国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于PCR技術(shù)的植物病原菌分子定量檢測(cè)技術(shù)研究進(jìn)展

2020-08-25 10:03曹學(xué)仁周益林
植物保護(hù) 2020年4期

曹學(xué)仁 周益林

摘要 植物病原菌的菌源量是病害發(fā)生和流行的重要因子之一,對(duì)其精準(zhǔn)的定量測(cè)定或檢測(cè)可大大提高植物病害預(yù)測(cè)的準(zhǔn)確性,本文對(duì)實(shí)時(shí)熒光定量PCR (qPCR)與數(shù)字PCR在植物病原菌定量檢測(cè)、以及基于RNA水平的real-time PCR和基于核酸染料(EMA/PMA)與qPCR相結(jié)合的技術(shù)在植物病原菌活體定量檢測(cè)中的應(yīng)用進(jìn)行了綜述,并展望其在植物病害流行和預(yù)測(cè)中的應(yīng)用前景。

關(guān)鍵詞 植物病原菌; 定量檢測(cè); 實(shí)時(shí)定量PCR; 數(shù)字PCR; 活體檢測(cè)

中圖分類(lèi)號(hào): S 432

文獻(xiàn)標(biāo)識(shí)碼: A

DOI: 10.16688/j.zwbh.2019463

Research progress in quantitative detection of plant pathogens using PCR technique

CAO Xueren1, ZHOU Yilin2*

(1. Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of

Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; 2. State

Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection,

Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Abstract

The inoculum of plant pathogens is an important factor related with disease epidemics. Precise quantification of inoculum greatly help the prediction of diseases. This review summarized the applications of real-time quantitative PCR (qPCR) and digital PCR in the quantification of plant pathogens. The use of real-time reverse-transcriptase PCR and the combination of viability dyes and qPCR in viability detection of plant pathogens were also reviewed. The future perspectives of molecular quantitative detection of the pathogens in plant disease epidemics were discussed.

Key words

plant pathogen; quantitative detection; real-time quantitative PCR; digital PCR; viability detection

在植物病害流行過(guò)程中,病原菌的菌源量是一種重要的驅(qū)動(dòng)因子,是病害預(yù)測(cè)的一個(gè)重要參數(shù),如土壤中蕓薹根腫菌Plasmodiophora brassicae的含量與病害發(fā)生程度顯著相關(guān),小麥條銹菌Puccinia striiformis f.sp. tritici和白粉菌Blumeria graminis f.sp. tritici的越冬菌量和第二年早春的病情也存在顯著的相關(guān)性等[1-3],因此準(zhǔn)確獲得病原菌的菌源量對(duì)于一些病害的預(yù)測(cè)和治理有十分重要的作用。

傳統(tǒng)病原菌菌源量數(shù)據(jù)的獲取主要依靠田間調(diào)查,但是一方面僅根據(jù)癥狀來(lái)判斷病情容易出現(xiàn)誤判,如苗期小麥條銹病與葉銹病容易混淆;另一方面對(duì)在寄主組織內(nèi)潛伏侵染或未顯癥或隱癥病原菌來(lái)說(shuō),由于此時(shí)尚未顯癥,無(wú)法準(zhǔn)確估計(jì)病原菌的菌源量,從而影響對(duì)病害的預(yù)測(cè)。近年來(lái),快速發(fā)展的分子生物學(xué)技術(shù)如實(shí)時(shí)熒光定量PCR、數(shù)字PCR等為植物病原菌的定量檢測(cè)提供了新工具。

1 基于實(shí)時(shí)熒光定量PCR(qPCR)的植物病原菌定量檢測(cè)

實(shí)時(shí)熒光定量PCR(real-time quantitative PCR,qPCR)技術(shù)通過(guò)在PCR反應(yīng)體系中加入特定的熒光結(jié)合物質(zhì)或者熒光探針,實(shí)時(shí)監(jiān)測(cè)熒光量的變化,獲得待測(cè)樣品達(dá)到熒光檢測(cè)閾值的循環(huán)數(shù)(cycle threshold,Ct值),再根據(jù)已知濃度標(biāo)準(zhǔn)品的Ct值與其濃度對(duì)數(shù)建立的標(biāo)準(zhǔn)曲線計(jì)算樣品中模板DNA的濃度。該技術(shù)實(shí)現(xiàn)了從定性研究到定量研究,在寄主組織內(nèi)、空氣中、土壤中以及種子中的植物病原菌的定量檢測(cè)中得到了廣泛應(yīng)用,如Yan等[2]和Zheng等[3]分別利用qPCR技術(shù)定量檢測(cè)了小麥葉片中條銹病菌P.striiformis f.sp. tritici和白粉病菌B.graminis f.sp. tritici的越冬菌量;結(jié)合孢子捕捉器和qPCR,Rogers等[4]和Cao等[5]分別建立了空氣中油菜菌核病菌Sclerotinia sclerotiorum和小麥白粉病菌B.graminis f.sp. tritici孢子濃度的檢測(cè)技術(shù);關(guān)于土壤中蕓薹根腫菌P.brassicae、Pythium tracheiphilum和穿刺短體線蟲(chóng)Pratylenchus neglectus的qPCR定量檢測(cè)研究均有報(bào)道[1,6-7];菠菜種子中黃萎病菌Verticillium dahliae和水稻種子中惡苗病菌Fusarium fujikuroi的qPCR定量檢測(cè)技術(shù)也已建立[8-9],并且國(guó)內(nèi)外有多篇文章對(duì)該方面的研究進(jìn)展進(jìn)行了綜述[10-13]。

2 基于數(shù)字PCR的植物病原菌定量檢測(cè)

數(shù)字PCR(digital PCR)是近年來(lái)發(fā)展起來(lái)的一種定量分析技術(shù),與qPCR技術(shù)不同的是它采用直接計(jì)數(shù)或泊松分布公式來(lái)計(jì)算每個(gè)反應(yīng)單元的平均濃度(含量),從而進(jìn)行定量分析,不需要依賴(lài)于擴(kuò)增曲線的循環(huán)閾值(Ct),不受擴(kuò)增效率的影響。其原理是通過(guò)將一個(gè)樣本分成幾十到幾萬(wàn)個(gè)不同的反應(yīng)單元,每個(gè)單元包含一個(gè)或多個(gè)拷貝的目標(biāo)分子(DNA模板),并進(jìn)行PCR擴(kuò)增,擴(kuò)增結(jié)束后對(duì)采集每個(gè)反應(yīng)單元的熒光信號(hào)進(jìn)行統(tǒng)計(jì)學(xué)分析[14]。近年來(lái)該技術(shù)也開(kāi)始應(yīng)用于植物病原菌的定量檢測(cè)研究。Blaya等對(duì)煙草疫霉Phytophthora nicotianae qPCR和數(shù)字PCR定量檢測(cè)結(jié)果的比較發(fā)現(xiàn),數(shù)字PCR可檢測(cè)的濃度更低,受樣品的影響更小[15]。對(duì)柑橘潰瘍病菌Xanthomonas citri subsp. citri和木質(zhì)部難養(yǎng)菌Xylella fastidiosa的研究也得到類(lèi)似的研究結(jié)果[16-17]。另外梨火疫病菌Erwinia amylovora、馬鈴薯青枯病菌Ralstonia solanacearum[18]、葡萄土壤桿菌Agrobacterium vitis[19]、柑橘黃龍病菌Candidatus Liberibacter asiaticus[20-21]、蕓薹根腫菌P.brassicae[22]等植物病原菌的數(shù)字PCR定量檢測(cè)技術(shù)也有報(bào)道。但是目前由于數(shù)字PCR設(shè)備價(jià)格昂貴、檢測(cè)成本高、分析的樣品通量低等,制約了其推廣應(yīng)用。

3 基于RNA水平的real-time PCR(qRT-PCR)技術(shù)的植物病原菌活體定量檢測(cè)

由于細(xì)胞死亡后DNA仍能保留較長(zhǎng)時(shí)間,如細(xì)菌死亡數(shù)周后還能用PCR技術(shù)檢測(cè)到[23]。因此若以DNA為材料檢測(cè)寄主組織內(nèi)病原菌的菌源量,很容易將組織內(nèi)已死亡的病原菌統(tǒng)計(jì)在內(nèi),從而導(dǎo)致獲得的菌源量數(shù)據(jù)偏高[24-25]。為了準(zhǔn)確估計(jì)病原菌的菌源量,需要將樣品中的“死菌”與“活菌”區(qū)分,近年來(lái)在這方面的研究也取得了一定的進(jìn)展。和DNA不同,RNA特別是mRNA的半衰期較短,一般只存在于活細(xì)胞中。細(xì)胞死亡后,RNA會(huì)迅速地被降解成寡核苷酸片段[26]。Chimento等[27]研究結(jié)果表明,櫟樹(shù)猝死病菌Phytophthora ramorum在死亡7 d后,就檢測(cè)不到病菌中的mRNA,而死亡3個(gè)月后,病原菌中的DNA還能被檢測(cè)到。因此通過(guò)提取樣品中的RNA,利用RNA 反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄成cDNA,設(shè)計(jì)特異性引物,以cDNA為模板進(jìn)行real-time PCR反應(yīng),可以用來(lái)定量檢測(cè)樣品中活的病原菌的含量。近年來(lái)有利用qRT-PCR技術(shù)定量檢測(cè)寄主中活的植物病原真菌的研究報(bào)道,Pavón等[28]建立了鏈格孢屬Alternaria spp. 真菌的qRT-PCR檢測(cè)技術(shù),并利用該技術(shù)對(duì)新鮮果蔬樣品和加工后樣品中活的病原菌進(jìn)行了定量檢測(cè),結(jié)果與傳統(tǒng)培養(yǎng)方法得到的結(jié)果存在極顯著的相關(guān)性。Ma等[29]建立了可用來(lái)定量檢測(cè)葉片中活的條銹菌P.striiformis f.sp. tritici的qRT-PCR技術(shù),并利用該技術(shù)對(duì)我國(guó)甘肅和青海不同海拔地區(qū)的小麥條銹菌越冬菌量進(jìn)行了定量檢測(cè)。Fan等[30]建立了蘋(píng)果樹(shù)腐爛病菌Valsa mali的qRT-PCR檢測(cè)技術(shù)并定量檢測(cè)接種生防菌后蘋(píng)果枝條中的V.mali活菌含量,從而用來(lái)研究生防菌的防效和防治機(jī)制。另外,基于qRT-PCR的栗黑水疫霉Phytophthora cambivora和樟疫霉P.cinnamomi的活體定量檢測(cè)研究也已報(bào)道[31-32]。此外該技術(shù)在植物病原細(xì)菌如柑橘潰瘍病菌X. citri subsp. citri[33]、植物病原線蟲(chóng)如松材線蟲(chóng)Bursaphelenchus xylophilus[34]和馬鈴薯孢囊線蟲(chóng)Globodera spp.[35]的活體定量檢測(cè)中均有報(bào)道。qRT-PCR技術(shù)最明顯的不足之處在于RNA提取過(guò)程中的損失、污染及降解問(wèn)題,不同的RNA提取方法獲得的RNA的質(zhì)量和濃度均有差異。其次靶基因的選擇對(duì)結(jié)果也有很大的影響,有些基因在病原菌不同發(fā)育階段的表達(dá)量存在較大差異,從而影響對(duì)活體和死體病原菌的區(qū)分,如Ma等的研究結(jié)果表明利用小麥條銹病菌延伸因子EF1引物,采用qRT-PCR可以定量檢測(cè)小麥葉片組織內(nèi)活的條銹菌的生物量,但不能區(qū)分活的和死的小麥條銹病菌的夏孢子[36];對(duì)4個(gè)柑橘潰瘍病菌X. citri subsp. citri靶標(biāo)基因(gumD、rpfB、avrBs2和gyrB)的研究也發(fā)現(xiàn),只有g(shù)umD基因適合用來(lái)區(qū)分死的和活的X. citri subsp. citri細(xì)胞[33]。

4 基于核酸染料(EMA/PMA)和qPCR的植物病原菌活體定量檢測(cè)

疊氮溴化乙錠(ethidium monoazide,EMA)和疊氮溴化丙錠(propidium monoazide,PMA)是兩種對(duì)DNA分子具有高度親和力的光敏染料,它們不能透過(guò)完整的細(xì)胞膜,但可以穿過(guò)受破壞的細(xì)胞膜進(jìn)入細(xì)胞內(nèi),選擇性地結(jié)合細(xì)胞膜受損傷的死細(xì)胞的DNA并抑制其進(jìn)行PCR擴(kuò)增。其中EMA在進(jìn)入膜損傷細(xì)胞并插入雙鏈DNA后,在可見(jiàn)光的作用下,通過(guò)與DNA雙螺旋發(fā)生不可逆的共價(jià)交叉偶合,從而抑制PCR反應(yīng)中引物與死菌DNA的結(jié)合,達(dá)到區(qū)分死菌和活菌的目的[37];而PMA在進(jìn)入膜損傷細(xì)胞并插入雙鏈DNA后,在可見(jiàn)光激活下,PMA分子中具有光敏性的疊氮基團(tuán)會(huì)生成高反應(yīng)性的nitrene基,很容易地在結(jié)合部位與碳?xì)浠衔锊糠纸Y(jié)合生成穩(wěn)定牢固的共價(jià)氮碳鍵,產(chǎn)生穩(wěn)定的共價(jià)交聯(lián)沉淀物,有效地抑制死菌細(xì)胞DNA的擴(kuò)增[38]。2003年Nogva等[39]提出了EMA-PCR方法用于區(qū)分死菌和活菌,隨后2006年Nocker等[40]研究發(fā)現(xiàn)EMA在一定程度上對(duì)某些種屬細(xì)菌的活細(xì)胞也產(chǎn)生影響,提出了與EMA結(jié)構(gòu)類(lèi)似的PMA結(jié)合qPCR的活菌檢測(cè)技術(shù)。此后將EMA/PMA與PCR、qPCR和LAMP 技術(shù)相結(jié)合在食源性致病菌的活菌檢測(cè)研究中得到了廣泛的應(yīng)用[25,41-44]。在活的植物病原菌的定量檢測(cè)方面,目前關(guān)于EMA/PMA和qPCR相結(jié)合定量檢測(cè)植物病原細(xì)菌的研究報(bào)道較多。其中基于EMA-qPCR和基于PMA-qPCR的活柑橘黃龍病菌Candidatus Liberibacter asiaticus定量檢測(cè)技術(shù)都已建立[45-46]。此外基于EMA-qPCR的番茄細(xì)菌性潰瘍病菌Clavibacter michiganensis subsp.michiganensis活菌[47]和基于PMA-qPCR的黃瓜細(xì)菌性角斑病菌Pseudomonas syringae pv. lachrymans[48]、胡蘿卜細(xì)菌性枯萎病菌X. hortorum pv. carotae[49]、玉米細(xì)菌性枯萎病菌Pantoea stewartii subsp. stewartii[50]、植物細(xì)菌性青枯病菌Ralstonia solanacearum[51]、獼猴桃潰瘍病菌P.syringae pv. actinidia[52]活菌的定量檢測(cè)技術(shù)均有報(bào)道。在其他植物病原菌方面,Vilanova等[53]報(bào)道了用來(lái)定量檢測(cè)果實(shí)和花上存活的褐腐病菌Monilinia fructicola的PMA-qPCR技術(shù);Christoforou等[54]建立了可以用來(lái)定量檢測(cè)田間存活的馬鈴薯孢囊線蟲(chóng)(Globodera pallida 和G.rostochiensis)的PMA-qPCR檢測(cè)技術(shù);Al-Daoud等[55]利用PMA與qPCR相結(jié)合的技術(shù)定量檢測(cè)土壤中存活的蕓薹根腫菌P.brassicae的休眠孢子。雖然基于EMA/PMA的活體定量檢測(cè)技術(shù)解決了qRT-PCR技術(shù)中RNA提取過(guò)程中的問(wèn)題,但是影響其效率的因素也有不少[41-42],包括1)染料的濃度、孵育時(shí)間和處理溫度;2)光源、光照時(shí)間等;3)靶基因的長(zhǎng)度和序列;另外樣品中微生物的濃度、死細(xì)胞和活細(xì)胞的比例等都會(huì)影響EMA/PMA的效率。

5 展望

建立精準(zhǔn)、可靠的植物病原菌定量檢測(cè)方法,準(zhǔn)確估計(jì)病原菌的種群數(shù)量,對(duì)于深入研究植物病害的流行規(guī)律,提高病害預(yù)測(cè)的準(zhǔn)確性具有重要意義。qPCR技術(shù)目前在植物病原菌定量檢測(cè)中得到了比較廣泛的應(yīng)用,而數(shù)字PCR技術(shù)由于檢測(cè)樣品的通量很低、成本高,在植物病原菌的定量檢測(cè)研究中應(yīng)用還較少。但是數(shù)字PCR技術(shù)和qPCR相比具有獨(dú)特的優(yōu)勢(shì),且靈敏度和穩(wěn)定性更高,隨著技術(shù)不斷發(fā)展,低成本的數(shù)字PCR產(chǎn)品將被開(kāi)發(fā)出來(lái),其應(yīng)用范圍會(huì)越來(lái)越廣泛。

利用常規(guī)分離培養(yǎng)和一般的分子檢測(cè)方法,均無(wú)法實(shí)現(xiàn)對(duì)寄主中活的病原菌越夏和越冬菌源、土壤中存活的病原菌以及活的非可培養(yǎng)(viable but nonculturable,VBNG)狀態(tài)細(xì)菌的定量檢測(cè)。qRT-PCR技術(shù)、核酸染料(EMA/PMA)和qPCR相結(jié)合的技術(shù)是目前用于病原菌活體定量檢測(cè)的兩種主要技術(shù),不僅實(shí)現(xiàn)了對(duì)樣品中病原菌的定量檢測(cè),還可以區(qū)分樣品中的死活病原菌細(xì)胞,較好地解決上述難題。雖然這兩種技術(shù)在植物病原菌的檢測(cè)中還處于起步階段,但是隨著這些技術(shù)的進(jìn)一步發(fā)展和完善,將具有廣闊應(yīng)用前景。另外,隨著一些高通量、快速精準(zhǔn)、檢測(cè)靈敏度高的新型檢測(cè)方法如多重?zé)晒舛縋CR的開(kāi)發(fā),可為植物病原菌活體定量檢測(cè)提供新技術(shù)。

參考文獻(xiàn)

[1] WALLENHAMMAR A C, ALMQUIST C, SDERSTRM M, et al. In-field distribution of Plasmodiophora brassicae measured using quantitative real-time PCR [J]. Plant Pathology, 2012, 61(1): 16-28.

[2] YAN Jiahui, LUO Yong, CHEN Tingting, et al. Field distribution of wheat stripe rust latent infection using real-time PCR [J]. Plant Disease, 2012, 96(4): 544-551.

[3] ZHENG Yaming, LUO Yong, ZHOU Yilin, et al. Real-time PCR quantification of latent infection of wheat powdery mildew in the field [J]. European Journal of Plant Pathology, 2013, 136(3): 565-575.

[4] ROGERS S, ATKINS S, WEST J. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR [J]. Plant Pathology, 2009, 58(2): 324-331.

[5] CAO Xueren, YAO Dongming, ZHOU Yilin, et al. Detection and quantification of airborne inoculum of Blumeria graminis f.sp. tritici using quantitative PCR [J]. European Journal of Plant Pathology, 2016, 146(1): 225-229.

[6] VAN DER HEYDEN H, WALLON T, LEVESQUE C A, et al. Detection and quantification of Pythium tracheiphilum in soil by multiplex real-time qPCR [J]. Plant Disease, 2019, 103(3): 475-483.

[7] BAIDOO R, YAN Guiping, NAGACHANDRABOSE S, et al. Developing a real-time PCR assay for direct identification and quantification of Pratylenchus penetrans in soil [J]. Plant Disease, 2017, 101(8): 1432-1441.

[8] DURESSA D, RAUSCHER G, KOIKE S T, et al. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed [J]. Phytopathology, 2012, 102(4): 443-451.

[9] AMARAL CARNEIRO G, MATIC S, ORTU G, et al. Development and validation of a TaqMan real time PCR assay for the specific detection and quantification of Fusarium fujikuroi in rice plants and seeds [J]. Phytopathology, 2017, 107(7): 885-892.

[10]SCHENA L, NIGRO F, IPPOLITO A, et al. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi [J]. European Journal of Plant Pathology, 2004, 110(9): 893-908.

[11]LUCHI N, CAPRETTI P, PAZZAGLI M, et al. Powerful qPCR assays for the early detection of latent invaders: interdisciplinary approaches in clinical cancer research and plant pathology [J]. Applied Microbiology and Biotechnology, 2016, 100(12): 5189-5204.

[12]駱勇. 植物病害分子流行學(xué)概述[J]. 植物病理學(xué)報(bào), 2009, 39(1): 1-10.

[13]鄭亞明, 駱勇, 周益林, 等. 實(shí)時(shí)熒光定量PCR在植物病害流行學(xué)中的應(yīng)用[J]. 植物保護(hù), 2011, 37(4): 18-22.

[14]VOGELSTEIN B, KINZLER K W. Digital PCR [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 9236-9241.

[15]BLAYA J, LLORET E, SANTISIMA-TRINIDAD A B, et al. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples [J]. Pest Management Science, 2016, 72(4): 747-753.

[16]ZHAO Yun, XIA Qingyan, YIN Youping, et al. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection of Xanthomonas citri subsp. citri [J/OL]. PLoS ONE, 2016, 11(7): e0159004. DOI: 10.1371/journal. pone. 0159004.

[17]DUPAS E, LEGENDRE B, OLIVIER V, et al. Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants [J]. Journal of Microbiological Methods, 2019, 162: 86-95.

[18]DREO T, PIRC M, RAMAK , et al. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot [J]. Analytical and Bioanalytical Chemistry, 2014, 406(26): 6513-6528.

[19]TANJA V, LOUISE N. Quantification of Agrobacterium vitis from grapevine nursery stock and vineyard soil using droplet digital PCR [J]. Plant Disease, 2018, 102(11): 2136-2141.

[20]ZHONG Xi, LIU Xuelu, LOU Binghai, et al. Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus [J]. Journal of Integrative Agriculture, 2018, 17(2): 483-487.

[21]SELVARAJ V, MAHESHWARI Y, HAJERI S, et al. Development of a duplex droplet digital PCR assay for absolute quantitative detection of “Candidatus Liberibacter asiaticus” [J/OL]. PLoS ONE, 2018, 13(5): e0197184. DOI: 10.1371/journal. pone. 0197184.

[22]GOSSEN B D, AL-DAOUD F, DUMONCEAUX T, et al. Comparison of techniques for estimation of resting spores of Plasmodiophora brassicae in soil [J]. Plant Pathology, 2019, 68(5): 954-961.

[23]JOSEPHSON K L, GERBA C P, PEPPER I L. Polymerase chain reaction detection of nonviable bacterial pathogens [J]. Applied and Environmental Microbiology, 1993, 59(10): 3513-3515.

[24]KEER J, BIRCH L. Molecular methods for the assessment of bacterial viability [J]. Journal of Microbiological Methods, 2003, 53: 175-183.

[25]FITTIPALDI M, NOCKER A, CODONY F. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification [J]. Journal of Microbiological Methods, 2012, 91: 276-289.

[26]TOURRIRE H, CHEBLI K, TAZI J. mRNA degradation machines in eukaryotic cells [J]. Biochimie, 2002, 84(8): 821-837.

[27]CHIMENTO A, CACCIOLA S O, GARBELOTTO M. Detection of mRNA by reverse-transcription PCR as an indicator of viability in Phytophthora ramorum [J]. Forest Pathology, 2012, 42(1): 14-21.

[28]PAVN M , GONZLEZ I, MARTN R, et al. A real-time reverse-transcriptase PCR technique for detection and quantification of viable Alternaria spp. in foodstuffs [J]. Food Control, 2012, 28(2): 286-294.

[29]MA Lijie, KONG Xinyu, QIAO Jiaxing, et al. Overwintering of Puccinia striiformis f. tritici on winter wheat at varying altitudes in Gansu and Qinghai provinces [J]. Plant Disease, 2016, 100(6): 1138-1145.

[30]FAN Dongying, LI Yanfang, ZHAO Lingyun, et al. Study on interactions between the major apple Valsa canker pathogen Valsa mali and its biocontrol agent Saccharothrix yanglingensis Hhs. 015 using RT-qPCR [J/OL]. PLoS ONE, 2016, 11(9): e0162174. DOI: 10.1371/journal. pone. 0162174.

[31]VETTRAINO A M, TOMASSINI A, VANNINI A, et al. Use of mRNA as an indicator of the viability of Phytophthora cambivora [J]. Acta Horticulturae, 2010, 866: 431-434.

[32]KUNADIYA M, DUNSTAN W, WHITE D, et al. A qPCR assay for the detection of Phytophthora cinnamomi including an mRNA protocol designed to establish propagule viability in environmental samples [J]. Plant Disease, 2019, 103(9): 2443-2450.

[33]GOLMOHAMMADI M, LLOP P, SCUDERI G, et al. mRNA from selected genes is useful for specific detection and quantification of viable Xanthomonas citri subsp. citri [J]. Plant Pathology, 2012, 61(3): 479-488.

[34]LEAL I, FOORD B, ALLEN E, et al. Development of two reverse transcription-PCR methods to detect living pinewood nematode, Bursaphelenchus xylophilus, in wood [J]. Forest Pathology, 2013, 43(2): 104-114.

[35]MENDES O, VAN GENT-PELZER M P E, VAND L T A J, et al. Quantification of viable eggs of the potato cyst nematodes (Globodera spp.) using either trehalose or RNA-specific real-time PCR [J]. Nematology, 2014, 16(10): 1219-1232.

[36]MA Lijie, QIAO Jiaxing, KONG Xinyu, et al. Effect of low temperature and wheat winter-hardiness on survival of Puccinia striiformis f.sp. tritici under controlled conditions [J/OL]. PLoS ONE, 2015, 10(6): e0130691. DOI: 10.1371/journal. pone. 0130691.

[37]KNUT R, BIRGITTE M, SIGNE M D, et al. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples [J]. Applied and Environmental Microbiology, 2005, 71(2): 1018-1024.

[38]NOCKER A, CAMPER A K. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques [J]. FEMS Microbiology Letters, 2008, 291(2): 137-142.

[39]NOGVA H K, DRMTORP, S M, NISSEN H, et al. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR [J]. BioTechniques, 2003, 34(4): 804-813.

[40]NOCKER A, CHEUNG C Y, CAMPER A K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells [J]. Journal of Microbiological Methods, 2006, 67(2): 310-320.

[41]ELIZAQUVEL P, AZNAR R, SNCHEZ G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field [J]. Journal of Applied Microbiology, 2014, 116(1): 1-13.

[42]ZENG Dexin, CHEN Zi, JIANG Yuan, et al. Advances and challenges in viability detection of foodborne pathogens [J/OL]. Frontiers in Microbiology, 2016, 7: 1833. DOI: 10.3389/fmicb. 2016. 01833.

[43]呂嬙, 姜兆興, 王海艷, 等. 疊氮溴化乙錠與PCR技術(shù)結(jié)合檢測(cè)活菌研究進(jìn)展 [J]. 食品研究與開(kāi)發(fā), 2017, 38(24): 220-224.

[44]肖莉莉, 張昭寰, 婁陽(yáng), 等. 疊氮溴化丙錠(PMA)在食源性致病菌檢測(cè)中的應(yīng)用[J]. 中國(guó)食品學(xué)報(bào), 2016, 16(6): 187-194.

[45]TRIVEDI P, SAGARAM U S, KIM J S, et al. Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA) [J]. European Journal of Plant Pathology, 2009, 124(4): 553-563.

[46]HU H, DAVIS M J, BRLANSKY R H. Quantification of live ‘Candidatus Liberibacter asiaticus populations using real-time PCR and propidium monoazide [J]. Plant Disease, 2013, 97(9): 1158-1167.

[47]LUO Laixing, WALTERS C, BOLKAN H, et al. Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay [J]. Plant Pathology, 2008, 57(2): 332-337.

[48]MENG Xianglong, CHAI Ali, CHEN Lu, et al. Rapid detection and quantification of viable Pseudomonas syringae pv. lachrymans cells in contaminated cucumber seeds using propidium monoazide and a real-time PCR assay [J]. Canadian Journal of Plant Pathology, 2016, 38(3): 296-306.

[49]TEMPLE T N, DU TOIT L J, DERIE M L, et al. Quantitative molecular detection of Xanthomonas hortorum pv. carotae in carrot seed before and after hot-water treatment [J]. Plant Disease, 2013, 97(12): 1585-1592.

[50]馮建軍, 劉杰, 王飛, 等. PMA結(jié)合實(shí)時(shí)熒光PCR進(jìn)行玉米細(xì)菌性枯萎病菌細(xì)胞活性檢測(cè)初步研究[J]. 植物檢疫, 2014, 28(2): 27-32.

[51]王帥, 徐進(jìn), 許景升, 等. PMA-qPCR定量檢測(cè)青枯菌活菌方法的建立[J].植物保護(hù), 2018, 44(6): 122-128.

[52]肖妍, 劉蕓宏, 高貴田, 等. PMA-qPCR方法檢測(cè)陜西獼猴桃潰瘍菌優(yōu)勢(shì)病原菌活菌的研究[J].食品與機(jī)械, 2019, 35(4): 48-53.

[53]VILANOVA L, USALL J, TEIXID N, et al. Assessment of viable conidia of Monilinia fructicola in flower and stone fruit combining propidium monoazide (PMA)and qPCR [J]. Plant Pathology, 2017, 66(8): 1276-1287.

[54]CHRISTOFOROU Μ, PANTELIDES I S, KANETIS L, et al. Rapid detection and quantification of viable potato cyst nematodes using qPCR in combination with propidium monoazide [J]. Plant Pathology, 2014, 63(5): 1185-1192.

[55]AL-DAOUD F, GOSSEN B D, ROBSON J, et al. Propidium monoazide improves quantification of resting spores of Plasmodiophora brassicae with qPCR [J]. Plant Disease, 2017, 101(3): 442-447.

(責(zé)任編輯:田 喆)

金秀| 武宣县| 白沙| 油尖旺区| 呈贡县| 孝昌县| 永登县| 沽源县| 庆云县| 兴安盟| 克东县| 云浮市| 长宁县| 贵州省| 永川市| 嘉峪关市| 土默特右旗| 慈利县| 金溪县| 秦皇岛市| 和田市| 茂名市| 江都市| 错那县| 滨海县| 琼海市| 昌江| 云霄县| 溧水县| 许昌市| 阳山县| 达尔| 西乌珠穆沁旗| 库车县| 苏尼特左旗| 普兰店市| 宜都市| 江西省| 卓资县| 沧源| 饶平县|