焦琳致 包振華
摘 要 分析了帶有復(fù)合泊松損失過程和隨機利率的巨災(zāi)看跌期權(quán)的定價問題.資產(chǎn)價格通過跳擴散過程刻畫,該過程與損失過程相關(guān).當(dāng)利率過程服從CIR模型時,獲得了期權(quán)定價的顯式解,并給出相關(guān)證明.通過一個實例,討論了資產(chǎn)價格與期權(quán)價格的關(guān)系.
關(guān)鍵詞 金融數(shù)學(xué);巨災(zāi)期權(quán);CIR利率模型;復(fù)合泊松過程
中圖分類號 O211.67 ? ? ? ? ? 文獻(xiàn)標(biāo)識碼 A
Abstract The pricing of catastrophe put option is analyzed by compound poisson loss process and stochastic interest rate. Asset prices are characterized by a jump diffusion process, which is related to the loss process. When the interest rate process obeys the CIR model, the explicit solution of option pricing is obtained and the relevant proof is given. Through an example, the relationship between asset price and option price is discussed.
Key words financial mathematics; catastrophe option ; CIR interest rate model; compound Poisson
1 引 言
近年來,世界范圍內(nèi)災(zāi)難頻發(fā),因此巨災(zāi)衍生品越來越成為人類關(guān)注的焦點.Cox和Pedersen(2000) [1]研究了巨災(zāi)債券的定價,討論了均衡定價原理以及其與標(biāo)準(zhǔn)無套利估值框架的關(guān)系.Dassios和Jang(2003) [2]使用Cox過程(也稱雙隨機泊松過程)來模擬巨災(zāi)事件的索賠到達(dá)過程,研究了止損巨災(zāi)再保險合同和巨災(zāi)保險衍生品的定價問題.Jaimungal和Wang(2006) [3]構(gòu)建了一個巨災(zāi)期權(quán)定價模型,其中損失過程為復(fù)合泊松過程,利率為Vasicek模型,給出了期權(quán)的具體定價公式并研究了動態(tài)對沖問題.Wang(2016) [4]構(gòu)建了一個有違約風(fēng)險的巨災(zāi)看跌期權(quán)定價模型,損失過程假設(shè)為復(fù)合重隨機泊松過程,給出了期權(quán)的具體定價公式并應(yīng)用一些實例進(jìn)行模擬.Xu和Wang(2018) [5]構(gòu)建了一個在信用風(fēng)險下的巨災(zāi)期權(quán)定價模型,給出了期權(quán)的具體定價公式.在文獻(xiàn)[3]的基礎(chǔ)上,假設(shè)利率服從Cox-Ingersoll-Ross模型(CIR模型),給出了巨災(zāi)期權(quán)的定價公式.
2 模型結(jié)構(gòu)
5 結(jié) 論
通過引入隨機利率和隨機索賠規(guī)模使得歐式看跌期權(quán)定價更具有現(xiàn)實意義,通過跳躍擴散模型的框架,闡述了巨災(zāi)損失以及相關(guān)的資產(chǎn)、利率動態(tài),是如何影響期權(quán)價格的.并且通過使用標(biāo)的資產(chǎn)T遠(yuǎn)期價格的方法,成功地得到了關(guān)于CIR利率模型的歐式看跌期權(quán)定價的封閉公式.最后,通過數(shù)值實驗,證明了定價公式的可操作性.
參考文獻(xiàn)
[1] COX S H, PEDERSEN H W. Catastrophe risk bonds[J]. North American Actuarial Journal, 2000, 4(4):56-82.
[2] DASSIOS A, JANG J W. Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity[J]. Finance & Stochastics, 2003, 7(1):73-95.
[3] JAIMUNGAL S, WANG T. Catastrophe options with stochastic interest rates and compound Poisson losses[J]. Insurance: Mathematics and Economics,2006,38(3):469-483.
[4] WANG X. The pricing of catastrophe equity put option with default risk[J]. International Review of Finance,2016,16(2):181-201.
[5] XU Y, WANG G J. Pricing catastrophe options with counterparty credit risk in a reduced from model[J]. Acta Mathematica Scientia,2018,38B(1):347-360.
[6] BRIGO D, MERCURIO F. Interest rate models——theory and practice[M].Berlin: Springer, 2006.
[7] SHREVE S E. Stochastic calculus for finance II[M].北京: 世界圖書出版公司, 2007.