Zhu K C,Guo L,Liu B S,Zhang N,Yang J W,Jiang S G,Zhang D C. 2019. Growth,physiological,and molecular responses of golden pompano Trachinotus ovatus(Linnaeus,1758) reared at different salinities[J]. Fish Physiology and Biochemistry,45(6):1879-1893. Luo R B,Liu B H,Xie Y L,Li Z Y,Huang W H,Yuan J Y,He G Z,Chen Y X,Pan Q,Liu Y J,Tang J B,Wu G X,Zhang H,Shi Y J,Liu Y,Yu C,Wang B,Lu Y,Han C L,Cheung D W,Yiu S M,Peng S L,Zhu X Q,Liu G M,Liao X K,Li Y R,Yang H M,Wang J,Lam T W,Wang J. 2012. SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience,1(1):18. doi:10.1186/2047-217X-1-18. Nagy S,Poczai P,Cernák I,Gorji A M,Heged?s G,Taller J. 2012. PICcalc:An online program to calculate polymorphic information content for molecular genetic studies[J]. Biochemical Genetics,50(9-10):670-672. Pan H L,Yu H,Ravi V,Li C,Lee A P,Lian M M,Tay B H,Brenner S,Wang J,Yang H M,Zhang G J,Venkatesh B. 2016. The genome of the largestbony fish,ocean sunfish (Mola mola),provides insightsinto its fast growth rate[J]. GigaScience,5(1):36. doi:10.1186/s13742-016-0144-3. Park S,Son S,Shin M,F(xiàn)ujii N,Hoshino T,Park S. 2019. Transcriptome-wide mining,characterization,and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae)[J]. BMC Plant Biology,19(1):14. doi:10. 1186/s12870-018-1621-x. Quail M A,Smith M,Coupland P,Otto T D,Harris S R,Connor T R,Bertoni A,Swerdlow H P,Gu Y. 2012. A tale of three next generation sequencing platforms:Comparison of ion torrent,pacific biosciences and illumina MiSeq sequencers[J]. BMC Genomics,13:341. doi:10.1186/1471-2164-13-341. Shi L L,Yi S K,Li Y H. 2018. Genome survey sequencing of red swamp crayfish Procambarus clarkii[J]. Molecular Biology Reports,45(5):799-806. Sonah H,Deshmukh R K,Sharma A,Singh V P,Gupta D K,Gacche R N,Rana J C,Singh N K,Sharma T R. 2011. Genome-wide distribution and organization of microsatellites in plants:An insight into marker development in Brachypodium[J]. PLoS One, 6(6):e21298. Song H,Zhang Y X,Yang M J,Sun J C,Zhang T,Wang H Y. 2018. Genome survey on invasive veined rapa whelk (Rapana venosa) and development of microsatellite loci on large scale[J]. Journal of Genetics,97(4):e79-e86. Srivastava S,Kushwaha B,Prakash J,Kumar R,Nagpure N S,Agarwal S,Pandey M,Das P,Joshi C G,Jena J K. 2016. Development and characterization of genic SSR markers from low depth genome sequence of Clarias batrachus (magur)[J]. Journal of Genetics,95(3):603-609. Sun B M,Lei Y,Cao Z J,Zhou Y C,Sun Y,Wu Y,Wang S F,Guo W L,Liu C S. 2019. TroCCL4,a CC chemokine of Trachinotus ovatus,is involved in the antimicrobial immune response[J]. Fish & Shellfish Immunology,86:525-535. Sun L N,Gao T,Wang F L,Qin Z L,Yan L X,Tao W J,Li M H,Jin C B,Kocher D T,Wang D S. 2020. Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of Nanopore sequencing,Bionano and Hi-C technology[J]. Molecular Ecology Resources. doi:10.1111/1755-0998.13190. Wang J,Ai Q H,Mai K S,Xu H G,Zuo R T. 2014. Dietary chromium polynicotinate enhanced growth performance,feed utilization,and resistance to Cryptocaryon irritans in juvenile large yellow croaker(Larmichthys crocea)[J]. Aquaculture,432:321-326. Wang L,Yu H,Li Q. 2019. Development of microsatellite markers and analysis of genetic diversity of Barbatia virescens in the southern coasts of China[J]. Genes Geno-mics,41(4):407-416. Wang Y P,Lu Y,Zhang Y,Ning Z M,Li Y,Zhao Q,Lu H Y,Huang R,Xia X Q,F(xiàn)eng Q,Liang X F,Liu K Y,Zhang L,Lu T T,Huang T,F(xiàn)an D L,Weng Q J,Zhu C R,Lu Y Q,Li W J,Wen Z R,Zhou C C,Tian Q L,Kang X J,Shi M J,Zhang W T,Jang S H,Du F K,He S,Liao L J,Li Y M,Gui B,He H H,Ning Z,Yang C,He L B,Luo L F,Yang R,Luo Q,Liu X C,Li S S,Huang W,Xiao L,Lin H R,Han B,Zhu Z Y. 2015. The draft genome of the grass carp(Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation[J]. Nature Genetics,47(6):625-631. Wang Y W,Samuels T D,Wu Y Q. 2011. Development of 1030 genomic SSR markers in switchgrass[J]. Theoretical and Applied Genetics,122(4):677-686. Wu C W,Zhang D,Kan M Y,Lv Z M,Zhu A Y,Su Y Q,Zhou D Z,Zhang J S,Zhang Z,Xu M Y,Jiang L H,Guo B Y,Wang T,Chi C F,Mao Y,Zhou J J,Yu X X,Wang H L,Weng X L,Jin J G,Ye J Y,He L,Liu Y. 2014. The draft genome of the large yellow croaker reveals well-developed innate immunity[J]. Nature Communication,5:5227. doi:10.1038/ncomms6227. Wu M,Guo L,Zhu K C,Guo H Y,Liu B S,Zhang N,Jiang S G,Zhang D C. 2019. Molecular characterization of toll-like receptor 14 from golden pompano Trachinotus ovatus (Linnaeus,1758) and its expression response to three types of pathogen-associated molecular patterns[J]. Comparative Biochemistry and Physiology. Part B:Biochemistry and Molecular Biology,232:1-10. doi:10.1016/j.cbpb.2019.02.010. Xiao Y S,Xiao Z Z,Ma D Y,Liu J,Li J. 2019. Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel,1844):The first chromosome-level draft genome in the family Oplegnathidae[J]. Giga-Science,8(3):giz013. doi:10.1093/gigascience/giz013. Xie Z Z,Xiao L,Wang D D,F(xiàn)ang C,Liu Q Y,Li Z H,Liu X C,Zhang Y,Li S S,Lin H R. 2014. Transcriptome analysis of the Trachinotus ovatus:Identification of reproduction,growth and immune-related genes and microsatellite markers[J]. PLoS One,9(10):e109419. Xu P,Zhang X F,Wang X M,Li J T,Liu G M,Kuang Y Y,Xu J,Zheng X H,Ren L F,Wang G L,Zhang Y,Huo L H,Zhao Z X,Cao D C,Lu C Y,Li C,Zhou Y,Liu Z J,F(xiàn)an Z H,Shan G L,Li X G,Wu S X,Song L P,Hou G Y,Jiang Y L,Jeney Z,Yu D,Wang L,Shao C J,Song L,Sun J,Ji P F,Wang J,Li Q,Xu L M,Sun F Y,F(xiàn)eng J X,Wang C H,Wang S L,Wang B S,Li Y,Zhu Y P,Xue W,Zhao L,Wang J T,Gu Y,Lv W H,Wu K J,Xiao J F,Wu J Y,Zhang Z,Yu J,Sun X W. 2014. Genome sequence and genetic diversity of the common carp,Cyprinus carpio[J]. Nature Genetics,46(11):1212-1219. Yang X F,Liu H P,Ma Z H,Zou Y,Zou M,Mao Y Z,Li X M,Wang H,Chen T S,Wang W M,Yang R B. 2019. Chromosome-level genome assembly of Triplophysa tibe-tana,a fish adapted to the harsh high-altitude environment of the Tibetan Plateau[J]. Molecular Ecology Resources,19(4):1027-1036. Yu Y,Zhang X J,Yuan J B,Li F H,Chen X H,Zhao Y Z,Huang L,Zheng H K,Xiang J H. 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific white shrimp Litopenaeus vannamei[J]. Scientific Reports,5:15612. doi:10.1038/srep15612. Zardoya R,Vollmer D M,Craddock C,Streelman J T,Karl S,Meyer A. 1996. Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of Cichlid fishes(Pisces:Perciformes)[J]. Procee-dings. Biological Sciences,263(1376):1589-1598. Zhang G F,F(xiàn)ang X D,Guo X M,Li L,Luo R B,Xu F,Yang P C,Zhang L L,Wang X T,Qi H G,Xiong Z Q,Que H Y,Xie Y L,Holland P W H,Paps J,Zhu Y B,Wu F C,Chen Y X,Wang J F,Peng C F,Meng J,Yang L,Liu J,Wen B,Zhang N,Huang Z Y,Zhu Q H,F(xiàn)eng Y,Mount A,Hedgecock D,Xu Z,Liu Y J,Domazet-Lo?o T,Du Y S,Sun X Q,Zhang S D,Liu B H,Cheng P Z,Jiang X T,Li J,F(xiàn)an D D,Wang W,F(xiàn)u W J,Wang T,Wang B,Zhang J B,Peng Z Y,Li Y X,Li N,Wang J P,Chen M S,He Y,Tan F J,Song X R,Zheng Q M,Huang R L,Yang H L,Du X D,Chen L,Yang M,Gaffney P M,Wang S,Luo L H,She Z C,Ming Y,Huang W,Zhang S,Huang B Y,Zhang Y,Qu T,Ni P X,Miao G Y,Wang J Y,Wang Q,Steinberg C E W,Wang H Y,Li N,Qian L M,Zhang G J,Li Y R,Yang H M,Liu X,Wang J,Yin Y,Wang J. 2012. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature,490(7418):49-54. Zhang L S,Guo X M. 2010. Development and validation of single nucleotide polymorphism markers in the eastern oyster Crassostrea virginica Gmelin by mining ESTs and resequencing[J]. Aquaculture,302(1-2):124-129. Zhou W,Hu Y Y,Sui Z H,F(xiàn)u F,Wang J G,Chang L P,Guo W H,Li B B. 2013. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis(Rhodophyta) based on next-generation sequen-cing[J]. PLoS One,8(7):e69909 Zhou Z C,Dong Y,Sun H J,Yang A F,Chen Z,Gao S,Jiang J W,Guan X Y,Jiang B,Wang B. 2014. Transcriptome sequencing of sea cucumber(Apostichopus japonicus) and the identification of gene-associated markers[J]. Molecular Ecology Resources,14(1):127-138. (責(zé)任編輯 蘭宗寶)