国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

傅里葉變換的性質(zhì)探討

2020-08-14 10:15張平
科技資訊 2020年18期

張平

摘 ?要:傅里葉變換在信號(hào)處理中起著至關(guān)重要的作用,而傅里葉變換的性質(zhì)又是同學(xué)們學(xué)習(xí)的難點(diǎn)。該文詳細(xì)地研究了傅里葉變換的對(duì)偶性質(zhì),利用對(duì)偶性質(zhì)、平移性質(zhì)、微分性質(zhì)和卷積定理得到了一些復(fù)雜信號(hào)的傅里葉變換,揭示了傅里葉變換各個(gè)性質(zhì)之間的關(guān)系,這將使同學(xué)們更能靈活地掌握并運(yùn)用傅里葉變換的各種性質(zhì)進(jìn)行信號(hào)處理,同時(shí)對(duì)信號(hào)與系統(tǒng)的學(xué)習(xí)提供技術(shù)支撐

關(guān)鍵詞:傅里葉變換 ?對(duì)偶性 ?頻域平移 ?卷積定理

中圖分類號(hào):O172.2 ? 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2020)06(c)-0255-02

Abstract: Fourier transform plays an important role in signal processing, and the properties of Fourier transform are difficult for students to learn. In this paper, the dual properties of Fourier transform are studied in detail.By using the dual properties, translation properties, differential properties and convolution theorem,the ?Fourier transform of some complicated signals is obtained, and the relationship between various properties of Fourier transform is revealed. So that students can more flexibly grasp and use the various properties of Fourier transform for signal processing, and provide technical support for the study of signal and system.

Key Words: Fourier transform; Duality; Frequency domain translation; Convolution theorem

1 ?引言

傅里葉變換[1-6]是大學(xué)生學(xué)習(xí)的難點(diǎn),靈活掌握傅里葉變換的性質(zhì)至關(guān)重要,該文就此問題進(jìn)行了深入探討,總結(jié)了一些典型例題,希望對(duì)《信號(hào)與系統(tǒng)》等課程的學(xué)習(xí)有所裨益。

2 ?傅里葉變換的性質(zhì)應(yīng)用

傅里葉變換與逆變換之間存在著對(duì)偶性,利用對(duì)偶性可以得到許多信號(hào)的傅里葉變換。

參考文獻(xiàn)

[1] 賈曉峰.微積分與數(shù)學(xué)模型(上冊(cè))[M].3版.北京:高等教育出版社,2015:400-427.

[2] 同濟(jì)大學(xué)數(shù)學(xué)系.高等數(shù)學(xué)(下冊(cè))[M].7版.北京:高等教育出版社,2014:307-327.

[3] 賈云濤.復(fù)變函數(shù)與積分變換[M].7版.北京:清華大學(xué)出版社,2018:47-67.

[4] 華中科技大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院.復(fù)變函數(shù)與積分變換[M].4版.北京:高等教育出版社,2013:183-212.

[5] 賈君霞.復(fù)變函數(shù)與積分變換[M].西安:西安電子科技大學(xué)出版社,2017.

[6] Nakhle H.Asmar.Partial Differential Equations with Fourier Series and Boundary Value Problems[M].2nd Section.Prentice Hall,2004.