邱菊紅
摘 要:初中物理是一門以實驗為基礎(chǔ)的學(xué)科,其概念和公式非常繁多,對學(xué)生的理解能力、遷移能力和解題能力的要求都特別高.作為新時期的教師,我們可以培養(yǎng)學(xué)生自主學(xué)習(xí)物理的意識,讓學(xué)生學(xué)會從不同的角度和不同的方向去思考、去探究,將復(fù)雜的物理例題等效化、簡單化,這就是“等效思維”.本文就從當(dāng)前的初中物理解題的特征出發(fā),對等效思維的運用策略和技巧做幾點分析.
關(guān)鍵詞:等效思維;初中;物理;解題;運用
中圖分類號:G632? ? ? 文獻(xiàn)標(biāo)識碼:A? ? ? 文章編號:1008-0333(2020)23-0067-02
隨著時代的進步和科教的不斷發(fā)展,物理這門科目占初中課程的比重越來越大.如何快速地提高物理解題能力,也逐漸成為廣大師生共同關(guān)注的問題.為了在物理解題中達(dá)到事半功倍的效果,必要的時候可以采取等效思維的方法,培養(yǎng)學(xué)生的思維理解能力和動手操作能力,學(xué)會將各種物理知識遷移到一起進行解答,提高解題效率.
一、等效思維的概念內(nèi)涵
從字面意思來看,等效思維就是在日常的解題過程中,將一方面的知識轉(zhuǎn)換成另一種角度進行理解,從而提高解題效率,保證最后解題結(jié)果的準(zhǔn)確性.比如數(shù)學(xué)模型中的等效替代,物理定理中的常識替換、化學(xué)反應(yīng)中的元素替換等,這些都是利用等效思維的實例.物理是一門綜合性較強的學(xué)科,在解題的過程中學(xué)會把復(fù)雜的對象轉(zhuǎn)化為簡單易懂的原理,確實是一個明智的選擇.這種利用等效思維解答應(yīng)用題的學(xué)習(xí)方法,能在解題過程中快速聯(lián)想到很多物理反應(yīng)原理以及多種變形公式,不斷擴展物理知識在日常生活中的應(yīng)用,提升解題能力.
如果說“實踐是檢驗真理的唯一標(biāo)準(zhǔn)”,那么“等效思維”就是推動真理向前發(fā)展的催化劑.等效思維的概念與特征從很早就被很多學(xué)問家所應(yīng)用,大多數(shù)真理和定理都是在等效思維的幫助下才得以應(yīng)證的.比如著名的伽利略“斜面實驗”,通過兩個鐵球模擬物體自然下落的狀態(tài),得出大小不同的物體所受的重力都是一樣的;牛頓在偶然間通過蘋果自然下落發(fā)現(xiàn)了萬有引力等,這些實質(zhì)上都是利用了“等效替換”思維,將較為復(fù)雜的實際問題變換為簡單的熟悉問題,從而驗證了真理的真確性.可見等效思維在物理解題過程中也能發(fā)揮獨特的優(yōu)勢和作用.
二、初中物理解題中等效思維的運用
1.注重等效思維轉(zhuǎn)換,抓住關(guān)鍵信息
“抓住關(guān)鍵信息”是運用等效思維的基礎(chǔ),是將等效思維發(fā)揮到極致的核心內(nèi)容.更何況物理是一門講究實驗和理論知識相結(jié)合的學(xué)科,光有理論不足以掌握整個題設(shè).只有將知識遷移到日常生活中,在實驗實踐的基礎(chǔ)之上才能發(fā)揮等效思維的優(yōu)勢和作用.在解答日常的物理例題時,要抓住題設(shè)的關(guān)鍵信息,以便突出主要因素,從題目中抓住本質(zhì),從題設(shè)中找出解答技巧和解題規(guī)律.無論是題目給出的“已知條件”,還是隱含在題目背后的“未知選項”,都是題目所給的關(guān)鍵信息,我們都要做好標(biāo)記和記錄.只有理清楚題目所要求的問題,分清“已知”和“未知”,合理利用已知條件,尋求未知選項,才是運用等效思維的第一步.
物理學(xué)中很多復(fù)雜的曲線運動都可以用等效思維來解釋,等效法是常用的科學(xué)思維方法.等效思維在我們?nèi)粘=忸}過程中的運用是非常普遍的.比如小球斜拋出的運動軌跡可以看作是平拋運動,而平拋運動可等效為水平直線勻速運動和自由下落運動的疊加來處理.這是等效思維最簡單的例子.除此之外,很多運動型問題都可以利用等效思維來求解.
例如,“在游泳池里面,甲乙兩個人分別從不同的方向向前,他們的游泳技能都很強,互不影響.已知他們之間的距離為d,并分別用U和V的速度相向行.在一個時間突然出現(xiàn)丙, 并且丙以M的速度游在兩人之間.三人之間的運動軌跡如下:當(dāng)丙以M的速度追上甲的時候,立即轉(zhuǎn)回游向乙,而當(dāng)丙遇到乙的時候,又轉(zhuǎn)回游向甲,如此循環(huán)往復(fù)的運動過程”,請利用物理知識進行求解,當(dāng)甲乙相遇時丙以速度M一共游了多少路程.我們可以將丙的游泳時間等效轉(zhuǎn)換為甲乙相遇的時間,這種思維轉(zhuǎn)換有利于我們進行后續(xù)的解答過程.必要的時候我們要進行圖像的刻畫和描述,以便抓住文圖的本質(zhì),快速地解決問題.通過這道題,我們可以總結(jié)出規(guī)律,很多物理問題并不是表面意思那樣復(fù)雜,求解問題往往都可以轉(zhuǎn)換為本質(zhì)的、簡單的因素.所以我們一定要留心觀察,認(rèn)真總結(jié).
2.強化思維方式,提高解題效率
既然引用了等效思維,我們就要發(fā)揮等效思維的實用性和價值性,將復(fù)雜的物理例題用等效法轉(zhuǎn)換為較簡單的因素,從而代替較復(fù)雜的因素,以使題目能夠明朗化,要解決的問題自然就得心應(yīng)手.在這個過程中,需要我們結(jié)合自身的物理知識,強化思考的模式和方法,對“所求內(nèi)容”的定義有正確的認(rèn)識和理解.只有這樣才能發(fā)揮等效思維的作用,用我們自己所理解的物理知識來表示不同的物理現(xiàn)象、自主建立解題模型、創(chuàng)設(shè)解題思路,提高解題效率.
很多物理應(yīng)用題都涉及到力學(xué)的知識,“力”是物理學(xué)中最常見的一項內(nèi)容.在解答力學(xué)問題時,往往可以通過等效思維獲得最佳的解答方案.比如圖1甲中,三個力的疊加就分別闡述了力的“等效作用”,可以方便解題者快速找到題目中的關(guān)鍵信息,理清各個力之間的相互作用關(guān)系,尋求最佳解題思路.
通過圖示的漸變我們可以分析出,如果按照傳統(tǒng)模式下的解法,首先要通過力的“平行四邊形合成法則”來求解合力.這個求解合力的過程看似容易,過程卻非常復(fù)雜.這時我們轉(zhuǎn)換一下解題思維,將題目中所給的各力通過等效變換,沿著力F1的方向上加上一個大小為10 N的力,再沿F1力的反方向上也加上一個大小為10 N的力,就會產(chǎn)生意想不到的解題思路.如圖乙,通過這種等效思維的變換后,題目中所給的五個共點力的作用和原來的效果仍然相同,不會影響我們的做題正確性,反而提升了解題的效率.最后通過觀察發(fā)現(xiàn)三個30 N的力互成120角的力,最后合力為10N,沿F1的反方向.
3.運用等效思維,保證解題質(zhì)量
從本質(zhì)上來說,“等效思維”就是將一個力分解等效為兩個任意的假象的力的合成,從而方便解題者從多方面入手,將復(fù)雜的物理知識轉(zhuǎn)換為自己所熟悉和理解的物理知識,從而提高解題效率,全方面的保證物理解題質(zhì)量.物理應(yīng)用題的類型多種多樣,有圖像結(jié)合文字的應(yīng)用題,有實驗類型的推斷題,有綜合分析的假設(shè)題等.為了在任何題目中都能找到解題的突破口,達(dá)到將多個力合為一個力的效果,我們就必須運用等效思維,學(xué)會求知、學(xué)會轉(zhuǎn)換、學(xué)會替代,全方面的保證解題質(zhì)量.
例如圖2,已知R1=20 Ω,滑動變阻器R2的最大阻值為80 Ω,電路接在電壓為6V電路中.電路中各個電路元件不會相互產(chǎn)生影響.當(dāng)滑片P由最左端滑到最右端時,電壓表示數(shù)由6 V變化為1.2 V,請利用物理學(xué)知識求解此時電流表示數(shù)變化范圍是多少?當(dāng)滑片P在最右端時串聯(lián)電路的電阻多大?這是一道典型的分點“電路題”,需要我們結(jié)合基礎(chǔ)的物理知識才能得以求解.在解答電路相關(guān)問題時,我們可以利用等效思維,將電路中某一部分的電路元件等效成可以計算的器件,從而降低解題難度.
當(dāng)滑動變阻器滑到最左端時,我們可以將電路中的電壓表、電流表、電阻R1和滑動變阻器R2的工作原理等效成R2=0的電路.從而有相應(yīng)的結(jié)論:U1=U=6V,I=U1 R1=6V 20Ω=0.3A,當(dāng)滑動變阻器滑到最右端時為阻值的最大值,可以求出電路中的總電阻為100Ω的結(jié)果,從而簡化了題目的解答過程,充分發(fā)揮了等效思維的優(yōu)勢.
通過這種等效思維,能在特定的某種意義上實現(xiàn)知識的疊加和整合,以保證解題結(jié)果正確和效果相同的前提下,尋求另一種解題思路,將陌生的、復(fù)雜的、難處理的問題轉(zhuǎn)換成熟悉的、容易的、易處理的另一種解題模式.
總之,初中物理是一門比較抽象和困難的學(xué)科,涉及到很多生活中難理解的知識.等效思維包含了很多定理和知識方面的替代和轉(zhuǎn)換,能有效的抓住關(guān)鍵信息,提高解題效率的同時保證解題質(zhì)量.作為新時期的教師,我們要學(xué)會嚴(yán)格要求學(xué)生的思想,讓他們學(xué)會利用等效思維進行解題,把課堂知識合理的運用,綜合發(fā)展和提高.
參考文獻(xiàn):
[1]鐘奕寧.淺談等效思維方法及其運用[J].課程教育研究,2016(36):188-189.
[2]儲成節(jié).淺析等效思維在初中物理解題中的運用[J].物理教學(xué),2015,37(05):55-56+45.
[責(zé)任編輯:李 璟]