夏友濤 楊道龍 趙婷婷 王云濤 俞煙婷
摘 要:為了研制出一款低能耗、高效率的新型旋風(fēng)分離器,文章根據(jù)目前旋風(fēng)分離器存在的結(jié)構(gòu)不合理、能耗偏高等問題進(jìn)行優(yōu)化,建立旋風(fēng)分離器模型,通過CFD仿真軟件對其內(nèi)部顆粒進(jìn)行仿真研究,分析流場靜壓、動(dòng)壓及速度分布情況,以期能為旋風(fēng)分離器的設(shè)計(jì)、理論創(chuàng)新、仿真提供參考。
關(guān)鍵詞:旋風(fēng)分離器;優(yōu)化設(shè)計(jì);內(nèi)部流場;CFD仿真
中圖分類號:TQ051.8 文獻(xiàn)標(biāo)識碼:A 文章編號:1674-1064(2020)11-015-02
DOI:10.12310/j.issn.1674-1064.2020.11.008
世界上第一臺旋風(fēng)分離器誕生于19世紀(jì)90年代,使得世界各地的科研人員開始了對分離器性能、結(jié)構(gòu)等參數(shù)的研究。1930年,范登格南[1]對雙旋渦分離器進(jìn)行研究后表明,旋風(fēng)分離器的內(nèi)部結(jié)構(gòu)的確是雙螺旋結(jié)構(gòu),這一發(fā)現(xiàn)對旋風(fēng)分離器的發(fā)展起到了至關(guān)重要的作用。1939年,Lapple[2]通過大量實(shí)驗(yàn)研究,對比旋風(fēng)分離器的尺寸和壓降之間的關(guān)系。1956年,準(zhǔn)自由渦和強(qiáng)制渦理論模型由Barth提出[3],并于1963年研制出了DEL型旋風(fēng)分離器[4]。20世紀(jì)70年代后,計(jì)算機(jī)飛速發(fā)展,流體力學(xué)在計(jì)算機(jī)的幫助下也進(jìn)入飛速發(fā)展的時(shí)代。Boysan Ayer withenbank[5]在1982年對旋風(fēng)分離器內(nèi)部流場進(jìn)行研究,采用的方法正是當(dāng)時(shí)最先進(jìn)的CFD數(shù)值模擬法。1992年美國B&W公司對靜態(tài)分離器進(jìn)行了改造,并安裝了旋轉(zhuǎn)移動(dòng)鏟[6],大大提高了分離器性能。2003年,旋風(fēng)分離器用于石油開采脫水,使石油脫水效率大大提高[7]。2010年,韓國學(xué)者使用分離器分離人參粉末[8],效果明顯,可有效分離3μm顆粒。2017年,波蘭研究人員Marek Wasilewski做實(shí)驗(yàn)時(shí)在分離器內(nèi)部添加元件,發(fā)現(xiàn)反錐原件對分離器性能有較大的提升作用,但是在提升效率的同時(shí)也會(huì)承受壓力降[9]。
文章根據(jù)目前旋風(fēng)分離器在選礦作業(yè)中存在的結(jié)構(gòu)不合理、能耗偏高等問題進(jìn)行優(yōu)化,建立旋風(fēng)分離器模型,通過CFD仿真軟件對其內(nèi)部顆粒進(jìn)行數(shù)值模擬研究。根據(jù)得出的模擬結(jié)果,分析在不同的情況下,不同顆粒從不同入口進(jìn)入后的運(yùn)動(dòng)軌跡差異以及優(yōu)化后的旋風(fēng)分離器的分離性能,為旋風(fēng)分離器的設(shè)計(jì)、理論創(chuàng)新、仿真提供參考。
1 旋風(fēng)分離器仿真模型
分析普通旋風(fēng)分離器的普遍缺陷,適當(dāng)增加或減少旋風(fēng)分離器排氣管的插入深度,對不同尺寸結(jié)構(gòu)的分離器進(jìn)行仿真對比。
1.1 建立旋風(fēng)分離器模型
旋風(fēng)分離器正交網(wǎng)格如圖1所示,多塊結(jié)構(gòu)化網(wǎng)格密度高,與其他網(wǎng)格相比,其形狀更美觀,迭代次數(shù)更少,誤差范圍更小,數(shù)值模擬的精度也得到了提高。
1.2 仿真參數(shù)
采用控制變量法進(jìn)行仿真,不同參數(shù)設(shè)置仿真出的結(jié)果也有所差異,主要表現(xiàn)在最大靜壓力、最大動(dòng)壓力、最大速度、顆粒流失比例等方面。即在保證其他條件不變的情況下,改變分離器排氣管形狀,分析排氣管形狀對分離器效率的影響。流場及顆粒參數(shù)設(shè)置如表1所示。
所有參數(shù)設(shè)置完畢后,開始進(jìn)行仿真計(jì)算。等待計(jì)算步驟全部結(jié)束,得出普通分離器的計(jì)算結(jié)果。
2 改進(jìn)旋風(fēng)分離器仿真結(jié)果
分析普通旋風(fēng)分離器的普遍缺陷,利用軟件對不同尺寸結(jié)構(gòu)的分離器進(jìn)行仿真對比,得出不同的排氣管形狀對分離器內(nèi)壁受到的壓力及磨損大小、分離效果等因素的影響。對比發(fā)現(xiàn),在分離器的圓錐部位受到的磨損最為嚴(yán)重??刹捎酶淖兤渑艢夤芙Y(jié)構(gòu)的優(yōu)化方法,將圓柱形排氣管設(shè)計(jì)成圓錐形,從仿真結(jié)果來看避免了應(yīng)力集中,一定程度上減輕了旋風(fēng)分離器使用過程中圓錐部位磨損嚴(yán)重的問題,且對其分離效率并無太大影響。當(dāng)顆粒進(jìn)口速度為70m/s時(shí),旋風(fēng)分離器排氣管的動(dòng)壓、靜壓、速度云圖如圖2所示。
由圖2可以看出,將排氣管由圓柱形改為圓錐形之后,在相同的條件下,顆粒對分離器的磨損程度在減小,圓錐形排氣管受到的壓力比圓柱形排氣管更加均勻,修改后的分離器在排氣管最底部的壓力明顯減小。在一定程度上避免了應(yīng)力集中,也就相應(yīng)減少了顆粒對管壁的磨損,提高了分離器的使用壽命。
3 結(jié)語
文章對現(xiàn)有的旋風(fēng)分離器進(jìn)行了較為詳細(xì)的仿真模擬分析。對圖像進(jìn)行分析,得出分離器內(nèi)壁承受壓力較大的部位,承受壓力較大也就是磨損最為嚴(yán)重的部位,針對這一部位的結(jié)構(gòu)形狀進(jìn)行改進(jìn),通過改變分離器入料口處排氣管的結(jié)構(gòu),設(shè)計(jì)出圓錐形排氣管,并且也對該種排氣管進(jìn)行模擬,建立模型、畫網(wǎng)格、計(jì)算速度、壓力場得出云圖,結(jié)合仿真模擬得出的數(shù)據(jù)進(jìn)行分析。從仿真與分析結(jié)果來看,修改后的分離器在排氣管最底部的壓力明顯減小。與原旋風(fēng)分離器排氣管云圖對比可得,顆粒對分離器的磨損程度在減小。將排氣管由圓柱形改為圓錐形之后,對分離器內(nèi)壁的磨損也有很大改善,對提升分離器的使用壽命具有一定意義。
參考文獻(xiàn)
[1] Boysan F,Ayers W H and Swithenbank J.A Fundamental Mathematical Modeling Approach to Cycloen Design[J].Trans.Inst.Chem.Engrs,2013,60:222-230.
[2] Lapple C.E.Gravity and Centrifugal Separation[J].Industrial Hygiene Quarterly,2015,11(1):40-48.
[3] Barth W.Investigations into Cyclone Dust Collectors[J].Proceedings of the institution of Mechanical Engineers,2014,160(2):233-240.
[4] 劉文歡,陳延信,趙峰,等.旋風(fēng)分離器新型減阻疏導(dǎo)器的實(shí)驗(yàn)研究[J].冶金源,2006(3):27-30.
[5] Boysan F,Ayers W H and SWithenbank J.A Fundamental Mathematical Modeling Approach to Cyclone Design[J].Trans.Inst.Chem.Engrs,2016,60:222-230.
[6] 解其林.MPS中速磨煤機(jī)旋轉(zhuǎn)式煤粉分離器的改造及應(yīng)用[J].中國電力,2005(03):62-66.
[7] Oxley KC,Bennett JR.RST's mission to mars-The first commercial application of rotary separator turbine technology[J].Offshore Technology conference,2003,5(1):2341-2349.
[8] Lee K,Lee B,Sun J,et al.Development of technology to pulverize natural plant material into d 97,3 μm size of powder using air classifier mill[C].Nanotechnology.IEEE,2010:567-569.
[9] Marek W.Analysis of the effect of counter-cone location on cyclone separator efficiency[J].Separation and Purification Technology,2017,179:236-247.