張方華 高珊 王秀秀 楊穎 王曄 姚民秀
[摘要] 2型糖尿病的主要病因是由多種因素引起的胰島素缺乏和胰島素抵抗。microRNA(miRNA)是很多生理過程及病理生理過程的重要調(diào)節(jié)因子,在多個生物學過程中發(fā)揮關鍵作用,如細胞增殖、分化、凋亡和癌變等。有研究表明,miRNA通過作用于多個通路促進胰島素分泌或調(diào)節(jié)胰島素抵抗,異常miRNA表達可能是2型糖尿病的潛在發(fā)病機制。本文就目前所知與2型糖尿病發(fā)病機制有關的miRNA進行綜述。
[關鍵詞] 微RNAs;糖尿病,2型;胰島素抗藥性;綜述
[中圖分類號] R587.1 ?[文獻標志碼] A ?[文章編號] 2096-5532(2020)05-0619-05
doi:10.11712/jms.2096-5532.2020.56.138 [開放科學(資源服務)標識碼(OSID)]
[ABSTRACT] Type 2 diabetes is primarily caused by insulin deficiency and insulin resistance resulting from composite factors such as gene, environment, and diet. MicroRNAs (miRNAs) are important regulators of numerous physiological and pathophysiological processes. They play critical roles in various biological processes, including cell proliferation, differentiation, apoptosis, and carcinogenesis. It has been recently revealed that miRNAs promote insulin secretion or regulate insulin resistance by acting on multiple pathways, and abnormal miRNAs expression plays a potentially pathological role in type 2 diabetes. This article is a review of the currently known miRNAs related to the pathogenesis of type 2 diabetes.
[KEY WORDS] microRNAs; diabetes mellitus, type 2; insulin resistance; review
糖尿病在世界范圍內(nèi)呈爆發(fā)性增長,國家糖尿病聯(lián)盟(IDF)2015年的數(shù)據(jù)表明,全球成人糖尿病的患病率已達到8.8%,20~79歲人群中有500萬人死于糖尿病及其并發(fā)癥。中國全國慢性非傳染性疾病預防控制中心對170 287人的調(diào)查結果顯示,糖尿病患病率高達10.9%,糖尿病前期患病率為35.7%[1]。糖尿病人群中90%為2型糖尿病,2型糖尿病的主要病因是由基因、環(huán)境及飲食等綜合因素引起的胰島素缺乏和胰島素抵抗。糖尿病及其并發(fā)癥是致殘、降低病人生活質(zhì)量及導致病人早亡的主要原因,對糖尿病的預防及控制迫在眉睫。
大約90%哺乳動物基因組包含非編碼序列,microRNA(miRNA)是一種長為19~23個核苷酸的非編碼小RNA。miRNA結合到mRNA的3′端非翻譯區(qū),對mRNA進行剪切、降解或去腺苷酸化調(diào)控,影響mRNA 的完整性,或者通過干擾其翻譯進行轉錄后調(diào)控。miRNA在轉錄后水平調(diào)控成千上萬個基因,在多個生物學過程中發(fā)揮關鍵作用,如細胞增殖、分化、凋亡和癌變等。有關研究結果表明,miRNA在糖尿病、胃癌及慢性心力衰竭病人中均呈差異性表達[2-4]。miRNA通過作用于多個通路促進胰島素分泌或調(diào)節(jié)胰島素抵抗,可能成為治療糖尿病的新靶點。因此,明確miRNA在糖尿病發(fā)病中的分子作用機制,可能為糖尿病的進一步治療提供新的靶點。本文主要就目前所知與2型糖尿病發(fā)病機制有關的miRNA進行綜述。
1 miRNA在β細胞中的作用
2004年,POY等[5]首次報道了miR-375可直接調(diào)節(jié)胰島分泌。miR-375直接靶向作用于3′-磷酸肌醇依賴性激酶1 mRNA,從而降低胰島素分泌,3′-磷酸肌醇依賴性激酶1 mRNA是胞內(nèi)磷脂酰肌醇激酶(PI3K)途徑中的關鍵分子;降低miR-375水平可促進胰島素分泌。miR-375敲除小鼠表現(xiàn)出高糖血癥伴β細胞數(shù)量的減少。在糖尿病ob/ob小鼠中可觀察到miR-375表達升高。在2型糖尿病病人的胰島細胞中也發(fā)現(xiàn)miR-375的表達升高[6]。這些研究結果表明,miR-375不僅能調(diào)節(jié)葡萄糖穩(wěn)態(tài)(例如胰島素基因表達)和胰島素分泌(通過對胞吐作用的影響),而且在胰腺β細胞的發(fā)育、維持和存活中也起重要作用。
miR-9可以負向調(diào)節(jié)胰島素的分泌,其作用機制是以靶向作用homeobox2的切口,增加Rab3/Rab27 GTPase效應物granuphilin水平,阻止質(zhì)膜上β細胞分泌顆粒物,從而抑制胰島素分泌。miR-124a可負向調(diào)節(jié)葡萄糖誘導的胰島素分泌,在2型糖尿病病人的胰腺中其表達是上調(diào)的[7]。miR-124a2靶向作用于Mtpn和Foxa2 mRNA[7],而Foxa2是胰腺發(fā)育的主要調(diào)控因子,它通過作用于下游靶點胰腺和十二指腸同源盒1及與胰島素分泌和葡萄糖代謝相關的基因發(fā)揮生物學作用。miR-29可以靶向作用于單羧酸鹽轉運蛋白1,從而影響胰島素的釋放。miR-29亞種型通過減少Onecut2的表達、增強granuphilin的表達,達到抑制MIN6細胞系和胰島細胞胰島素釋放。因此,miR-29負向調(diào)控葡萄糖刺激的胰島素分泌。miR-29作為胰島素刺激的葡萄糖代謝和脂質(zhì)過氧化的重要調(diào)節(jié)因子,參與2型糖尿病的發(fā)生[8]。miR-182是β細胞特異的miRNA。胰島β細胞中miR-182的表達水平顯著高于胰腺α細胞。通過靶向下調(diào)β細胞內(nèi)α細胞特異性基因和調(diào)節(jié)胰高血糖素合成的重要轉錄因子cMaf的表達抑制α細胞表型的形成,可維持β細胞表型的穩(wěn)定性[9]。miR-182可能對胰島β細胞表型的維持及功能的調(diào)控有重要作用,其表達異??赡軈⑴c了糖尿病的發(fā)病過程。目前所知與β細胞功能相關的miRNA見表1。
2 miRNA和胰島素抵抗
研究證實,miRNA參與肥胖病人脂肪細胞的基因表達。Goto-Kakizaki大鼠是一種目前已成熟的2型糖尿病大鼠模型[29],其骨骼肌、肝臟和脂肪組織中miR-29表達增加。在脂肪細胞衍生的3T3-L1細胞系中也發(fā)現(xiàn),高糖血癥或者高胰島素血癥均可誘導miR-29的表達[30]。miR-29可調(diào)控由FOXA2介導的脂質(zhì)代謝基因表達,如PPARGC1A、HMGCS2和ABHD5[31]。3T3-L1細胞中miR-29過表達可使胰島素誘導的葡萄糖攝取減少,導致胰島素抵抗。胰島素抵抗的3T3-L1脂肪細胞中miR-320的表達顯著上調(diào),miR-320表達增強有助于改善胰島素的敏感性。應用miR-320拮抗劑干預后,胰島素抵抗明顯增強[32]。miR-320與糖尿病小鼠的胰腺組織學改變密切相關,其相關信號通路為PI3K/Akt信號通路[33]。
miR-103和miR-107在肥胖小鼠中呈高表達狀態(tài)。沉默miR-103和miR-107可改善脂肪組織和肝臟的胰島素抵抗[34]。miR-103/107存在于脂肪或肝臟組織中,其靶基因小窩蛋白-1是一種胰島素受體(Insr)必不可少的調(diào)控因子。miR-103/107通過靶向作用于小窩蛋白-1,導致胰島素抵抗[35]。miR-143在高脂飲食誘導的肥胖小鼠腸系膜脂肪組織及db/db小鼠的肝臟中表達上調(diào)[22,36]。在糖尿病前期,miR-103的表達已明顯升高。糖尿病小鼠miR-103和miR-143的表達較非糖尿病小鼠明顯升高[35]。降低miR-103和miR-143的表達,血糖水平隨之降低[37]。
miRNA let-7可下調(diào)骨骼肌中胰島素-PI3K-mTOR信號通路的蛋白,如Insr、胰島素樣生長因子1受體(Igf1r)、Irs2、Pik3ip1、Akt2、Tsc1和Rictor。缺乏肌肉特異性RNA結合蛋白Lin28a的小鼠和誘導let-7轉基因小鼠表現(xiàn)出葡萄糖耐量異常[38]。糖尿病合并動脈硬化的病人let-7表達下降,增強let-7的表達有助于改善血管內(nèi)皮炎性反應[39]。廣泛敲除let-7家族,可改善肝臟和肌肉的胰島素敏感性,其部分原因是通過Insr和Irs2表達水平的恢復[40]。
miR-122是肝臟特異性miRNA,與胰島素抵抗、代謝綜合征、糖尿病等密切相關[41]。血液中miR-122表達增強的糖耐量異常病人不會進展為糖尿病[42]。ob/ob小鼠和鏈脲佐菌素誘導的糖尿病小鼠肝臟中的miR-122表達水平均降低[43]。蛋白酪氨酸磷酸酶1b作為miR-122的另一個直接靶點,通過對Insr和Insr底物的酪氨酸殘基去磷酸化抑制肝臟胰島素信號通路。
許多miRNA與胰島素抵抗緊密相關,受營養(yǎng)、代謝和炎癥狀態(tài)等影響。隨著臨床技術的發(fā)展,miRNA靶向方法如小分子操作以及特異性抑制miRNA的表達和功能等為疾病治療提供了新的方向,在體內(nèi)試驗確認其治療特異性、有效性、安全性后,有望用于治療多種臨床疾病,尤其是治療2型糖尿病和肥胖。目前所知與胰島素抵抗相關的miRNA見表2。
3 與2型糖尿病相關的miRNA
來自意大利的一項關于動脈粥樣硬化的前瞻性研究表明,在病人發(fā)生2型糖尿病前的數(shù)年,其血漿miR-15a、miR-28-3p、miR-29b、miR-126和miR-223等的表達水平已發(fā)生改變[60]。NIELSEN等[61]第一次報道了非1型糖尿病兒童與1型糖尿病兒童血清中的12種miRNA(miR-152、miR-30a-5p、miR-181a、miR-24、miR-148a、miR-210、miR-27a、miR-29a、miR-26a、miR-27b、miR-25和miR-200a)的表達水平不同。
近年來,2型糖尿病和其他疾病的基因?qū)W檢測技術發(fā)生了巨大變化?,F(xiàn)在高速發(fā)展的高通量基因組測序技術可檢測單核苷酸多態(tài)性(SNPs)的精確信息,目前國際化的HapMap技術也可達到同樣目的。近年來,全基因組關聯(lián)研究(GWAS)通過測定基因組中的SNP位點,已經(jīng)鑒定出了與2型糖尿病易感性相關的80多個基因[62]。
在應用GWAS的基礎上,VAN DE BUNT等[63]鑒定出了調(diào)控2型糖尿病易感基因的miRNA,其表達差異可能構成2型糖尿病遺傳基礎的一部分。糖尿病的主要病理生理學特征是胰島素分泌不足,許多已篩選出的易感基因與胰島素分泌不足相關。VAN DE BUNT等[63]將在胰島細胞中獲得的384個miRNA與人類其他組織相對比發(fā)現(xiàn),有40個miRNA在β細胞中特異性高表達。這40個特異性高表達的miRNA包括直接調(diào)控胰島素分泌的miR-375及以往未曾報道的與糖尿病有關的miR-27b-3p和miR-192-5p。實際上,GWAS數(shù)據(jù)已經(jīng)使用糖尿病遺傳復制和薈萃分析的數(shù)據(jù)組合(DIAGRAM)進行了深入的分析[64]。2型糖尿病的幾個易感位點就是通過DIAGRAM篩選基因組編碼區(qū)胰島表達的miRNA前體重疊區(qū)域發(fā)現(xiàn)的。最值得注意的是,胰腺β細胞特異性miRNA靶基因也是2型糖尿病的易感基因,如AP3S2、CNK16、NOTCH2、SCL30A8、VPS26A和WFS1等,這些基因的多態(tài)性均與胰島素分泌減少有關[63]。
4 結語
許多研究結果都闡述了miRNA在代謝性疾病——糖尿病的病理生理學中發(fā)揮的功能作用,以及在建立和(或)維持β細胞特性及功能過程中發(fā)揮的作用。雖然已經(jīng)在小鼠和人類中鑒定了數(shù)千種miRNA,并且證實幾十個miRNA與糖尿病有關,但它們的確切作用機制在很大程度上仍然未完全明了,這有待于進一步研究。此外,近年來,隨著對2型糖尿病病理生理機制的進一步研究,篩選出2型糖尿病的異常表達miRNA作為其潛在生物標志物成為研究熱點。不斷深入認識miRNA,進一步了解其功能特點,可為糖尿病潛在的發(fā)病機制和遺傳易感性研究提供新的視點,尤其是在調(diào)控β細胞功能和胰島素抵抗方面。
[參考文獻]
[1] WANG L M, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017,317(24):2515-2523.
[2] MELNIK B C. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus[J]. Nutr Metab, 2019,16:85.
[3] OHZAWA H, KUMAGAI Y, YAMAGUCHI H, et al. Exosomal microRNA in peritoneal fluid as a biomarker of peritoneal metastases from gastric cancer[J]. Ann Gastroenterol Surg, 2020,4(1):84-93.
[4] FOINQUINOS A, BATKAI S, GENSCHEL C, et al. Precli-nical development of a miR-132 inhibitor for heart failure treatment[J]. Nat Commun, 2020,11(1):633.
[5] POY M N, ELIASSON L, KRUTZFELDT J, et al. A panc-reatic islet-specific microRNA regulates insulin secretion[J]. Nature, 2004,432(7014):226-230.
[6] ZHAO H L, GUAN J, LEE H M, et al. Up-regulated panc-reatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition[J]. Pancreas, 2010,39(6):843-846.
[7] SEBASTIANI G, PO A, MIELE E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion[J]. Acta Diabetol, 2015,52(3):523-530.
[8] MASSART J, SJGREN R J O, LUNDELL L S, et al. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle[J]. Diabetes, 2017,66(7):1807-1818.
[9] KLEIN D, MISAWA R, BRAVO-EGANA V, et al. Micro-RNA expression in alpha and beta cells of human pancreatic islets[J]. PLoS One, 2013,8(1):e55064.
[10] GURUNG B, MUHAMMAD A B, HUA X X. Menin is required for optimal processing of the microRNA let-7a[J]. J Biol Chem, 2014,289(14):9902-9908.
[11] WANG Y, LIU J, LIU C, et al. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells[J]. Diabetes, 2013,62(3):887-895.
[12] LATREILLE M, HAUSSER J, STTZER I, et al. Micro-RNA-7a regulates pancreatic β cell function[J]. J Clin Investig, 2014,124(6):2722-2735.
[13] HU D Z, WANG Y, ZHANG H Y, et al. Identification of miR-9 as a negative factor of insulin secretion from beta cells[J]. Journal of Physiology and Biochemistry, 2018,74(2):291-299.
[14] SUN L L, JIANG B G, LI W T, et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression[J]. Diabetes Res Clin Pract, 2011,91(1):94-100.
[15] ZHANG Z W, ZHANG L Q, DING L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1[J]. FEBS Letters, 2011,585(16):2592-2598.
[16] BAGGE A, CLAUSEN T R, LARSEN S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion[J]. Biochem Biophys Res Commun, 2012,426(2):266-272.
[17] LU H M, HAO L Y, LI S T, et al. Elevated circulating stea-ric acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-dependent pathway[J]. Diabetologia, 2016,59(6):1247-1257.
[18] BAROUKH N N, VAN OBBERGHEN E. Function of microRNA-375 and microRNA-124a in pancreas and brain[J]. FEBS J, 2009,276(22):6509-6521.
[19] HENNESSY E, CLYNES M, JEPPESEN P B, et al. Identifification of microRNAs with a role in glucose stimulated insulin secretion by expression profifiling of MIN6 cells[J]. Biochem Biophys Res Commun, 2010,396(2):457-462.
[20] NESCA V, GUAY C, JACOVETTI C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes[J]. Diabetologia, 2013,56(10):2203-2212.
[21] JORDAN S D, KRGER M, WILLMES D M, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol, 2011,13(4):434-446.
[22] KANG M H, ZHANG L H, WIJESEKARA N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145[J]. Arterioscler Thromb Vasc Biol, 2013,33(12):2724-2732.
[23] MELKMAN-ZEHAVI T, OREN R, KREDO-RUSSO S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors[J]. The EMBO Journal, 2011,30(5):835-845.
[24] TATTIKOTA S G, RATHJEN T, MCANULTY S J, et al. Argonaute2 mediates compensatory expansion of the pancrea-tic β cell[J]. Cell Metab, 2014,19(1):122-134.
[25] BAO L D, FU X D, SI M W, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes[J]. PLoS One, 2015,10(2):e0116067.
[26] LOCKE J M, DA SILVA XAVIER G, DAWE H R, et al. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion[J]. Diabetologia, 2014,57(1):122-128.
[27] XU G L, CHEN J Q, JING G, et al. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204[J]. Nat Med, 2013,19(9):1141-1146.
[28] EL OUAAMARI A, BAROUKH N, MARTENS G A, et al. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in panc-reatic beta-cells[J]. Diabetes, 2008,57(10):2708-2717.
[29] HE A, ZHU L, GUPTA N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes[J]. Mol Endocrinol, 2007,21(11):2785-2794.
[30] HERRERA B M, LOCKSTONE H E, TAYLOR J, et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes[J]. Diabetologia, 2010,53:1099-1109.
[31] KURTZ C L, PECK B C E, FANNIN E E, et al. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes[J]. Diabetes, 2014,63(9):3141-3148.
[32] LING H Y, OU H S, FENG S D, et al. Changes in micro-RNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes[J]. Clin Exp Pharmacol Physiol, 2009,36(9):e32-e39.
[33] MO F F, AN T, ZHANG Z J, et al. Jiang Tang Xiao ke gra-nule play an anti-diabetic role in diabetic mice pancreatic tissue by regulating the mRNAs and microRNAs associated with PI3K-Akt signaling pathway[J]. Frontiers in Pharmacology, 2017,8:795.
[34] TRAJKOVSKI M, HAUSSER J, SOUTSCHEK J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature, 2011,474(7353):649-653.
[35] VATANDOOST N, AMINI M, IRAJ B, et al. Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats[J]. Gene, 2015,572(1):95-100.
[36] TAKANABE R, ONO K, ABE Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochemical and Biophysical Research Communications, 2008,376(4):728-732.
[37] EL-GHARBAWY R M, EMARA A M, ABU-RISHA S E S. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in type-2 diabetes[J]. Biomedicine & Pharmacotherapy, 2016,84:810-820.
[38] ZHU H, SHYH-CHANG N, SEGR A V, et al. The Lin28/let-7 axis regulates glucose metabolism[J]. Cell, 2011,147(1):81-94.
[39] BRENNAN E P, WANG B, MCCLELLAND A, et al. Protective effect of let-7 miRNA family in regulating inflammation?in diabetes-associated atherosclerosis[J]. Diabetes, 2017,66(8):2266-2277.
[40] DEIULIIS J A. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics[J]. Int J Obes, 2005,2016,40(1):88-101.
[41] WILLEIT P, SKROBLIN P, MOSCHEN A R, et al. Circulating MicroRNA-122 is associated with the risk of new-onset metabolic syndrome and type-2-diabetes[J]. Diabetes, 2017,66(2):347-357.
[42] BRANDT S, ROOS J, INZAGHI E, et al. Circulating levels of miR-122 and nonalcoholic fatty liver disease in pre-pubertal obese children[J]. Pediatr Obes, 2018,13(3):175-182.
[43] LI S J, CHEN X, ZHANG H J, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status[J]. J Lipid Res, 2009,50(9):1756-1765.
[44] FROST R J, OLSON E N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs[J]. Proc Natl Acad Sci USA, 2011,108(52):21075-21080.
[45] GRANJON A, GUSTIN M P, RIEUSSET J, et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway[J]. Diabetes, 2009,58(11):2555-2564.
[46] LAWAN A, MIN K, ZHANG L, et al. Skeletal muscle-specific deletion of MKP-1 reveals a p38 MAPK/JNK/Akt signaling node that regulates obesity-induced insulin resistance[J]. Diabetes, 2018,67(4):624-635.
[47] KIM S Y, KIM A Y, LEE H W, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J]. Biochem Biophys Res Commun, 2010,392(3):323-328.
[48] HUNG Y H, KANKE M, KURTZ C L, et al. Acute suppression of insulin resistance-associated hepatic miR-29 in vivo improves glycemic control in adult mice[J]. Physiol Genom, 2019,51(8):379-389.
[49] LEE J, PADHYE A, SHARMA A Y, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition[J]. J Biol Chem, 2010,285(17):12604-12611.
[50] CHEN Y H, HENEIDI S, LEE J M, et al. miRNA-93 inhi-bits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance[J]. Diabetes, 2013,62(7):2278-2286.
[51] JEONG H J, PARK S Y, YANG W M, et al. The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SK-Hep1 cells[J]. Biochem Biophys Res Commun, 2013,434(3):503-508.
[52] YANG Y M, SEO S Y, KIM T H, et al. Decrease of micro-RNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid[J]. Hepatology, 2012,56(6):2209-2220.
[53] CHENG Z H, LUO C, GUO Z L. LncRNA-XIST/micro-RNA-126 sponge mediates cell proliferation and glucose metabolism through the IRS1/PI3K/Akt pathway in glioma[J]. J Cell Biochem, 2020,121(3):2170-2183.
[54] LEE E K, LEE M J, ABDELMOHSEN K S, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferato-ractivated receptor gamma expression[J]. Mol Cell Biol, 2011,31(4):626-638.
[55] GOK O, KARAALI Z, ERGEN A, et al. Serum sirtuin 1 protein as a potential biomarker for type 2 diabetes: increased expression of sirtuin 1 and the correlation with microRNAs[J]. J Res Med Sci: Off J Isfahan Univ Med Sci, 2019,24:56.
[56] DOU L, ZHAO T, WANG L L, et al. miR-200s contribute to interleukin-6 (IL-6)-induced insulin resistance in hepatocytes[J]. Journal of Biological Chemistry, 2013,288(31):22596-22606.
[57] PENG J, ZHOU Y, DENG Z, et al. miR-221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin-1 (SIRT1) [J]. J Cell Biochem, 2018,119(8):6418-6428.
[58] ISHIDA M, SHIMABUKURO M, YAGI S, et al. Micro-RNA-378 regulates adiponectin expression in adipose tissue:a new plausible mechanism[J]. PLoS One, 2014,9(11):e111537.
[59] KORNFELD J W, BAITZEL C, KNNER A C, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b[J]. Nature, 2013,494(7435):111-115.
[60] ZAMPETAKI A, KIECHL S, DROZDOV I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010,107(6):810-817.
[61] NIELSEN LB, WANG C, SRENSEN K, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during di-sease progression[J]. Exp Diabetes Res, 2012,2012:896362.
[62] IMAMURA M, TAKAHASHI A, YAMAUCHI T N, et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes[J]. Nat Commun, 2016,28(7):10531.
[63] VAN DE BUNT M, GAULTON K J, PARTS L, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis[J]. PLoS One, 2013,8(1):e55272.
[64] MORRIS A P, VOIGHT B F, TESLOVICH T M, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes[J]. Nat Genet, 2012,44(9):981-990.
(本文編輯 馬偉平)