肖石磊,李斌成
光學(xué)元件殘余應(yīng)力無(wú)損檢測(cè)技術(shù)概述
肖石磊,李斌成*
電子科技大學(xué)光電科學(xué)與工程學(xué)院,四川 成都 610054
殘余應(yīng)力是光學(xué)元件的一個(gè)重要性能參數(shù),對(duì)光學(xué)元件的制造和使用意義重大。光學(xué)元件殘余應(yīng)力的無(wú)損檢測(cè)方法可粗略概括為兩大類(lèi):一類(lèi)是基于應(yīng)變的測(cè)量方法,包括X射線衍射法、Stoney曲率法和顯微拉曼光譜法,這些方法基于晶體和彈性力學(xué)分析方法,發(fā)展成熟、應(yīng)用廣泛;另一類(lèi)是基于應(yīng)力雙折射效應(yīng)的測(cè)量方法,包括數(shù)字光彈法、光彈調(diào)制器法和偏振光腔衰蕩法,都是對(duì)殘余應(yīng)力導(dǎo)致的雙折射相位差的測(cè)量,具有更直接的光學(xué)關(guān)聯(lián)性、測(cè)量精度高的特點(diǎn)。本文歸納了光學(xué)元件殘余應(yīng)力測(cè)量的幾種常見(jiàn)方法的測(cè)量原理、測(cè)量精度和應(yīng)用場(chǎng)景,對(duì)比了它們的性能并分析了它們之間的關(guān)聯(lián)性,以期建立起光學(xué)元件殘余應(yīng)力無(wú)損檢測(cè)的宏觀印象。
光學(xué)元件;殘余應(yīng)力;雙折射;應(yīng)變
光學(xué)元件(Optics/optical components)是一個(gè)龐大的集合,涉及的材料不可勝數(shù),結(jié)構(gòu)和功能多樣,如各種基底、透鏡、晶體、光纖、增透/反射薄膜元件等。在光學(xué)元件制造過(guò)程中,一般從原材料熔融到成型,需要經(jīng)歷高溫到冷卻的過(guò)程和相變,溫度變化過(guò)程會(huì)產(chǎn)生熱應(yīng)力,成分的不均勻或材料的不一致還會(huì)形成結(jié)構(gòu)殘余應(yīng)力。雖然應(yīng)力是材料的固有屬性,但過(guò)高的殘余應(yīng)力會(huì)危害光學(xué)元件的功能完整性,如對(duì)光學(xué)元件基底而言,殘余應(yīng)力會(huì)引起基底面形偏差甚至開(kāi)裂,造成光波前的畸變、雙折射等;對(duì)薄膜元件而言,過(guò)大的殘余應(yīng)力會(huì)導(dǎo)致薄膜產(chǎn)生裂痕、褶皺、脫層等,影響薄膜的性能和使用壽命。
由于應(yīng)力影響廣泛,在工業(yè)領(lǐng)域擁有深厚的研究基礎(chǔ),特別是針對(duì)金屬和合金材料中殘余的應(yīng)力,發(fā)展了多種測(cè)量方法,如鉆孔法、X射線衍射法、中子衍射法、超聲法等[1]。光學(xué)元件由于其材料和制造工藝的特殊性,在這些方法的基礎(chǔ)上,發(fā)展了具有光學(xué)特色的測(cè)量方法。從根本上說(shuō),殘余應(yīng)力都是固化在材料內(nèi)部的晶格形變,大部分測(cè)量方法都是基于應(yīng)變的測(cè)量來(lái)估計(jì)應(yīng)力的大小。根據(jù)各種測(cè)量方法之間的關(guān)聯(lián)性,本文將基于應(yīng)力雙折射相位差測(cè)量的方法單獨(dú)歸為一類(lèi),以便于直觀比較,綜述了X射線衍射法、Stoney曲率法、顯微拉曼光譜法、數(shù)字光彈法、光彈調(diào)制器法和偏振光腔衰蕩法六種方法,對(duì)比了六種方法的使用場(chǎng)景、測(cè)量精度等特性。
殘余應(yīng)力是在沒(méi)有外力或外力矩作用下構(gòu)件或材料內(nèi)部存在并自身平衡的宏觀應(yīng)力。對(duì)于多晶材料而言,宏觀應(yīng)力所對(duì)應(yīng)的應(yīng)變被認(rèn)為是相應(yīng)區(qū)域晶格應(yīng)變的統(tǒng)計(jì)結(jié)果[2]。
X射線衍射法(X-ray diffraction, XRD)以其無(wú)損傷、測(cè)量區(qū)域可變和重復(fù)精度高等優(yōu)點(diǎn),成為測(cè)量晶體材料殘余應(yīng)力的首選方法,常用于微晶玻璃[3]和金屬薄膜光學(xué)元件表面殘余應(yīng)力的檢測(cè)[4],也用于光學(xué)元件薄膜結(jié)晶相的含量測(cè)定[5-6]。國(guó)家標(biāo)準(zhǔn)GB7704-2017[2]確定了XRD測(cè)量晶體材料殘余應(yīng)力的幾種方法。以商用儀器常采用的同傾固定0法為例,X射線以一定角度照射到晶體表面時(shí)會(huì)發(fā)生衍射現(xiàn)象,衍射條紋的位置會(huì)因?yàn)榻?jīng)過(guò)晶格間距的不同而發(fā)生變化,通過(guò)對(duì)比有無(wú)殘余應(yīng)力時(shí)的晶格間距的變化值,再結(jié)合結(jié)晶學(xué)理論就可以計(jì)算出殘余應(yīng)力的大小。
如圖1為X射線衍射法測(cè)定殘余應(yīng)力原理示意圖,X-ray表示射線源,為探測(cè)器,0為入射X射線與材料表面法線的夾角,為衍射晶面法線與表面法線的夾角。平面應(yīng)力狀態(tài)下,方向的殘余應(yīng)力如下所示:
其中是材料的應(yīng)力常數(shù),其表達(dá)式:
圖1 X射線衍射法殘余應(yīng)力測(cè)量原理圖[2]
在光學(xué)基底上鍍制各向同性薄膜時(shí),由于薄膜和基底晶格的不匹配以及熱膨脹系數(shù)的不一致等原因,薄膜上產(chǎn)生殘余應(yīng)力并造成基底變形。因此,可以通過(guò)基底的應(yīng)變量來(lái)評(píng)估薄膜—基底體系的殘余應(yīng)力。該方法自1909年由Stoney提出以來(lái),一直是微電子、光電子和結(jié)構(gòu)組件表面涂層等薄膜應(yīng)用中應(yīng)力評(píng)價(jià)的基礎(chǔ)[11-13]。
Stoney殘余應(yīng)力計(jì)算如下所示:
但Stoney方法作為一種近似估計(jì)方法,其應(yīng)用存在限制條件,以保證系統(tǒng)誤差在可接受的范圍。綜合來(lái)看,使用Stoney公式計(jì)算薄膜應(yīng)力的精度主要取決于:1) 薄膜厚度估計(jì)的不確定性;2) 基底材料彈性模量和泊松比的不確定性;3) 薄膜的應(yīng)力分布不均勻性。針對(duì)這些限制,Klein[19]在2000年理論研究了薄膜厚度不能忽略情況下Stoney公式的誤差,在厚度比例小于0.1情況下,Stoney誤差在10%左右。并據(jù)此,在Timoshenko[20],Rich[21],Atkinson[22]和Senderoff[23]研究的基礎(chǔ)上,Klein提出了優(yōu)化的修正系數(shù)來(lái)提高Stoney公式在厚膜情形下的計(jì)算精度。2006年Zhang等[24]使用該公式估計(jì)了鋯金屬玻璃在噴丸強(qiáng)化后的表面殘余應(yīng)力,使用壓痕方法和掃描電鏡方法確定了1000 μm厚度金屬玻璃上形成的80 μm厚噴丸界面層,計(jì)算得到殘余應(yīng)力在1.9 GPa,測(cè)量結(jié)果具有±20%誤差,主要是噴丸界面層和未變形層厚度的不確定性導(dǎo)致。另外,不規(guī)則變形也是Stoney公式計(jì)算應(yīng)力的誤差來(lái)源。Freund和Suresh在其專(zhuān)著[25]中詳細(xì)討論了非均勻的應(yīng)力分布情況下應(yīng)力計(jì)算的誤差。特別是對(duì)大變形情形,Stoney公式完全失效,需要進(jìn)行針對(duì)性的修正以保證精度[26]。
拉曼光譜法測(cè)量殘余應(yīng)力的物理基礎(chǔ)是材料的某些特征拉曼峰或熒光峰形狀對(duì)材料的應(yīng)變(應(yīng)力)敏感。實(shí)驗(yàn)和理論研究表明,峰波數(shù)與應(yīng)變的函數(shù)關(guān)系常常是線性的,峰半高寬與應(yīng)變也有類(lèi)似關(guān)系。簡(jiǎn)單的應(yīng)變—拉曼頻移關(guān)系式:
拉曼光譜法測(cè)定材料殘余應(yīng)力的主要優(yōu)點(diǎn)是無(wú)損、非接觸、高空間分辨率、樣品無(wú)需特別制備、原位測(cè)試能力等。Li等[28]使用拉曼光譜技術(shù)研究了天文光學(xué)應(yīng)用中的反應(yīng)燒結(jié)SiC基底的多晶態(tài)成份、表面缺陷和殘余應(yīng)力,缺陷來(lái)源于金剛石研磨過(guò)程,相比無(wú)應(yīng)力樣品,6H-SiC拉曼散射峰向低頻移動(dòng)了5 cm-1左右,表現(xiàn)為張應(yīng)力。Groth等[29]通過(guò)共聚焦拉曼光譜掃描,研究了研磨加工后不同表面粗糙度的SiC在不同深度表面下的殘余應(yīng)力,發(fā)現(xiàn)表面粗糙度越小的鏡面具有更強(qiáng)的壓縮應(yīng)力。圖3所示是由于金剛石研磨加工導(dǎo)致的SiC基底拉曼光譜頻移,應(yīng)力—頻移系數(shù)等于320 MPa/cm-1。拉曼光譜法結(jié)合激光顯微共聚焦技術(shù)已經(jīng)發(fā)展成了材料微觀力學(xué)的一個(gè)重要方法,在微晶玻璃基底[30]、激光晶體[31]、中紅外類(lèi)金剛石增透膜[32],全光器件中的硅光纖[33]、非制冷紅外焦平面陣列[34]等材料和器件殘余應(yīng)力研究中發(fā)揮了重要作用。國(guó)內(nèi)天津大學(xué)亢一瀾教授和大連理工大學(xué)雷振坤教授團(tuán)隊(duì)研究了拉曼光譜法在微機(jī)電系統(tǒng)多孔硅薄膜、碳納米管和復(fù)合材料的殘余應(yīng)力測(cè)量中的應(yīng)用[35]。
圖2 薄膜引起基片曲率改變示意圖[14]。(a) 不受應(yīng)力;(b) 張應(yīng)力;(c) 壓應(yīng)力
圖3 金剛石研磨加工導(dǎo)致SiC基底拉曼頻移[29]
拉曼光譜法應(yīng)力測(cè)量的精度受環(huán)境因素(如溫度、壓力、振動(dòng)等)影響較大,還需考慮入射激光的聚焦穩(wěn)定性,實(shí)際應(yīng)力測(cè)量值在幾十MPa之間漂移。Groth等[29]使用Renishaw Inc inVia?光譜儀測(cè)量拉曼峰的位置不確定度小于0.05 cm-1,結(jié)合圖3提供的應(yīng)力—頻移系數(shù)可得SiC表面殘余應(yīng)力測(cè)量不確定度為±16 MPa。特別地,拉曼光譜法測(cè)量精度受溫度影響嚴(yán)重,拉曼譜線的形狀與被測(cè)晶體所處環(huán)境的應(yīng)力和溫度緊密相關(guān)。拉曼峰位置一般隨著溫度的升高而向低波數(shù)方向移動(dòng)。據(jù)此,拉曼光譜法甚至可用于估計(jì)金剛石刀具在切削時(shí)的溫度[36]。因此,減小測(cè)量環(huán)境溫度波動(dòng)是提高精度的關(guān)鍵。邱宇等[37]在研究微機(jī)電系統(tǒng)中硅基底表面多孔硅薄膜體系殘余應(yīng)力時(shí),考慮到激光的加熱效應(yīng)會(huì)改變局部應(yīng)力分布,因此使用低功率的探測(cè)方式。
1816年英國(guó)物理學(xué)家Brewster發(fā)現(xiàn)玻璃在應(yīng)力作用下具有雙折射現(xiàn)象,在此基礎(chǔ)上發(fā)展了光彈性法 (photoelasticity),即據(jù)材料受到應(yīng)力時(shí)所表現(xiàn)的雙折射現(xiàn)象測(cè)量應(yīng)力的實(shí)驗(yàn)方法。對(duì)于平面應(yīng)力狀態(tài),有Wertheim應(yīng)力光學(xué)定律[38]:
自1816年發(fā)現(xiàn)玻璃的光彈性以來(lái),正交偏光鏡一直是定性研究應(yīng)力雙折射的簡(jiǎn)便方法。1840年,Senarmont[39]在正交偏光鏡基礎(chǔ)上加入四分之一波片,完成了雙折射延遲量的定量測(cè)量。在正交偏光鏡基礎(chǔ)上,將殘余應(yīng)力雙折射引起的偏振光干涉條紋與計(jì)算機(jī)圖像處理技術(shù)結(jié)合來(lái)自動(dòng)釆集光彈性數(shù)據(jù)和分析應(yīng)力的方法,稱(chēng)為數(shù)字光彈法(digital photoelasticity)[40-42]。與傳統(tǒng)光彈法相比,它可以進(jìn)一步提高測(cè)量速度和精度。基于數(shù)字光彈法的應(yīng)力雙折射測(cè)量?jī)x器發(fā)展最成熟,在玻璃制造工業(yè)[43]、光伏面板制造[44]等高精度應(yīng)力檢測(cè)領(lǐng)域發(fā)揮了重要作用。
如圖4(a)是數(shù)字光彈法的原理圖[45],檢測(cè)光依次經(jīng)過(guò)線偏振器、四分之一波片I、待測(cè)樣品、四分之一波片II和檢偏器,可以看到等傾線與等色線條紋圖案。樣品中主應(yīng)力的方向相同的點(diǎn)構(gòu)成的線條為等傾線條紋(isoclinic fringe),主應(yīng)力的差值相同的點(diǎn)構(gòu)成等色線(isochromatic fringe)。如果光源為白光,則等色線呈現(xiàn)為彩色條紋,等傾線為黑色的。通過(guò)分析得到的等色線、等傾線即可以確定平面應(yīng)力大小和方向的分布。
圖4 數(shù)字光彈法原理圖和測(cè)量示例圖。(a) 原理圖[45];(b) 數(shù)字光彈法透鏡測(cè)量示例[40]
如圖4(b)是透鏡的條紋圖,在等傾線與等色線重疊區(qū)域,等色線模糊不清。為了確定等傾線與等色線,需要將等傾線與等色線進(jìn)行分離。經(jīng)過(guò)數(shù)十年的發(fā)展,興起了條紋載波片法[46],RGB光彈法[47],相移法[48-50]等,部分方法已獲得很好的商業(yè)應(yīng)用,具有幾納米到幾千納米的光程差測(cè)量范圍[40]。
由于使用面成像方法,因此光源照明光強(qiáng)的分布均勻性對(duì)測(cè)量結(jié)果的準(zhǔn)確性影響很大,光源不均勻則需要增加相移次數(shù)消除[49]。而減少采集次數(shù)和利用計(jì)算機(jī)同步處理是提高測(cè)量效率的熱點(diǎn)研究方向。Sung等[51]提出了兩步相移和透射光譜測(cè)量微小應(yīng)力的方法,通過(guò)在玻璃圓盤(pán)上加載階梯徑向載荷驗(yàn)證方法具有高的測(cè)量精度,在0.384 MPa低應(yīng)力載荷下的測(cè)量不確定性達(dá)到0.029 MPa(750 nm條紋級(jí)次為0.001,即對(duì)應(yīng)633 nm光程差為0.633 nm);該方法不需要材料在不同波長(zhǎng)下的應(yīng)力光彈系數(shù),但需要事先通過(guò)載荷實(shí)驗(yàn)建立材料的應(yīng)力—透射光譜數(shù)據(jù)庫(kù)。2018年,Guo等[52]通過(guò)六步相移法和改進(jìn)的插值和剪切應(yīng)力積分方法,測(cè)得受徑向載荷薄圓盤(pán)上,0°和80°積分路徑上正應(yīng)力的理論值和測(cè)量值的誤差分別為1.5 kPa和6.0 kPa,相對(duì)誤差為0.5%和2%。
光彈調(diào)制器(Photoelastic modulator,PEM)是一種基于光彈效應(yīng)的人工雙折射光機(jī)電器件,具有高速、高分辨率、高靈敏度、高偏振精度、抗振動(dòng)性好的光譜測(cè)量?jī)?yōu)勢(shì)[53],基于光彈調(diào)制器的雙折射測(cè)量方法是目前精度最高的商業(yè)化應(yīng)力雙折射測(cè)量方法[54-55]。
光彈調(diào)制器法測(cè)量原理如圖5(a)所示,探測(cè)激光經(jīng)過(guò)起偏器、光彈調(diào)制器、待測(cè)樣品、檢偏器后進(jìn)入探測(cè)器。光彈調(diào)制器對(duì)起偏器輸入的線偏振光進(jìn)行調(diào)制,附加周期性的雙折射相位差,使得光彈調(diào)制器出射的偏振態(tài)從線偏振光到橢圓偏振光周期性改變。探測(cè)器信號(hào)通過(guò)鎖相放大器和低通濾波器后的解析式可通過(guò)Jones矩陣或Mueller矩陣推導(dǎo)得到。通過(guò)旋轉(zhuǎn)檢偏器,測(cè)量?jī)赏ǖ佬盘?hào),可以獲得雙折射相位差和快軸角度。其中,通道一檢偏器與起偏器透光方向正交,通道二檢偏器透光方向和光彈調(diào)制器快軸方向一致,與起偏器透光方向夾45°角。光彈調(diào)制器法雙折射相位差測(cè)量精度達(dá)到0.003°(即對(duì)應(yīng)633 nm光程差為0.005 nm),根據(jù)應(yīng)力—光彈定律和熔石英的光彈系數(shù)(=3.5×10-12Pa-1)[56]可得應(yīng)力測(cè)量精度達(dá)到0.2 kPa量級(jí)。如圖5(b)是波片逐點(diǎn)掃描成像的應(yīng)力和快軸角度分布圖。
圖5 光彈調(diào)制器法雙折射測(cè)量原理圖[54]。(a) 測(cè)量原理圖;(b) 數(shù)字光彈法波片測(cè)量示例
光腔衰蕩技術(shù)(Cavity ring-down, CRD)是一種基于高精細(xì)度諧振腔的高靈敏探測(cè)方法,通過(guò)探測(cè)激光在光學(xué)諧振腔內(nèi)的多次來(lái)回反射,可使測(cè)量光程增加幾千到幾十萬(wàn)倍;同時(shí),由于測(cè)量的是光強(qiáng)衰減速率,所以不受光源強(qiáng)度波動(dòng)的影響,被廣泛應(yīng)用于氣體吸收光譜測(cè)量[57]。由于諧振腔高反射率腔鏡殘余應(yīng)力和膜層不均勻性,產(chǎn)生各向異性對(duì)一些高精度光學(xué)系統(tǒng)如宇稱(chēng)不守恒實(shí)驗(yàn)[58]、引力波探測(cè)實(shí)驗(yàn)[59]等產(chǎn)生負(fù)面影響,因此發(fā)展出了偏振光腔衰蕩技術(shù),用于高反射腔鏡應(yīng)力雙折射的測(cè)量。
1999年,Vallet等[60]總結(jié)了基于正交偏振器內(nèi)各向異性F-P (Fabry-Perot)腔干涉儀的應(yīng)用文章,如圖6是偏振F-P腔模型。偏振F-P腔最初用于測(cè)量原子氣體的圓二向色性,并且隨著鍍膜技術(shù)的發(fā)展,被用于測(cè)量高精細(xì)度F-P腔高反鏡的殘余應(yīng)力雙折射。Vallet提出了四類(lèi)腔內(nèi)各向異性模型,并使用Jones矩陣法推導(dǎo)了對(duì)應(yīng)的腔響應(yīng)表達(dá)式,為后續(xù)使用光學(xué)諧振腔進(jìn)行各向異性研究提供了理論參考。
2000年,Lee等[61]首次利用光腔衰蕩技術(shù)測(cè)量了兩個(gè)諧振腔鏡的應(yīng)力雙折射,通過(guò)Jones矩陣推導(dǎo)了弱應(yīng)力雙折射近似條件下s和p光單指數(shù)擬合衰蕩時(shí)間的關(guān)系,得到兩個(gè)腔鏡的雙折射相位差和快軸角度。通過(guò)該方法,Lee等測(cè)量了10-6rad量級(jí)腔鏡雙折射,重復(fù)性精度達(dá)到6×10-8rad(即對(duì)應(yīng)633 nm光程差為6.0×10-6nm)。
2018年,電子科技大學(xué)李斌成教授團(tuán)隊(duì)[62]首次將偏振光腔衰蕩技術(shù)用于熔石英基底的殘余應(yīng)力測(cè)量,圖7為光腔衰蕩應(yīng)力雙折射測(cè)量系統(tǒng)圖。633 nm檢測(cè)激光依次通過(guò)光隔離器、聲光調(diào)制器,并由四分之一波片和偏振器得到線偏振光入射到高反射腔鏡M1和M2組成的諧振腔。熔石英樣品放置在腔內(nèi),輸出光經(jīng)四分之一波片和偏振分光棱鏡分為兩束相互正交的線偏振激光分別被兩路探測(cè)器探測(cè)。腔內(nèi)熔石英片殘余應(yīng)力雙折射導(dǎo)致s光和p光之間的能量轉(zhuǎn)移,產(chǎn)生兩路偏離單指數(shù)的光腔衰蕩信號(hào)。s光和p光衰蕩信號(hào)表達(dá)式為
其中:t是時(shí)間,A是衰蕩振幅,B是直流偏置,τ是衰蕩時(shí)間,m是雙折射調(diào)制系數(shù),φ是初相位,ω是應(yīng)力雙折射導(dǎo)致的衰蕩信號(hào)振蕩頻率,由δ=ωL/c計(jì)算得到熔石英基片應(yīng)力雙折射相位差,L是諧振腔長(zhǎng)度,c是真空光速。系統(tǒng)達(dá)到10-4 rad量級(jí)應(yīng)力雙折射重復(fù)性測(cè)量精度2.38×10-6 rad(即對(duì)應(yīng)633 nm光程差為2.4×10-4 nm),應(yīng)力雙折射測(cè)量上限優(yōu)于0.008 rad,根據(jù)應(yīng)力-光彈定律和熔石英的光彈系數(shù)[55]可得應(yīng)力測(cè)量精度達(dá)到0.03 kPa。
圖7 偏振光腔衰蕩應(yīng)力雙折射測(cè)量系統(tǒng)[62]
綜合來(lái)看,基于應(yīng)變測(cè)量和基于應(yīng)力雙折射測(cè)量光學(xué)元件殘余應(yīng)力的方法使用不同的儀器設(shè)備,適用不同材料和應(yīng)用需求,具有不同的檢測(cè)精度、空間分辨率等特性。由于基于不同的力學(xué)模型,因此無(wú)法直接對(duì)比不同方法測(cè)量的殘余應(yīng)力值。但在實(shí)際應(yīng)用中,殘余應(yīng)力的相對(duì)大小更具有現(xiàn)實(shí)意義,可以反映不同工藝流程中殘余應(yīng)力的變化,不同方法之間又具有了可比性。表1對(duì)比了幾種光學(xué)元件殘余應(yīng)力測(cè)量方法的適用范圍、測(cè)量精度、空間分辨率等信息。
XRD通過(guò)微觀的晶格應(yīng)變測(cè)定晶體材料的殘余應(yīng)力,在輻射光強(qiáng)較強(qiáng)時(shí)能達(dá)到微米量級(jí)的空間分辨率;同時(shí),通過(guò)XRD分析可得到晶體取向參數(shù)、結(jié)晶相含量、成分等信息,通過(guò)掠入射XRD還可獲得材料表面如膜層厚度、表面粗糙度信息[63]。因此,XRD是殘余應(yīng)力測(cè)量的基準(zhǔn)分析方法,為其他應(yīng)力測(cè)量方法提供參考。但通常的X射線衍射無(wú)法深入到光學(xué)材料內(nèi)部,中子衍射或同步輻射XRD雖然具有很強(qiáng)的穿透能力,然而這類(lèi)設(shè)備價(jià)格昂貴,難以普遍應(yīng)用。因此,更深層的應(yīng)力通常需要通過(guò)其他方法測(cè)量。
Stoney方法通過(guò)宏觀的變形曲率測(cè)量薄膜殘余應(yīng)力,其測(cè)量具有較大面積的平均效果;XRD測(cè)量光斑大小一般通過(guò)狹縫控制在毫米量級(jí),因此平均范圍也較大。對(duì)晶體薄膜光學(xué)元件,XRD方法和Stoney方法測(cè)量的殘余應(yīng)力具有可比性。Hearne等[64]使用Stoney光杠桿曲率測(cè)量法在線監(jiān)測(cè)了GaN薄膜生長(zhǎng)過(guò)程中的應(yīng)力演變,GaN薄膜通過(guò)金屬氧化物化學(xué)氣相沉積法在1050 ℃高溫條件下沉積到藍(lán)寶石基底上。經(jīng)過(guò)退火后,XRD在常溫條件下測(cè)量,10個(gè)樣品的殘余應(yīng)力測(cè)量結(jié)果如圖8(a)所示??梢?jiàn),生長(zhǎng)過(guò)程表現(xiàn)張應(yīng)力,常溫下表現(xiàn)壓應(yīng)力;雖然兩種方法具有不同的測(cè)量精度和空間分辨率,但測(cè)量結(jié)果顯示XRD和Stoney方法具有很好的一致性。這兩者的差值統(tǒng)計(jì)結(jié)果為(-0.66±0.1) GPa,表現(xiàn)了高溫到常溫過(guò)程中由于熱膨脹系數(shù)不一致引起的熱應(yīng)力變化。
表1 幾種光學(xué)元件殘余應(yīng)力無(wú)損測(cè)量方法對(duì)比
圖8 殘余應(yīng)力測(cè)量結(jié)果對(duì)比。(a) XRD和Stoney方法測(cè)量GaN薄膜殘余應(yīng)力[64];(b) XRD和Raman方法測(cè)量金剛石薄膜[65]
Ferreira等[65]通過(guò)化學(xué)氣相沉積在硅光學(xué)窗口上鍍制了不同厚度的金剛石薄膜,并使用XRD和拉曼光譜測(cè)量了殘余應(yīng)力。XRD通過(guò)狹縫控制探測(cè)光斑面積為5 mm×1 mm。拉曼光譜儀探測(cè)光斑有2 μm和5 μm兩種直徑,穿透深度為5 μm。為了排除應(yīng)力分布不均勻性的影響,F(xiàn)erreira等在4 mm2范圍內(nèi)測(cè)量5個(gè)點(diǎn)平均,面積與XRD相當(dāng)。測(cè)量結(jié)果表明,金剛石薄膜厚度在10 μm到40 μm的幾個(gè)樣品,XRD和拉曼光譜法測(cè)量結(jié)果具有很好的一致性,薄膜表現(xiàn)為壓應(yīng)力;但小于10 μm的幾個(gè)樣品,XRD測(cè)量表現(xiàn)為隨著厚度增加從張應(yīng)力到壓應(yīng)力的轉(zhuǎn)變,拉曼光譜測(cè)量表現(xiàn)為相反趨勢(shì),如圖8(b)所示,方形點(diǎn)為XRD測(cè)量結(jié)果。
光學(xué)元件雙折射殘余應(yīng)力測(cè)量方法,可直接通過(guò)雙折射相位差進(jìn)行對(duì)比。Xiao等[62]通過(guò)熔石英基片的應(yīng)力雙折射掃描比較了偏振光腔衰蕩方法和光彈調(diào)制器法。測(cè)量結(jié)果基本一致,如圖9所示,大部分點(diǎn)的差異小于5×10-3nm。差異可能來(lái)源于Hinds儀器的測(cè)量不確定度,掃描位置不匹配,兩種方法光斑大小的差異等因素。
殘余應(yīng)力是光學(xué)元件的重要參數(shù),應(yīng)力表現(xiàn)為材料的變形和雙折射效應(yīng)。對(duì)基于應(yīng)變的光學(xué)元件應(yīng)力測(cè)量方法,XRD具有無(wú)損和精度高的特點(diǎn),特別適合晶體材料應(yīng)力的測(cè)量,是殘余應(yīng)力測(cè)量的標(biāo)準(zhǔn)方法,應(yīng)力測(cè)量精度在10 MPa左右。Stoney曲率法不需要光學(xué)薄膜的彈性力學(xué)性能參數(shù),憑借基底的彈性性能評(píng)估鍍膜后產(chǎn)生的殘余應(yīng)力大小,測(cè)量原理簡(jiǎn)單,但測(cè)量精度不高,在幾十MPa左右,受基底泊松比和應(yīng)力分布均勻性等影響。拉曼光譜法適合對(duì)具有拉曼活性的光學(xué)材料進(jìn)行測(cè)量,具有10 MPa左右測(cè)量精度,其測(cè)量精度受環(huán)境溫度影響嚴(yán)重。根據(jù)應(yīng)力雙折射效應(yīng)測(cè)量光學(xué)元件殘余應(yīng)力的方法隨著玻璃的發(fā)明使用一直在發(fā)展。數(shù)字光彈法結(jié)合CCD和計(jì)算機(jī)圖像處理技術(shù),是一種方便快捷的應(yīng)力分布成像方法,具有0.03 MPa量級(jí)的應(yīng)力雙折射測(cè)量精度。光彈調(diào)制器法具有更高的應(yīng)力雙折射測(cè)量精度,相位差測(cè)量精度達(dá)到0.005 nm,應(yīng)力測(cè)量精度達(dá)到0.2 kPa量級(jí)。偏振光腔衰蕩法應(yīng)力雙折射測(cè)量精度達(dá)到2.4×10-4nm,應(yīng)力測(cè)量精度達(dá)到0.03 kPa量級(jí),是目前報(bào)道精度最高的測(cè)量技術(shù)。
圖9 熔石英基片應(yīng)力雙折射掃描對(duì)比[62]。(a) 偏振光腔衰蕩法;(b) 光彈調(diào)制器法
[1] Withers P J, Bhadeshia H K D H. Residual stress. Part 1–measurement techniques[J]., 2001, 17(4): 355–365.
[2] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Non-destructive testing—Practice for residual stress measurement by X-ray: GB 7704–2017[S]. Beijing: China Standard Press, 2017.
中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 無(wú)損檢測(cè)X射線應(yīng)力測(cè)定方法: GB 7704–2017[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2017.
[3] Xie J, Cheng J S, Lu P,. Analysis on errors of measuring residual stress in glass-ceramic with X-ray diffraction[J]., 2007, 29(2): 23–25.
謝俊, 程金樹(shù), 陸平, 等. X射線法測(cè)量微晶玻璃殘余應(yīng)力的誤差分析[J]. 武漢理工大學(xué)學(xué)報(bào), 2007, 29(2): 23–25.
[4] Labat S, Gergaud P, Thomas O,. Interdependence of elastic strain and segregation in metallic multilayers: An X-Ray diffraction study of (111) Au/Ni multilayers[J]., 2000, 87(3): 1172–1181.
[5] Taylor L N, Brown A K, Pung A J,. Continuous-wave laser damage of uniform and nanolaminate hafnia and titania optical coatings[J]., 2013, 38(21): 4292–4295.
[6] Klaus M, Genzel C, Holzschuh H. Residual stress depth profiling in complex hard coating systems by X-ray diffraction[J]., 2008, 517(3): 1172–1176.
[7] Prevéy P S. Current applications of X-ray diffraction residual stress measurement[C]//, Materials Park, OH, 1996: 103–110.
[8] Kandil F A, Lord J D, Fry A T,. A review of residual stress measurement methods a guide to technique selection[R]. United Kingdom: National Physical Lab., Teddington, 2001.
[9] Yu K, Sun Y F, Chen X J. Residual stress measurement with X-ray diffraction[J]., 2015, 41(2): 102–107.
于康, 孫亞非, 陳曉江. X射線衍射殘余應(yīng)力測(cè)試方法及應(yīng)用[J]. 火箭推進(jìn), 2015, 41(2): 102–107.
[10] Luo Q, Jones A H. High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique[J]., 2010, 205(5): 1403–1408.
[11] Pureza J M, Lacerda M M, De Oliveira A L,. Enhancing accuracy to Stoney equation[J]., 2009, 255(12): 6426–6428.
[12] Janssen G C A M, Abdalla M M, Van Keulen F,. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers[J]., 2009, 517(6): 1858–1867.
[13] Richter F, Kupfer H, Schlott P,. Optical properties and mechanical stress in SiO2/Nb2O5multilayers[J]., 2001, 389(1–2): 278–283.
[14] Wang X Z. Range analysis of thermal stress and displacement of GaN films on Al2O3substrate[J]., 2015, 52(4): 041602.
王小增. Al2O3襯底上GaN薄膜熱應(yīng)力和變形極差分析[J]. 激光與光電子學(xué)進(jìn)展, 2015, 52(4): 041602.
[15] Rats D, Poitras D, Soro J M,. Mechanical properties of plasma-deposited silicon-based inhomogeneous optical coatings[J]., 1999, 111(2–3): 220–228.
[16] Lee Y Y, McNallan M J. Ignition of nickel in environments containing oxygen and chlorine[J]., 1991, 18(6): 1099–1107.
[17] Fluri A, Pergolesi D, Roddatis V,.stress observation in oxide films and how tensile stress influences oxygen ion conduction[J]., 2016, 7(1): 10692.
[18] Shao S Y, Fan Z X, Fan R Y,. A review of study of stress in thin films[J]., 2005, 42(1): 22–27.
邵淑英, 范正修, 范瑞瑛, 等. 薄膜應(yīng)力研究[J]. 激光與光電子學(xué)進(jìn)展, 2005, 42(1): 22–27.
[19] Klein C A. How accurate are Stoney’s equation and recent modifications[J]., 2000, 88(9): 5487–5489.
[20] Timoshenko S. Analysis of bi-metal thermostats[J]., 1925, 11(3): 233–255.
[21] Rich T A. Thermo-mechanics of biometal[J]., 1934, 37(2): 102–105.
[22] Sch?fer J D, N?fe H, Aldinger F. Macro- and microstress analysis in sol-gel derived Pb (ZrTi1-x) O3thin films[J]., 1999, 85(12): 8023.
[23] Brenner A, Senderoff S. Calculation of stress in electrodeposits from the curvature of a plated strip[J]., 1949, 42: 105–123.
[24] Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress[J]., 2006, 5(11): 857–860.
[25] Freund L B, Suresh S.[M]. Cambridge: Cambridge University Press, 2004.
[26] Liu P L. The stress evolution of layered Si electrode during lithiation and delithiation: modified Stoney formula and finite element simulation[D]. Hefei: University of Science and Technology of China, 2017.
劉佩琳. 層狀硅電極嵌/脫鋰的應(yīng)力演化研究: 修正的Stoney公式和有限元模擬[D]. 合肥: 中國(guó)科學(xué)技術(shù)大學(xué), 2017.
[27] Nakashima S, Mitani T, Ninomiya M,. Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands[J]., 2006, 99(5): 053512.
[28] Li Z P, Zhang F H, Zhang Y,. Experimental investigation on the surface and subsurface damages characteristics and formation mechanisms in ultra-precision grinding of SiC[J]., 2017, 92(5–8): 2677–2688.
[29] Groth B P, Langan S M, Haber R A,. Relating residual stresses to machining and finishing in silicon carbide[J]., 2016, 42(1): 799–807.
[30] Serbena F C, Zanotto E D. Internal residual stresses in glass-ceramics: A review[J]., 2012, 358(6–7): 975–984.
[31] Huser T, Hollars C W, Siekhaus W J,. Characterization of proton exchange layer profiles in KD2PO4crystals by micro-Raman spectroscopy[J]., 2004, 58(3): 349–351.
[32] Safaie P, Eshaghi A, Bakhshi S R. Optical properties of oxygen doped diamond-like carbon thin films[J]., 2016, 672: 426–432.
[33] Zhao Z W, Xue F, Mao Y J Z,. Effects of annealing on the residual stresses distribution and the structural properties of Si core fiber[J]., 2018, 41: 193–199.
[34] Cen H, Wang K Y. Residual stress analysis of uncooled infrared focal plane arrays by micro-raman spectroscopy[J]., 2015, 37(1): 68–73.
岑皓, 王克用. 微拉曼光譜法檢測(cè)非制冷紅外焦平面陣列殘余應(yīng)力[J]. 機(jī)械強(qiáng)度, 2015, 37(1): 68–73.
[35] Lei Z K, Qiu W, Kang Y L.[M]. Beijing: Science China Press, 2015.
雷振坤, 仇巍, 亢一瀾. 微尺度拉曼光譜實(shí)驗(yàn)力學(xué)[M]. 北京: 科學(xué)出版社, 2015.
[36] 常文爽, 張丹. 拉曼光譜法測(cè)量金剛石應(yīng)力與溫度實(shí)驗(yàn)研究[J]. 企業(yè)科技與發(fā)展, 2015(11): 14–15.
[37] Qiu Y, Lei Z K, Kang Y L,. Micro-raman spectroscopy and its applications to measure residual stress in micro-structure[J]., 2004, 26(4): 389–392.
邱宇, 雷振坤, 亢一瀾, 等. 微拉曼光譜技術(shù)及其在微結(jié)構(gòu)殘余應(yīng)力檢測(cè)中的應(yīng)用[J]. 機(jī)械強(qiáng)度, 2004, 26(4): 389–392.
[38] Theocaris P S, Gdoutos E E.[M]. Berlin: Springer, 2013.
[39] De Senarmont H. Sur les modifications que la réflexion spéculaire à la surface des corps métalliques imprime à un rayon de lumière polarisée[J]., 1840, 73: 337–362.
[40] Ramesh K, Ramakrishnan V. Digital photoelasticity of glass: A comprehensive review[J]., 2016, 87: 59–74.
[41] Lei Z K, Yun D Z, Kang Y L,. A review of digital photoelasticity[J]., 2004, 19(4): 393–402.
雷振坤, 云大真, 亢一瀾, 等. 數(shù)字光彈性法綜述[J]. 實(shí)驗(yàn)力學(xué), 2004, 19(4): 393–402.
[42] 計(jì)欣華, 鄧宗白, 魯陽(yáng). 工程實(shí)驗(yàn)力學(xué)[M]. 2版. 北京: 機(jī)械工業(yè)出版社, 2010.
[43] Vivek R, Ramesh K. Residual stress analysis of commercial float glass using digital photoelasticity[J]., 2015, 6(4): 419–427.
[44] Jagailloux F, Valle V, Dupré J C,. Applied photoelasticity for residual stress measurement inside crystal silicon wafers for solar applications[J]., 2016, 52(4): 355–368.
[45] Tao B, Yuan Y, Zhou X L,. An integrated solution for compression-molded glass lenses[J]., 2016, 10021: 100210H.
[46] Wang R P. The image photo-carrier theory and its application to the determination of principal stress direction[J]., 1987, 814: 257–262.
[47] Ramesh K, Deshmukh S S. Three fringe photoelasticity-use of colour image processing hardware to automate ordering of isochromatics[J]., 1996, 32(3): 79–86.
[48] Hillar A, Ainola L, Anton J. Half-fringe phase-stepping with separation of the principal stress directions[J]., 1999, 5(3): 198–211.
[49] Bri?ez J C, Martínez A R, Branch J W. Computational hybrid phase shifting technique applied to digital photoelasticity[J]., 2018, 157: 287–297.
[50] Shang W. Experimental research of several mechanics problems for toughened PMMA by directional stretching process[D]. Tianjin: Tianjin University, 2011.
尚偉. 定向拉伸工藝增韌有機(jī)玻璃若干力學(xué)問(wèn)題的實(shí)驗(yàn)研究[D]. 天津: 天津大學(xué), 2011.
[51] Sung P C, Wang W C, Hwang C H,A low-level stress measurement method by integrating white light photoelasticity and spectrometry[J]., 2018, 98: 33–45.
[52] Guo E H, Liu Y G, Han Y S,. Full-field stress determination in photoelasticity with phase shifting technique[J]., 2018, 29(4): 045208.
[53] Wang Z B, Li K W, Zhang R,. Fabrication of piezoelectric actuator for photoelastic modulator based on lithium niobate[J]., 2015, 23(1): 63–69.
王志斌, 李克武, 張瑞, 等. 基于鈮酸鋰制作光彈調(diào)制器用壓電驅(qū)動(dòng)器[J]. 光學(xué)精密工程, 2015, 23(1): 63–69.
[54] Wang B L, Oakberg T C. A new instrument for measuring both the magnitude and angle of low level linear birefringence[J]., 1999, 70(10): 3847–3854.
[55] Wang B L, Leadbetter A, Freudenthal J,. Measuring stress birefringence in small Si samples[J]., 2014, 55: 608–617.
[56] Sun L, Edlou S. Low-birefringence lens design for polarization sensitive optical systems[J]., 2006, 6289: 62890H.
[57] Van der Sneppen L, Wiskerke A, Ariese F,. Improving the sensitivity of HPLC absorption detection by cavity ring-down spectroscopy in a liquid-only cavity[J]., 2006, 558(1–2): 2–6.
[58] Meekhof D M, Vetter P, Majumder P K,. High-precision measurement of parity nonconserving optical rotation in atomic lead[J]., 1993, 71(21): 3442–3445.
[59] Abramovici A, Althouse W E, Drever R W P,. LIGO: The laser interferometer gravitational-wave observatory[J]., 1992, 256(5055): 325–333.
[60] Vallet M, Bretenaker F, Le Floch A,. The malus fabry–perot interferometer[J]., 1999, 168(5–6): 423–443.
[61] Lee J Y, Lee H W, Kim J W,Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique[J]., 2000, 39(12): 1941–1945.
[62] Xiao S L, Li B C, Cui H,. Sensitive measurement of stress birefringence of fused silica substrates with cavity ring-down
technique[J]., 2018, 43(4): 843–846.
[63] Noyan I C, Huang T C, York B R. Residual stress/strain analysis in thin films by X-ray diffraction[J]., 1995, 20(2): 125–177.
[64] Hearne S, Chason E, Han J,Stress evolution during metalorganic chemical vapor deposition of GaN[J]., 1999, 74(3): 356–358.
[65] Ferreira N G, Abramof E, Leite N F,. Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy[J]., 2002, 91(4): 2466–2472.
Residual stress measurement methods of optics
Xiao Shilei, Li Bincheng*
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
Comparison of stress birefringence map of one fused silica substrate.
(a) Measured by polarized cavity ring-down method; (b) Measured with PEM method
Overview:Residual stress is an important performance indicator of optics, which is of great significance to the fabrications and applications of optical components. Residual stress measurement methods of optics can be summed up into two categories: methods based on strain measurement and on stress induced birefringence measurement, respectively.
The strain based methods, which are built upon crystal dynamics and elastic mechanics, including X-ray diffraction (XRD), Stoney curvature method, and micro-Raman spectroscopic method, are well developed and widely used. XRD method is the standard residual stress measurement for crystal materials, which is based on the Bragg diffraction of X-rays caused by crystalline lattice. By comparing the lattice distance of stressed and stress-free materials, the residual stress can be precisely determined. The uncertainty of XRD is about ±10 MPa. Stoney curvature method is commonly used for evaluating residual stress in optical thin films. The difference of thermal expansion coefficients between coatings and substrate results in a substrate curvature change after deposition. The measurement precision of Stoney curvature method is about several tens of MPa and is greatly influenced by film/substrate thickness ratio and overall stress uniformity. Micro-Raman spectroscopic method is based on a liner relationship between Raman shift and residual stress of Raman-sensitive materials. The determination of residual stress requires corresponding stress-free reference materials. The measurement precision of Raman spectroscopic method can reach ±10 MPa when the temperature is stabilized.
Methods based on residual stress induced birefringence phase retardation, including digital photoelasticity method, photoelasticitic modulator (PEM) method and polarization-dependent cavity ring-down (CRD) method, show a higher measurement precision. Digital photoelasticity method which combining polariscope and CCD image processing, is convenient for stress birefringence mapping. Analyzing of isoclinic fringe and isochromatic fringe is key to high precision measurement of birefringence phase difference. The measurement precision of ±0.03 MPa is reached. PEM method is based on periodic modulation of incident polarization in polariscope. Double detection channels and differential data processing scheme improve the measurement precision to ±0.2 kPa. Polarization-dependent CRD method is newly adopted to the measurement of residual stress birefringence of fused silica substrates. Intracavity birefringence caused s- and p- polarization of ring-down decays to oscillate with frequency linearly related to the birefringence phase difference. Polarization-dependent CRD method reaches a measurement precision of ±0.03 kPa, the highest precision for residual stress measurement of optical materials reported to date.
The principles, measurement precisions and application scenarios of these residual stress measurement methods are summarized in this overview. Comparisons between the performances of these methods are performed and correlations between them are analyzed in details.
Citation: Xiao S L, Li B CResidual stress measurement methods of optics[J]., 2020, 47(8): 190068
Residual stress measurement methods of optics
Xiao Shilei, Li Bincheng*
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
Residual stress is an important performance indicator of optics, which is of great significance to the fabrications and applications of optical components. Residual stress measurement methods of optics can be summed up into two categories: methods based on the strain measurement and on the stress induced birefringence measurement, respectively. The strain based methods, which are built upon crystal dynamics and elastic mechanics, including X-ray diffraction (XRD), Stoney curvature method, and micro-Raman spectroscopic method, are well developed and widely used. Methods based on the measurements of birefringence phase retardation induced by residual stress, including digital photoelasticity method, photoelasticitic modulator (PEM) method and polarization-dependent cavity ring-down method, show a higher precision. The principles, measurement precisions and application scenarios of these residual stress measurement methods are summarized in this overview. Comparisons between the performances of these methods are performed and correlations between them are analyzed in detail.
optics; residual stress; birefringence; strain
TH74;TN249
A
10.12086/oee.2020.190068
: Xiao S L, Li B C. Residual stress measurement methods of optics[J]., 2020,47(8): 190068
肖石磊,李斌成. 光學(xué)元件殘余應(yīng)力無(wú)損檢測(cè)技術(shù)概述[J]. 光電工程,2020,47(8): 190068
Supported by NSAF Joint Fund (U1830132)
* E-mail: bcli@uestc.edu.cn
2019-10-09;
2020-01-09
國(guó)家自然科學(xué)基金聯(lián)合基金資助項(xiàng)目(U1830132)
肖石磊(1991-),男,博士研究生,主要從事光腔衰蕩應(yīng)力雙折射檢測(cè)技術(shù)的研究。E-mail:shilei.xiao@qq.com
李斌成(1966-),男,博士,教授,主要從事光學(xué)檢測(cè)技術(shù)的研究。E-mail:bcli@uestc.edu.cn