国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

層狀TI飽和半空間均布斜線荷載及孔隙水壓動(dòng)力格林函數(shù)

2020-08-13 07:29巴振寧段化貞梁建文
振動(dòng)工程學(xué)報(bào) 2020年4期

巴振寧 段化貞 梁建文

摘要: 基于Biot流體飽和多孔介質(zhì)模型,采用動(dòng)力剛度矩陣方法結(jié)合傅里葉變換,給出了層狀橫觀各向同性(TI)飽和半空間中均布斜線荷載及孔隙水壓的動(dòng)力格林函數(shù)。方法首先將荷載作用層固定,在波數(shù)域內(nèi)求得層內(nèi)響應(yīng)和固端反力,進(jìn)而由剛度矩陣方法求得反加固端反力于整個(gè)層狀半空間而產(chǎn)生的響應(yīng),最后疊加層內(nèi)解和固端反力解經(jīng)由傅里葉逆變換求得空間域內(nèi)解。所給出的層狀TI飽和半空間格林函數(shù)為建立相應(yīng)邊界元方法進(jìn)而求解層狀TI飽和介質(zhì)相關(guān)波動(dòng)問(wèn)題提供了一組完備基本解。通過(guò)與已發(fā)表的各向同性飽和結(jié)果和TI彈性結(jié)果進(jìn)行對(duì)比,驗(yàn)證了方法的正確性。進(jìn)而給出了數(shù)值計(jì)算結(jié)果并進(jìn)行了參數(shù)分析。結(jié)果表明:TI飽和介質(zhì)與各向同性飽和介質(zhì)對(duì)應(yīng)的動(dòng)力響應(yīng)差異顯著,且介質(zhì)的各向異性參數(shù)對(duì)動(dòng)力響應(yīng)有著重要影響。此外,荷載埋深越小,地表位移和孔壓波動(dòng)更劇烈;介質(zhì)滲透系數(shù)起到類似阻尼的作用,減小滲透系數(shù)可降低動(dòng)力響應(yīng);隨著頻率的增大,位移、應(yīng)力和孔壓的波動(dòng)也更為劇烈。

關(guān)鍵詞: 橫觀各向同性飽和介質(zhì); 層狀半空間; 動(dòng)力剛度矩陣法; 格林函數(shù)

中圖分類號(hào): TU435 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào): 1004-4523(2020)04-0784-012

DOI:10.16385/j.cnki.issn.1004-4523.2020.04.017

引 言

動(dòng)力荷載作用于半空間的響應(yīng)問(wèn)題(動(dòng)力格林函數(shù))一直是地震工程、地震學(xué)和巖土工程等領(lǐng)域中的重要研究課題。自Lamb[1]開(kāi)創(chuàng)性地采用回路積分方法給出了均勻彈性半空間表面或埋置集中荷載的動(dòng)力格林函數(shù)之后,大量學(xué)者針對(duì)該問(wèn)題開(kāi)展了研究。如針對(duì)單相彈性介質(zhì),Achenbach[2],Aki和Richards[3],Miklowitz[4],Kausel[5]、劉中憲和梁建文[6]分別采用不同的方法研究了均勻和層狀半空間動(dòng)力格林函數(shù)問(wèn)題;針對(duì)兩相飽和多孔介質(zhì),在Biot[7-9]建立的流體飽和多孔介質(zhì)彈性波傳播理論基礎(chǔ)上,Paul[10],Philippacopoulos[11-13],Senjuntichai和Rajapakse[14] 、Jin和Liu[15]研究了簡(jiǎn)諧荷載作用于均勻飽和多孔半空間的動(dòng)力響應(yīng)問(wèn)題。Lu和Hanyga[16]使用傳播矩陣法,Knopoff[17],Rajapakse和Senjuntichai[18],Liang和You[19-20]利用動(dòng)力剛度矩陣法給出了層狀飽和半空間的動(dòng)力格林函數(shù)。

值得指出地是以上研究均將半空間介質(zhì)假定為各向同性(單相彈性或兩相飽和)。然而,由于長(zhǎng)期風(fēng)化和沉積作用,天然巖土體表現(xiàn)出明顯的橫觀各向異性(TI)性質(zhì)(水平與豎向材料參數(shù)存在差異)[21-22]。目前亦有諸多學(xué)者針對(duì)單相TI半空間的動(dòng)力格林函數(shù)進(jìn)行了研究。Rajapakse和Wang[23]給出了均勻TI半空間作用簡(jiǎn)諧荷載時(shí)的二維格林函數(shù)。Liu等[24]研究了TI彈性半空間的軸對(duì)稱波傳播問(wèn)題。Wang和Liao[25]提出了各種埋置荷載作用于均勻TI半空間的位移和應(yīng)力閉合解。Shodja和Eskandari[26]解決了軸對(duì)稱簡(jiǎn)諧荷載作用于上覆TI土層半空間的動(dòng)力響應(yīng)問(wèn)題。Khojasteh等[27]借助勢(shì)函數(shù),推導(dǎo)了均勻TI半空間的非軸對(duì)稱動(dòng)力格林函數(shù)。Ai等[28-30]提出了一種解析層元法求解了層狀TI半空間的軸對(duì)稱、非軸對(duì)稱和平面應(yīng)變情況的動(dòng)力響應(yīng)問(wèn)題。

值得指出,上述研究仍限于單相彈性TI介質(zhì)。然而很多情況下,巖土不僅是TI的,而且是流體飽和的(濱海地區(qū)),將巖土體視為T(mén)I飽和多孔介質(zhì)更為合理。目前關(guān)于TI飽和介質(zhì)中波動(dòng)問(wèn)題的研究還很少。Taguchi和Kurashige[31]利用Kupradze方法結(jié)合Fourier-Hankel變換求解了階梯狀點(diǎn)源荷載作用于TI飽和全空間的動(dòng)力格林函數(shù)。何芳社等[32]研究了TI飽和半空間地基上圓環(huán)板的簡(jiǎn)諧振動(dòng)問(wèn)題。最近Ba等[33]求解了二維層狀TI飽和半空間表面和內(nèi)部作用簡(jiǎn)諧荷載的動(dòng)力響應(yīng)問(wèn)題。

鑒于TI飽和半空間(尤其是層狀TI飽和半空間)中動(dòng)力格林函數(shù)研究還很少,本文在文獻(xiàn)[33]的基礎(chǔ)上,采用剛度矩陣方法結(jié)合傅里葉變換給出了層狀TI飽和半空間中作用均布斜線荷載及孔隙水壓的動(dòng)力格林函數(shù)。所求得的層狀TI飽和半空間動(dòng)力格林函數(shù),為建立相應(yīng)邊界元方法進(jìn)而求解層狀TI飽和介質(zhì)相關(guān)波動(dòng)問(wèn)題提供了一組完備基本解。斜線荷載動(dòng)力格林函數(shù)由Wolf[34]首次于各向同性彈性半空間中給出,進(jìn)而由Liang和You[19-20]拓展到了各向同性飽和半空間,由Ba等[35]拓展到了單相TI半空間。研究表明以均布斜線荷載動(dòng)力格林函數(shù)為基本解的邊界元方法,相較于以集中荷載動(dòng)力格林函數(shù)為基本解的邊界元方法具有荷載可以直接施加在真實(shí)邊界上而無(wú)奇異性的優(yōu)點(diǎn),因而精度較高且對(duì)復(fù)雜邊界有著更好的適應(yīng)性[36]。

本文首先求解了TI飽和多孔介質(zhì)波動(dòng)方程,給出了層狀TI飽和半空間中均布斜線荷載及孔隙水壓動(dòng)力格林函數(shù)的求解公式;然后對(duì)給出的格林函數(shù)的正確性進(jìn)行了驗(yàn)證,并以均勻TI飽和半空間和單一TI飽和土層半空間中作用均布斜線荷載及孔隙水壓模型為例,進(jìn)行了數(shù)值計(jì)算分析,研究了介質(zhì)各向異性參數(shù)、界面透水條件、荷載埋深和滲透率等對(duì)動(dòng)力響應(yīng)的影響;最后給出了本文的結(jié)論。

1 模型與計(jì)算方法

如圖1所示,均布斜線荷載作用于層狀TI飽和半空間內(nèi)部。層狀TI飽和半空間由N層水平TI飽和土層和其下的TI飽和半空間組成,介質(zhì)均由Biot[7-9]飽和多孔介質(zhì)模型描述。土層之間以及土層與其下半空間之間考慮為完全接觸(位移、應(yīng)力和孔壓連續(xù)),各土層厚度為dn(n=1-N)。層狀TI飽和半空間滿足表面零應(yīng)力邊界條件和無(wú)窮遠(yuǎn)輻射條件,同時(shí)本文考慮兩種透水條件,分別為排水條件(地表完全透水)和不排水條件(地表完全不透水)。沿x和z向的均布荷載密度為px0和pz0,孔壓密度為pf0,斜線與x軸的夾角為θ。

LiuZhongxian,LiangJianwen.SolutiontodynamicGreensfunctionforthree-dimensionalconcentratedloadsintheinteriorofviscoelasticlayeredhalf-space[J].ChineseJournalofTheoreticalandAppliedMechanics,2013,34(6):579-589.

[7]BiotMA.Theoryofpropagationofelasticwavesinafluid-saturatedporoussolid.I.Low-frequencyrange[J].TheJournaloftheAcousticalSocietyofAmerica,1956,28(2):168.

[8]BiotMA.Theoryofpropagationofelasticwavesinafluid-saturatedporoussolid.II.Higherfrequencyrange[J].TheJournaloftheAcousticalSocietyofAmerica,1956,28(2):179-191.

[9]BiotMA.Mechanicsofdeformationandacousticpropagationinporousmedia[J].JournalofAppliedPhysics,1962,33(4):1482-1498.

[10]PaulS.Onthedisturbanceproducedinasemi-infiniteporoelasticmediumbyasurfaceload[J].PureandAppliedGeophysics,1976,114(4):615-627.

[11]PhilippacopoulosAJ.Lambsproblemforfluid-saturated,porousmedia[J].BulletinoftheSeismologicalSocietyofAmerica,1988,78(2):908-923.

[12]PhilippacopoulosAJ.Wavesinpartiallysaturatedmediumduetosurfaceloads[J].JournalofEngineeringMechanics,1988,114(10):1740-1759.

[13]PhilippacopoulosAJ.Buriedpointsourceinaporoelastichalf-space[J].JournalofEngineeringMechanics,1997,123(8):860-869.

[14]SenjuntichaiT,RajapakseR.DynamicGreen'sfunctionsofhomogeneousporoelastichalf-plane[J].JournalofEngineeringMechanics,1994,120(11):2381-2404.

[15]JinB,LiuH.Dynamicresponseofaporoelastichalfspacetohorizontalburiedloading[J].InternationalJournalofSolidsandStructures,2001,38(44-45):8053-8064.

[16]LuJF,HanygaA.Fundamentalsolutionforalayeredporoushalfspacesubjecttoaverticalpointforceorapointfluidsource[J].ComputationalMechanics,2005,35(5):376-391.

[17]KnopoffL.Amatrixmethodforelasticwaveproblems[J].BulletinoftheSeismologicalSocietyofAmerica,1964,54(1):431-438.

[18]RajapakseR,SenjuntichaiT.Dynamicresponseofamulti-layeredporoelasticmedium[J].EarthquakeEngineering&StructuralDynamics,1995,24(5):703-722.

[19]LiangJ,YouH.Dynamicstiffnessmatrixofaporoelasticmulti-layeredsiteanditsGreensfunctions[J].EarthquakeEngineeringandEngineeringVibration,2004,3(2):273-282.

[20]LiangJ,YouH.Greensfunctionsforuniformlydistributedloadsactingonaninclinedlineinaporoelasticlayeredsite[J].EarthquakeEngineeringandEngineeringVibration,2005,4(2):233-241.

[21]PickeringDJ.Anisotropicelasticparametersforsoil[J].Geotechnique,1970,20(3):271-276.

[22]AtkinsonJH.AnisotropicelasticdeformationsinlaboratorytestsonundisturbedLondonClay[J].Geotechnique,1975,25(2):357-374.

[23]RajapakseR,WangY.Green'sfunctionsfortransverselyisotropicelastichalfspace[J].JournalofEngineeringMechanics,1993,119(9):1724-1746.

[24]LiuK,LiX,SunX.Anumericalmethodforaxisymmetricwavepropagationproblemofanisotropicsolids[J].ComputerMethodsinAppliedMechanicsandEngineering,1997,145(1-2):109-116.

[25]WangCD,LiaoJJ.Elasticsolutionsforatransverselyisotropichalf-spacesubjectedtoburiedasymmetric-loads[J].InternationalJournalforNumericalandAnalytical[JP2]MethodsinGeomechanics,1999,23(2):115-139.[JP]

[26]ShodjaHM,EskandariM.Axisymmetrictime-harmonicresponseofatransverselyisotropicsubstrate-coatingsystem[J].InternationalJournalofEngineeringScience,2007,45(2-8):272-287.

[27]KhojastehA,RahimianM,EskandariM,etal.Asymmetricwavepropagationinatransverselyisotropichalf-spaceindisplacementpotentials[J].InternationalJournalofEngineeringScience,2008,46(7):690-710.

[28]AiZY,LiZX.Time-harmonicresponseoftransverselyisotropicmultilayeredhalf-spaceinacylindricalcoordinatesystem[J].SoilDynamicsandEarthquakeEngineering,2014,66:69-77.

[29]AiZY,LiZX,CangNR.Analyticallayer-elementsolutiontoaxisymmetricdynamicresponseoftransverselyisotropicmultilayeredhalf-space[J].SoilDynamicsandEarthquakeEngineering,2014,60:22-30.

[30]AiZY,ZhangYF.Planestraindynamicresponseofatransverselyisotropicmultilayeredhalf-plane[J].SoilDynamicsandEarthquakeEngineering,2015,75:211-219.

[31]TaguchiI,KurashigeM.Fundamentalsolutionsforafluid-saturated,transverselyisotropic,poroelasticsolid[J].InternationalJournalforNumericalandAnalyticalMethodsinGeomechanics,2002,26(3):299-321.

[32]何芳社,黃義,郭春霞.橫觀各向同性飽和彈性半空間地基上圓環(huán)板的簡(jiǎn)諧振動(dòng)[J].力學(xué)季刊,2010,31(1):124-130.

HeFangshe,HuangYi,GuoChunxia.Harmonicavibrationofannularplatesontransverselyisotropicsaturatedporoushalfspace[J].ChineseQuarterlyofMechanics,2010,31(1):124-130.

[33]BaZN,KangZQ,LeeVW.Planestraindynamicresponsesofamulti-layeredtransverselyisotropicsaturatedhalf-space[J].InternationalJournalofEngineeringScience,2017,119:55-77.

[34]WolfJP.DynamicSoil-StructureInteraction[M].EnglewoodCliffs:Prentice-Hall,1985.

[35]BaZ,KangZ,LiangJ.In-planedynamicGreensfunctionsforinclinedanduniformlydistributedloadsinamulti-layeredtransverselyisotropichalf-space[J].EarthquakeEngineeringandEngineeringVibration,2018,17(2):293-309.

[36]LiangJ,YouH,LeeVW.ScatteringofSVwavesbyacanyoninafluid-saturated,poroelasticlayeredhalf-space,modeledusingtheindirectboundaryelementmethod[J].SoilDynamicsandEarthquakeEngineering,2006,26(6-7):611-625.

[37]LiuY,LiuK,TanimuraS.Wavepropagationintransverselyisotropicfluid-saturatedporoelasticmedia[J].JSMEInternationalJournalSeriesASolidMechanicsandMaterialEngineering,2002,45(3):348-355.

Abstract:BasedontheBiotstheoryofsaturatedporoelasticmedium,theGreensfunctionsofuniformlydistributedinclinedloadsandporefluidpressureinamulti-layeredtransverselyisotropic(TI)saturatedhalf-spacearederivedbyusingtheexactdynamicstiffnessmatrixmethodcombinedwiththeFouriertransform.First,theloadedlayerisfixed.Sothedynamicresponseofthelayerandreactionforcesofthefixedendcanbederivedinwavenumberdomain.Next,withoppositeofreactionforcesoffixedendbeingappliedtothewholesystem,thedynamicstiffnessmatrixmethodisadoptedtoobtainthedynamicresponseofthewholesystem.Finally,thedynamicresponseinspacedomaincanbesolvedbyperformingtheinverseFouriertransformonthesummationoftheloadedlayerresponseandreactionresponse.TheGreensfunctionsforamulti-layeredTIsaturatedhalf-spacearepresented,whichprovidesacompletesetofbasicsolutionsfortheestablishmentofthecorrespondingboundaryelementmethodandthensolvingthescatteringproblemofthelayeredTImedium.ThegivenGreensfunctionscanbedegeneratedintosolutionsofisotropicsaturatedandTIelasticmedia.BycomparingwiththepublishedisotropicsaturateandTIelasticresults,thecorrectnessofthemethodisverified.Thenthenumericalresultsaregivenandtheparametersareanalyzedindetail.TheresultsshowthatthedynamicresponsesofTIsaturatedmediumandisotropicsaturatedmediumaresignificantlydifferent,andtheTIparametersofthemediumhaveanimportantinfluenceonthedynamicresponse.Thefluctuationofsurfacedisplacementandporepressurearemoreviolentwithalowerburieddepthofload.Thepermeabilitycoefficientofthemediumhasasimilareffecttothemediumdamping.Withtheincreaseoffrequency,thefluctuationofdisplacement,stressandporepressurebecomesmoreviolent.

Keywords:transverselyisotropicsaturatedporoelasticmedium;multi-layeredhalf-space;dynamicstiffnessmatrixmethod;Green′sfunction

禄丰县| 滦平县| 宁蒗| 嘉峪关市| 漳浦县| 静宁县| 涿州市| 大余县| 张北县| 沂南县| 通州市| 米脂县| 玉田县| 常宁市| 西吉县| 鹿泉市| 黄骅市| 花莲市| 牡丹江市| 黑龙江省| 溧阳市| 法库县| 广宗县| 谢通门县| 广元市| 尤溪县| 定兴县| 定安县| 泰安市| 姜堰市| 青川县| 双辽市| 化州市| 台北县| 太仆寺旗| 鄂州市| 蕉岭县| 娄底市| 广水市| 万载县| 白城市|