楊高翔
摘要: 本文中,建立了一類具有強時滯核的單種群擴散模型行波解的存在性. 首先, 在該模型沒有時滯的情況下, 利用常微分方程的定性理論, 得到了該模型行波解的存在性. 然后, 在該模型中時滯非常小時, 結合線性鏈式法則和幾何奇異攝動理論, 證明了該模型的行波解仍然存在.
關鍵詞: 行波解; 強時滯核; 幾何奇異攝動法
中圖分類號: O175.26文獻標志碼: ADOI: 10.3969/j.issn.1000-5641.201911019
0 引言
近幾十年以來, 反應擴散方程中行波解的存在性備受許多學者的關注, 尤其是生物領域中的反應擴散方程, 見文獻[1-2]. 由于生物系統(tǒng)的復雜性, 各種因素被學者考慮到生物種群方程中去, 例如時滯因素、非局部效應等等[3-9]. 于是, 描述果蠅種群的Nicholson 方程也在考慮其耦合時空時滯[10-12] 的情況下, 該單種群模型中行波解的存在性也被證明.
早在1989 年, Britton [13-14] 給出如下一個耦合時空時滯的單種群模型:
3 總結
本文主要利用幾何奇異攝動理論和鏈式法則討論了一類耦合強時滯核的單種群模型行波解的存在性問題. 然而所得的結果只是在時滯量非常小的時候才能保證該行波解的存在, 至于隨著時滯量的增加該行波解的波形是否會受到影響, 導致出現(xiàn)其他類型的行波解, 比如周期行波解[9] 等, 將在以后的工作中繼續(xù)展開討論.
[ 參 考 文 獻]
[ 1 ] WU J. Theory and Applications of Partial Functional Differential Equations [M]. New York: Springer-Verlag, 1996.
[ 2 ] MURRAY J D. Mathematical Biology: Spatial Models and Biomedical Applications [M]. New York: Springer, 2003.
[ 3 ]GOURLEY S A, CHAPLAM M A J, DAVIDSON F A. Spatiotemporal pattern formation in a nonlocal reaction-diffusion equation [J].Dynamical Systems: An International Journal, 2001, 16: 173-192. DOI: 10.1080/14689360116914.
[ 4 ]ASHWIN P, BARTUCCELLI M V, BRIDGES T J, et al. Travelling fronts for the Kpp equation with spatiotemporal delay [J]. ZANGEW MATH PHYS, 2002, 53: 103-122. DOI: 10.1007/s00033-002-8145-8.
[ 5 ]WANG Y F, YIN J X. Traveling waves for a biological reaction diffusion model with spatiotemporal delay [J]. J Math Anal Appl,2007, 325: 1400-1409. DOI: 10.1016/j.jmaa.2006.02.077.
[ 6 ] WANG Z C, LI W T, RUAN S G. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays [J]. J Differential?Equation, 2006, 222: 185-232. DOI: 10.1016/j.jde.2005.08.010
[ 7 ]WU C, LI M, WENG P. Existence and stability of traveling wave fronts for a reaction-diffusion system with spatio-temporal nonlocal effect[J]. ZAMM‐Journal of Applied Mathematics and Mechanics, 2017, 97(12): 1555-1578. DOI: 10.1002/zamm.201600170.
[ 8 ]ZHANG H T, LI L. Traveling wave fronts of a single species model with cannibalism and nonlocal effect [J]. Chaos, Solitons &Fractals, 2018, 108: 148-153.
[ 9 ]ZUO W J, SHI J P. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay [J].Communications on Pure & Applied Analysis, 2018, 17(3): 1179-1200.
[10]LI W T, RUAN S, WANG Z C. On the diffusive Nicholsons blowflies equation with nonlocal delay [J]. J Nonlinear Science, 2007, 17:505-525. DOI: 10.1007/s00332-007-9003-9.
[11]ZHANG J, PENG Y. Travelling waves of the diffusive Nicholsons blowflies equation with strong generic delay kernel and non-localeffect [J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(5): 1263-1270.
[12]ZHANG C, YAN X. Wavefront solutions in diffusive Nicholsons blowflies equation with nonlocal delay [J]. Applied Mathematics andMechanics, 2010, 31(3): 385-392. DOI: 10.1007/s10483-010-0311-x.
[13]BRITTON N F. Aggregation and the competitive exclusion principle [J]. Journal of Theoretical Biology, 1989, 136: 57-66. DOI:10.1016/S0022-5193(89)80189-4.
[14]BRITTON N F. Spatial structures and periodic traveling wave in an integro-differential reaction diffusion population model [J]. SIAMJournal of Applied Mathematics, 1990, 50: 1663-1688. DOI: 10.1137/0150099.
[15]FENICHEL N. Geometric singular perturbation theory of for ordinary differential equations [J]. J Differential Equation, 1979, 31: 53-98. DOI: 10.1016/0022-0396(79)90152-9.
(責任編輯: 林 磊)