余偉 閆芳芳 馮文龍 陳強 張映杰 張宗錦 辜運富
摘 ?要:研究化肥減施情況下PGPR(plant growth promoting rhizobacteria)菌劑對植煙土壤反硝化作用的微生物調控機制,為植煙土壤科學施肥、培肥地力提供理論依據。本試驗在四川攀枝花米易縣的傳統(tǒng)烤煙種植區(qū)通過化學分析和末端限制性長度多態(tài)性分析手段(T-RFLP)分別對PGPR菌劑配合化肥減肥處理下的植煙土壤理化性質及土壤nosZ型細菌群落組成和多樣性進行研究。結果表明,與常規(guī)施肥相比,PGPR菌劑配合化肥減施的處理土壤pH和堿解氮含量顯著提高,有機質、全氮含量提高但未達顯著水平,部分處理速效磷、速效鉀含量顯著提高。PGPR菌劑配合化肥減施改變了nosZ型細菌的物種組成,Rhodobacter (紅桿菌屬)和Bacterium(桿菌屬)為5個施肥處理共有的優(yōu)勢菌屬,而Bradyrhizobium(慢生根瘤菌屬)和Azospirillum(固氮螺菌屬)僅為施用PGPR菌劑處理的優(yōu)勢菌。全量化肥配施PGPR菌劑處理下的Shannon多樣性指數(shù)和均勻度顯著低于其他處理,其他各處理細菌群落多樣性之間無顯著差異。冗余分析表明,土壤pH、有機質和速效鉀是影響植煙土壤nosZ型細菌群落結構變化的主要因子。綜上所述,PGPR菌劑配合化肥減施影響了土壤理化性質進而導致土壤nosZ型細菌群落結構組成發(fā)生改變。
關鍵詞:PGPR菌劑;化肥減施;T-RFLP;nosZ細菌群落
Abstract: The nosZ-type bacterial community variation in flue-cured tobacco cultivation soils under the condition of plant growth promoting rhizobacteria (PGPR) application plus reduction of chemical fertilizer (RCF) was investigated so as to reveal the microbial mediated mechanisms of the denitrifying process in these specific soils, and to establish reasonable fertilizer regimes and provide theoretical foundations for maintaining soil quality. The study was carried out in a traditional flue-cured tobacco cultivation field in Miyi County, Sichuan Province. Chemical analysis and terminal restriction fragment length polymorphism (T-RFLP) were conducted to study the variation of soil physicochemical parameters and nosZ-type bacterial community composition under the condition of PGPR+RCF fertilizer. The results showed that the soil pH and available nitrogen were significantly increased under the treatment of PGPR+RCF fertilizer as compared with the conventional fertilization (CK) (p<0.05). Meanwhile, the soil organic carbon and total nitrogen were also increased although not significantly, and available phosphorus and available potassium were also increased under some fertilizer treatments (30% RCF). The T-RFLP experiment showed that using PGPR in combination with fertilizers increased the composition and diversity of the nosZ-type bacterial community. Rhodobacter and Bacterium were the dominant genera in the soils under the five different fertilization treatments, while Bradyrhizobium and Azospirillum were dominant in the soil treated with only PGPR inocula. The Shannon diversity index and Evenness in the soil under total amount chemical fertilizer plus PGPR inoculant were the lowest among the five different fertilizer treatments, while those diversity indexes in the soil under the other four fertilizer treatments showed no significantly difference. Redundancy Analysis (RDA) showed that soil pH, soil organic matter and available potassium were the most important factors in shaping nosZ-type bacterial community in the flue-cured tobacco cultivation soil. Taken together, the using of PGPR in combination with reduced chemical fertilizers would change the soil physicochemical properties thus modify the composition of nosZ-type bacterial community composition, and increase their diversity.
Keywords: PGPR inoculum; chemical fertilizer reduction; T-RFLP; nosZ-type bacterial community
反硝化作用是土壤氮素損失的主要途徑,也是溫室氣體N2O的主要來源[1]。研究表明,全球大部分的N2O排放來自土壤,其中45%歸因于農業(yè)微生物氮循環(huán)。長期施用化肥為反硝化提供充足的底物,促進土壤反硝化作用及N2O的產生,并導致農田土壤酸化,進而顯著提高反硝化對N2O產生的貢獻[2-3]。由反硝化微生物介導的N2O還原為N2,是減少溫室氣體N2O產生的主要途徑,同時還能達到清除土壤過多活性氮素的目的[4]。在N2O還原過程中,由nosZ基因編碼的N2O還原酶(nosZ)是唯一一種將N2O轉化為N2的酶,而nosZ基因的豐度和多樣性往往用來反映土壤N2O還原能力[1,5]。nosZ型反硝化細菌群落對施肥的響應較為敏感[4],在石灰性紫色土中,化肥和有機肥配施顯著促進nosZ型反硝化細菌的群落組成、豐度和分布[6]。因此,研究化肥施用與nosZ型反硝化細菌群落的關系,對于理解農業(yè)生態(tài)系統(tǒng)中氮素損失與溫室氣體的排放至關重要。
氮肥施用過量是造成農田生態(tài)環(huán)境惡化的主要原因,優(yōu)化施氮技術和嚴控施氮量是提高氮肥利用率和降低環(huán)境污染的有效途徑[7-9]。研究表明,在化肥減量20% ~ 30%的范圍內配施生物有機肥提高了土壤酶活性及養(yǎng)分含量,進而優(yōu)化了土壤根際環(huán)境,最終提高作物產量[10-11]。生物有機肥是有機肥與多種有益微生物菌群結合形成的新型有機復合肥,兼具微生物肥料和有機肥的效應,其中獨特的生物菌活性對土壤有一定的改良作用[12]。植物根際促生菌(plant growth promoting rhizobacteria,PGPR)是一類重要的微生物肥料。研究表明,PGPR對西紅柿和辣椒抵抗水分脅迫具有潛在的積極作用,對小麥、玉米、豌豆和黃瓜等產生有益作用,能有效提高作物產量,此外,PGPR還可以增加大豆結瘤、氮素吸收、促進生長和高產[13-15]。由此可見,應用PGPR菌劑減少化肥施用或部分替代化肥有利于促進作物生長。
本試驗通過PGPR菌劑配合化肥減施的方式,研究其對植煙區(qū)土壤nosZ細菌群落組成及多樣性的影響,以期為在減少化肥投入量的同時,提高土壤質量和土壤肥力,實現(xiàn)植煙土壤環(huán)境的可持續(xù)發(fā)展提供理論依據。
1 ?材料與方法
1.1 ?研究區(qū)概況
本試驗在四川攀枝花米易煙區(qū)進行(29°10'50'' N,105°09'26'' E)。該地區(qū)屬亞熱帶季風氣候,冬無嚴寒,夏無酷暑,雨熱同季,光照充足,是煙葉種植區(qū)劃中烤煙生態(tài)最適宜區(qū)。試驗地土壤為滲育紫泥田土屬,成土母質為紫色頁巖風化殘坡積物,酸紫泥田土種。土壤基礎養(yǎng)分為:pH 6.25,有機質1.30%,全氮1.47 g/kg,堿解氮124.63 mg/kg,有效磷9.69 mg/kg,速效鉀137.94 mg/kg。
1.2 ?試驗設計
本試驗設5個處理,采用田間隨機區(qū)組排列,每個處理3次重復?;蕼p量只針對基肥中的復合肥而言,常規(guī)施肥基肥中復合肥用量為750 kg/hm2。具體處理為:(T1)常規(guī)施肥(酒糟有機肥750 kg/hm2+復合肥750 kg/hm2);(T2)PGPR菌劑+酒糟有機肥750 kg/hm2+復合肥750 kg/hm2;(T3)PGPR菌劑+酒糟有機肥750 kg/hm2+復合肥675 kg/hm2(化肥減施10%);(T4)PGPR菌劑+酒糟有機肥750 kg/hm2+復合肥600 kg/hm2(減施20%);(T5)PGPR菌劑+酒糟有機肥750 kg/hm2+復合肥525 kg/hm2(減施30%)。試驗所用酒糟有機肥及復合肥均由攀枝花煙草公司提供。酒糟有機肥養(yǎng)分含量為:有機質含量≥45%,氮+磷+鉀≥5%,pH 5.5~8.5。復合肥中N、P2O5、K2O質量分數(shù)分別為12%、12%、25%。移栽后30 d各處理均追施復合肥225 kg/hm2。PGPR菌劑是由本實驗室前期篩選出的產IAA、溶磷溶鉀等最佳的3株放線菌CNS42(Streptomycete sp.)、P29(Streptomycete sp.)和P60(Streptomycete sp.),稀釋成含活菌濃度約為1×107 cfu/mL的菌液,按1:1:1的比例混合制成PGPR菌劑。2016年4月21日施基肥、起壟、覆膜及烤煙移栽。相關的田間管理均按當?shù)厣a規(guī)范進行。
1.3 ?土壤樣品采集
于烤煙收獲后,每個小區(qū)按照五點取樣法結合抖根法采取0~20 cm烤煙根際土樣,混勻為一個樣品,放入有冰袋的保溫箱中迅速運回實驗室,挑出石礫和雜草落葉,一部分土壤保存于?20 ℃,一部分風干磨碎后過2 mm篩用于測定土壤理化性質。
1.4 ?測定方法
1.4.1 ?土壤理化性質測定 ?土壤理化性質的具體測定方法參見文獻[16]。其中,土壤pH用玻璃電極法測定,m土:V水=1:2.5,全氮和堿解氮分別采用凱氏定氮法和堿擴散滴定法測定,有機質采用重鉻酸鉀容量法測定,有效磷采用浸提-鉬銻抗比色法測定,速效鉀采用火焰光度計法測定。
1.4.2 ?土壤微生物總DNA提取 ?稱取0.5 g于–20 ℃ 保存的新鮮土壤樣品,采用Fast DNA SPIN Kit For Soil (Qbiogene, Carlsbad, CA, USA)試劑盒,按照說明書上的步驟提取土壤微生物總DNA。
1.4.3 ?nosZ基因末端限制性片段長度多態(tài)性(T-RFLP)分析 ?nosZ基因擴增所用引物為nosZF(5′-CGYTGTTCMTCGACAGCCAG-3′)[17]和nosZ1622 R(5′-CGSACCTTSTTGCCSTYGCG-3′)[18]。其中每對引物的正向引物都帶有FAM熒光標記。擴增體系為50 μL:PCR Mix 25 μL,引物各2.5 μL(10 μmol/L),DNA模板10 μL(10 ng/μL),超純水補至50 μL。擴增程序:95 ℃預變性3 min;94 ℃變性30 S,57 ℃退火45 S,72 ℃ 延伸55 S,32 個循環(huán);72 ℃最終延伸10 min。PCR產物用BstUI和HhaI兩種限制性內切酶進行酶切。在37 ℃ 的恒溫培養(yǎng)箱中放置 14~16 h后取出在80 ℃的恒溫箱中失活30 min。最后送生工生物工程股份有限公司(上海)對末端帶有熒光標記的片段(末端限制性片段,T-RFs)進行檢測和分析。處理后的T-RFs片段在NCBI數(shù)據庫中進行比對,計算nosZ細菌群落組成和多樣性指數(shù)的統(tǒng)計,多樣性指數(shù)主要為Shannon多樣性指數(shù)、豐富度和均勻度等指標[19]。
1.5 ?數(shù)據分析
土壤理化性質及nosZ細菌群落多樣性指數(shù)等基礎數(shù)據的處理和繪圖利用Excel 2013進行,單因素方差分析利用SPSS 21.0完成。利用CANOCO 5.0軟件對土壤環(huán)境參數(shù)和nosZ細菌群落相關性進行冗余分析(Redundancy Analysis, RDA)。
2 ?結 ?果
2.1 ?PGPR菌劑配合化肥減施對植煙土壤理化性質的影響
由表1可知,與不施PGPR菌劑處理(T1)相比,在全量化肥基礎上加施菌肥(T2),土壤各理化指標均無顯著變化。而與T1相比,PGPR菌劑配合化肥減施的處理(T3、T4、T5)土壤pH均顯著提高,T3處理最高,但各減肥處理之間差異不顯著;土壤有機質、全氮含量略有提高,但未達到顯著差異;土壤堿解氮含量顯著提高;除T4外,有效磷和有效鉀含量均較T1、T2提高,其中減少30 %化肥用量的處理土壤有效磷含量最高,減施化肥10%的處理土壤有效鉀含量最高,與T1、T2處理達到顯著差異。此可見,施用PGPR菌劑同時減施10%~30%的化肥對提高植煙區(qū)土壤肥力、改善土壤質量具有一定促進作用。
2.2 ? PGPR菌劑配合化肥減施對植煙土壤nosZ細菌群落組成的影響
圖1示出了nosZ細菌群落T-RFLP分析中豐度排名前10的優(yōu)勢菌。結果表明,PGPR菌劑配合化肥減施明顯改變土壤nosZ土壤細菌的群落組成。各處理中共有的優(yōu)勢菌屬為Polymorphum(多形菌屬),Rhodobacter(紅桿菌屬)和Bacterium(桿菌屬)。其中,Polymorphum(多形菌屬)隨著化肥施用量減少呈先增加后降低的趨勢,在減肥10%~20%的處理中占主導;Bacterium(桿菌屬)在施用PGPR菌劑處理中豐度均有所提高;Rhodobacter 則在不施PGPR菌劑的處理中占優(yōu)勢,配施菌劑之后隨化肥施用量減少有逐漸減少趨勢;而Bradyrhizobium(慢生根瘤菌屬)和Azospirillum(固氮螺菌屬)僅為施用PGPR菌劑處理的優(yōu)勢菌??傮w而言,PGPR菌劑配合化肥減施會對土壤中的nosZ細菌群落組成產生明顯影響。
2.3 ?PGPR菌劑配合化肥減施對植煙土壤nosZ細菌群落多樣性的影響
由表2可知,除T2處理Shannon多樣性指數(shù)和均勻度顯著低于其他處理外,其他處理之間Shannon多樣性指數(shù)、豐富度和均勻度均未見顯著差異。說明在全量化肥的條件下加施菌劑(Streptomycete sp.),會對部分nosZ細菌造成競爭,導致其群落多樣性的下降,而化肥減施后則不產生影響。
2.4 ?土壤環(huán)境因子與nosZ細菌群落組成的相關性分析
運用冗余分析(RDA),對植煙土壤nosZ細菌群落組成與土壤理化性質相關性進行分析(圖2)。從RDA排序圖中可以看出,第 1 排序軸解釋了土壤理化性質對nosZ細菌群落變異貢獻率的44.62%,第2排序軸解釋了土壤理化性質對nosZ細菌群落變異貢獻率的21.47%,累計貢獻率為66.09%。nosZ細菌群落與土壤pH、有機質和速效鉀含量顯著相關(p<0.05),可見,土壤pH、有機質(SOM)和速效鉀(AK)含量是影響nosZ細菌群落的主要環(huán)境因子。圖2顯示,不施用PGPR菌劑(T1)處理與施用菌劑的T2、T4和T5處理相距較遠,這表明,PGPR菌劑對nosZ細菌群落影響較大。施用菌劑的T2、T4、T5處理相對較為集中,表明施用PGPR菌劑及減施化肥20%~30%的土壤中nosZ細菌群落的差異性較小,而當PGPR菌劑配合減少10%的化肥施用量(T3)時,植煙土壤的nosZ細菌群落與其他處理差異較大。
3 ?討 ?論
目前PGPR菌劑已廣泛應用在不同作物的生產中,其中許多報道指出外源PGPR可以改變根際土壤中微生物結構和種群數(shù)量,且總體變化表現(xiàn)為細菌數(shù)量增加,真菌數(shù)量減少,放線菌數(shù)量變化不一致[20-21]。但關于PGPR菌劑結合化肥減施對土壤肥力的影響的報道尚不多見。本試驗表明,PGPR菌劑配合化肥減量施用對提高土壤肥力具有重要影響。PGPR菌劑配合化肥減量施用顯著增加土壤pH、堿解氮含量,一定程度上提高速效磷和速效鉀含量,而土壤有機質、全氮也有不顯著的增加,表明施用PGPR菌劑同時減施化肥對提高土壤肥力、改善土
壤狀況具有積極影響。主要原因可能是本試驗中所用PGPR菌劑為具有溶磷溶鉀能力的抗病促生型菌株,有利于活化土壤中的磷鉀元素,促進植物吸收,進而為土壤反饋更多的細胞脫落物及有機代謝物,從而提高土壤有機質[12]。
已有研究證實施用PGPR菌劑能增加土壤微生物菌群種類和數(shù)量,如施用PGPR菌劑配合有機肥,增加了玉米收獲期土壤中的固氮菌、溶磷菌及纖維素分解菌數(shù)量[22],而施用PGPR菌劑和適量的氮肥能增加土壤纖維素分解菌、硝化細菌及固氮菌數(shù)量[23]。關于nosZ型反硝化細菌的研究已有大量報道,HARTER等[24]研究發(fā)現(xiàn),Bradyrhizobium(慢生根瘤菌屬)是nosZ反硝化細菌中最豐富的物種。Azoarcus(固氮弓菌屬)和Bradyrhizobium(慢生根瘤菌屬)能夠在自由生活狀態(tài)下進行脫氮作用,并能誘導豆科植物大量結瘤,與豆科植物形成共生關系,刺激植物生長。此外,Bradyrhizobium(慢生根瘤菌屬)對土壤具有生物修復功能[24]。ITELIMA等[25]認為Azospirillum(固氮螺菌屬)能夠分泌赤霉素、乙烯和生長素,還可以刺激植物中黃酮類化合物的分泌,進而刺激根瘤菌中結瘤基因(nod)的表達。本試驗中,施用PGPR菌劑均增加了土壤中Bradyrhizobium和Bacterium的豐度,并使Bradyrhizobium(慢生根瘤菌屬)和Azospirillum(固氮螺菌屬)豐度增加成為優(yōu)勢菌屬,這表明施用PGPR改變了土壤含nosZ反硝化細菌群落組成且增加了有益微生物的數(shù)量。
研究表明,在煙草上應用PGPR菌劑能夠增加土壤微生物群落多樣性,促進煙株生長[26]。PGPR菌劑配合化肥減施對植煙土壤nosZ細菌群落多樣性無顯著影響,而全量化肥配施PGPR菌劑則降低了nosZ細菌群落多樣性。這可能是由于化肥的施入調節(jié)土壤中的C/N從而影響了不同菌群的定殖能力,使PGPR菌劑中的菌群與nosZ菌群造成競爭導致。適當降低化肥用量有助于保持土壤中nosZ群落的多樣性。這也再次證實了nosZ型反硝化細菌群落對施肥的響應較為敏感[4]。
環(huán)境因子與土壤微生物群落相互作用,密切相關[27]。大量研究表明土壤pH、有機碳、氮是影響反硝化細菌群落組成的重要環(huán)境因子[28-29],也有研究指出,nosZ菌群與土壤水分含量和有效磷相關性最強[30]。這都證實了土壤環(huán)境質量與功能微生物的生存息息相關。本試驗中,RDA相關性分析表明土壤pH、有機質和有效鉀是影響植煙土壤nosZ細菌群落組成的主要環(huán)境因子,其次是速效鉀、全氮及堿解氮。這與前人的研究結果[31-32]一致。
4 ?結 ?論
研究表明PGPR菌劑結合化肥減施改變了土壤理化性質,不同程度地提高了土壤pH、堿解氮、速效磷和速效鉀等養(yǎng)分含量。PGPR菌劑配合化肥減施對植煙土壤nosZ細菌群落多樣性無顯著影響,卻明顯改變了其結構組成;而全量化肥配施PGPR菌劑則降低細菌群落多樣性。紅桿菌屬 (Rhodobacter)和桿菌屬(Bacterium)是該地區(qū)植煙土壤主要nosZ型反硝化細菌,而慢生根瘤菌屬(Bradyrhizobium)和固氮螺菌屬(Azospirillum)等nosZ基因型反硝化細菌對施用PGPR菌劑處理響應最敏感。土壤pH、有機質及有效鉀是影響植煙土壤nosZ型細菌群落的主要環(huán)境因子。相關研究可為在攀枝花煙區(qū)植煙土壤上建立合理的施肥制度、保護土壤質量提供理論依據。
參考文獻
[1]CONTHE M, WITTORF L, KUENEN J G, et al. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture[J]. The ISME Journal, 2018, 12(4): 1142-1153.
[2]JONES C M, SPOR A, BRENNAN F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9): 801-805.
[3]DOBBIE K E, SMITH K A. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables[J]. Global Change Biology, 2003, 9(2): 204-218.
[4]鄭燕,侯海軍,秦紅靈,等. 施氮對水稻土N2O釋放及反硝化功能基因(narG/nosZ)豐度的影響[J]. 生態(tài)學報, 2012, 32(11):3386-3393.
ZHENG Y,HOU H J,QIN H L, et al. Effect of N application on the abundance of denitrifying genes (narG /nosZ) and N2O emission in paddy soil[J]. Acta Ecologica Sinica, 2012, 32(11): 3386-3393.
[5]STRES B, MAHNE I, AVGUSTIN G, et al. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated michigan soils[J]. Applied and Environmental Microbiology, 2004, 70(1): ?301-307.
[6]WANG Y Y, LU S E, XIANG Q J, et al. Responses of N2O reductase gene (nosZ)-denitrifier communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil[J]. Journal of Integrative Agriculture, 2017(11): 2597-2611.
[7]ZHONG W H, CAI Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2): 84-91.
[8]JASKULSKA I, JASKULSKI D, KOBIERSKI M. Effect of limingon the change of some agrochemical soil properties in a long-term fertilization experiment[J]. Plant Soil and Environment, 2014, 60(4): 146-150.
[9]MADARAS M, LIPAVSKY J. Interannual dynamics of available potassium in a long-term fertilization experiment[J]. Plant Soil and Environment, 2009, 55(8): 334-343.
[10]姜蓉,湯利,李淼,等. 設施土壤微生物結構和酶活性對減量化肥配施有機肥的響應[J]. 土壤通報,2017, 48(3):639-646.
JIANG R, TANG L, LI M, et al. Response of greenhouse soil microbial community and enzyme activities to combined application of chemical fertilizer reduction with organic fertilizer [J]. Chinese Journal of Soil Science, 2017, 48(3): 639-646.
[11]宋以玲,于建,陳士更,等. 化肥減量配施生物有機肥對油菜生長及土壤微生物和酶活性影響[J]. 水土保持學報,2018,32(1):352-360.
SONG Y L, YU J, CHEN S G, et al. Effects of reduced chemical fertilizer with application of bioorganic fertilizer on rape growth, microorganism and enzymes activities in soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 352-360.
[12]周莉華,李維炯,倪永珍. 長期施用 EM 生物有機肥對冬小麥生產的影響[J]. 農業(yè)工程學報,2005,21(S1): 221-224.
ZHOU L H, LI W J, NI Y Z. Effects of long-term application of EM biological-organic fertilizer on winter wheat production. Transactions of the CSAE, 2005, 21(S1): 221-224.
[13]KHALID A, ARSHAD M, ZAHIR Z A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology, 2010, 96(3): 473-480.
[14]CAKMAKCI R, DONMEZ F, AYDIN A, et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions[J]. Soil Biology and Biochemistry, 2006, 38(6): 1482-1487.
[15]BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350.
[16]鮑士旦. 土壤農化分析[M]. 北京:中國農業(yè)出版社,2000.
BAO S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.
[17]KLOOS K, MERGEL A, ROSCH C, et al. Denitri?cation within the genus Azospirillum and other associative bacteria[J]. Australian Journal of Plant Physiology, 2001, 28(9): 991-998.
[18]ENEALL K, PHILIPPOT L, HALLIN S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343.
[19]BHARTI N, BARNAWAL D, MAJI D, et al. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress[J]. Microbial Ecology, 2015, 70(1): 196-208.
[20]劉方春,邢尚軍,馬海林,等.根際促生細菌(PGPR)對冬棗根際土壤微生物數(shù)量及細菌多樣性影響[J].林業(yè)科學,2013,49(8):75-80.
LIU F C, XING S J, MA H L, et al. Effect of plant growth-promoting rhizobacteria (PGPR) on the microorganism population and bacterial diversity in Ziziphus jujuba rhizosphere soil[J]. Scientia Silvae Sinicae, 2013, 49(8): 75-80.
[21]BUDDRUS-SCHIEMANN K, SCHMID M, SCHREINER K, et al. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley[J]. Microbial Ecology, 2010, 60(2): 381-393.
[22]GULNAZ Y, FATHIMA P S, KULMITRA A K, et al. Effect of PGPR and PSB on soil chemical properties, nutrient status and microbial population changes after harvest of irrigated maize under varying levels of phosphorus[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(10): 1707-1712.
[23]SALVO L P D, CELLUCCI G C, CARLINO M E, et al. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays, L.) grain yield and modified rhizosphere microbial communities[J]. Applied Soil Ecology, 2018, 126: 113-120.
[24]HARTER J, EI-HADIDI M, HUSON D H, et al. Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation[J]. Scientific Reports, 2017, 7(3338): 1-14.
[25]ITELIMA J U, BANG W J, ONYIMBA I A, et al. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: a review[J]. Direct Research Journal of Agriculture and Food Science, 2018, 6(3): 73-83.
[26]黃闊,江其鵬,姚曉遠,等. 微生物菌劑對煙草根結線蟲及根際微生物群落多樣性的影響[J]. 中國煙草科學,2019,40(5):36-43.
HUANG K, JIANG Q P, YAO X Y, et al. Effects of microbial agents on tobacco root-knot nematode and diversity of rhizosphere microbial communities[J]. Chinese Tobacco Science, 2019, 40(5): 36-43.
[27]GAIMSTER H, LSTON M, RICHARDSON D. Andrew gates and gary rowley transcriptional and environmental control of bacterial denitrification and N2O emissions[J]. FEMS Microbiology Letters, 2017, 365(5): 277-297.
[28]STEHFEST E, BOUWMAN A F. N2O and NO emissions from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207-228.
[29]ZENG J, LOU K, ZHANG C J. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China[J]. Frontiers in Microbiology, 2016, 7: 1353-1365.
[30]JHA N, SAGGAR S, GILTRAP D, et al. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture[J]. Biogeosciences Discussions, 2017, 14(18): 1-19.
[31]WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270.
[32]GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews, 2013, 37(2): 112-129.