關(guān)健飛 沈智超 曹陽(yáng)
摘要:微生物對(duì)人類(lèi)生活和全球生物地球化學(xué)循環(huán)存在深刻影響,其中稀有微生物群落是評(píng)價(jià)微生物多樣性的重要因素,是微生物遺傳和功能多樣性的存儲(chǔ)庫(kù),具有驅(qū)動(dòng)地球化學(xué)循環(huán)、指示環(huán)境變化、降解污染物、穩(wěn)定群落結(jié)構(gòu)等重要功能。介紹了稀有微生物群落的相關(guān)概念、類(lèi)型、研究方法、存在機(jī)制及功能作用,為進(jìn)一步研究微生物的生物地理學(xué)、探索微生物基因組等提供參考。
關(guān)鍵詞:稀有微生物;群落;稀有性;類(lèi)型;功能
中圖分類(lèi)號(hào):Q939 ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):0439-8114(2020)15-0005-07
Abstract: Microbes have a profound impact on people′s lives and they also affect the global biogeochemical cycle. A rare microbial community has an important ecological role, in evaluating microbial diversity, a repository with genetic and functional diversity, and serves severe important functions, such as driving the geochemical cycle, responding to environmental changes, degrading pollutants, and stabilizing the community structure. The concept, types, research methods, existing mechanism and function of rare microbial community were introduced, which could provide reference for further study of microbial biogeography and exploration of microbial genome.
Key words: rare microorganism; community; rarity; type; function
環(huán)境中具有典型的物種豐度分布偏斜特征,表現(xiàn)為相對(duì)高豐度的少量?jī)?yōu)勢(shì)物種與相對(duì)低豐度的大量稀有物種共存[1]。稀有種群作為地球生態(tài)系統(tǒng)中至關(guān)重要但又脆弱的組成部分,在生物地球化學(xué)循環(huán)中扮演著重要的角色,是微生物群落功能的一個(gè)潛在驅(qū)動(dòng)力[2]。雖然現(xiàn)階段對(duì)稀有微生物群落的關(guān)注與日俱增,但大部分研究仍以?xún)?yōu)勢(shì)物種為基礎(chǔ)[3]。主要是由于優(yōu)勢(shì)微生物的豐度變化往往會(huì)掩蓋低豐度類(lèi)群的種群動(dòng)態(tài),導(dǎo)致其被忽視。但隨著科學(xué)技術(shù)的發(fā)展,低豐度微生物群落的進(jìn)一步測(cè)定分析成為可能,繼而發(fā)現(xiàn)稀有微生物圈物種也可以作為關(guān)鍵物種,對(duì)生態(tài)系統(tǒng)做出重要貢獻(xiàn)[4-7]。有研究表明,稀有微生物群落雖然所占豐度比例較低,卻是α多樣性和β多樣性的重要貢獻(xiàn)者[8],物種多樣性能夠影響群落的穩(wěn)定性和恢復(fù)能力,這意味著低豐度群落在維持生態(tài)系統(tǒng)健康方面具有重要作用和意義[3,9,10]。此外,稀有微生物群落的豐度還可以反映環(huán)境的選擇[11,12],也可以代表一種特殊的生物地理學(xué)環(huán)境[13-16],它們的存在與獨(dú)特的豐度分布和系統(tǒng)發(fā)育組成有關(guān)[17],當(dāng)稀有微生物作為關(guān)鍵物種存在時(shí),其對(duì)生態(tài)系統(tǒng)能夠產(chǎn)生巨大的影響[18-20]。
1 稀有微生物群落的定義
稀有性可能是隨機(jī)過(guò)程[21]、生命史策略的內(nèi)在權(quán)衡[22]以及生物與非生物相互作用[23,24]的結(jié)果。稀有性可以通過(guò)多種方式來(lái)定義,如局部豐富度、棲息地特異性、地理分布等[25],在微生物生態(tài)學(xué)中,局部豐度(Local abundance)是衡量物種稀有性最簡(jiǎn)單、最常用的指標(biāo)[2]。高通量測(cè)序技術(shù)(HTS)分辨率的不斷提高,為微生物多樣性的研究提供了新的支持[26]。核糖體RNA小亞基序列(SSU-rRNA)基因測(cè)序[27]開(kāi)發(fā)的幾種HTS方法揭示了大量的低豐度微生物類(lèi)群的存在。在這些數(shù)據(jù)中定義稀有微生物群落使用的方法包括相對(duì)豐度截止值(<0.1%[28,29]或<0.01%[17])、生成數(shù)據(jù)集的序列計(jì)數(shù)(如每個(gè)樣本2個(gè)序列[30])和經(jīng)驗(yàn)閾值[31,32]。無(wú)論用于定義稀有性的閾值如何選擇,基于標(biāo)記基因測(cè)定的微生物群落豐度分布通常顯示出低相對(duì)豐度操作分類(lèi)單元(OTUs)的長(zhǎng)“尾巴”,這條“尾巴”即為稀有微生物群落,它的長(zhǎng)度和形狀取決于樣品群落的多樣性和基本物種的豐度分布[33-35]。不同的樣品中稀有微生物相對(duì)應(yīng)的長(zhǎng)尾的大小存在差異,一般高多樣性微生物的樣本“尾巴”更長(zhǎng)[3]。
2 稀有微生物群落分類(lèi)及存在機(jī)制
根據(jù)相對(duì)豐度的周期性變化,Lynch等[3]將稀有微生物群落分為5類(lèi)(圖1)。第一類(lèi)屬于r-策略者,該類(lèi)群微生物的豐富度可以在豐富和稀有之間進(jìn)行周期性的變換,這種變換取決于周期性的環(huán)境調(diào)節(jié),如溫度、季節(jié)等。第二類(lèi)屬永久稀有類(lèi)群,雖然表現(xiàn)出周期性的豐度變化,但卻始終以低相對(duì)豐度存在,并且相對(duì)豐度能夠?qū)-選擇變化作出反應(yīng),該類(lèi)群占據(jù)狹窄生態(tài)位。第三類(lèi)同樣屬于r-策略者,但與第一類(lèi)的區(qū)別在于該類(lèi)群只是偶爾以相對(duì)罕見(jiàn)的高豐度持續(xù)存在,歸因于對(duì)偶爾或隨機(jī)的環(huán)境變化做出反應(yīng),如降水、壓力等。第四類(lèi)同樣屬于永久稀有類(lèi)群,包括可能的關(guān)鍵物種,表現(xiàn)出持久的豐度變化不明顯的低豐度分布,占據(jù)狹窄生態(tài)位。第五類(lèi)屬于暫時(shí)類(lèi)群,只是偶爾出現(xiàn),但相對(duì)豐度在稀有范圍內(nèi),其存在的持久性取決于合適的繁殖和生存條件。稀有性生物圈中周期性或偶發(fā)性出現(xiàn)的類(lèi)群可以被認(rèn)為是有條件的稀有分類(lèi)群。
稀有性可能是隨機(jī)過(guò)程,簡(jiǎn)單地通過(guò)隨機(jī)的種群波動(dòng)而出現(xiàn),不存在任何特定的生理特征[21];也可能是物種在進(jìn)入新群落時(shí),由于數(shù)量上的差異表現(xiàn)出來(lái)的稀有;同時(shí)外在的非生物和生物因素在物種稀有性中起著關(guān)鍵作用。Jousset等[2]認(rèn)為導(dǎo)致微生物局部稀有的可能潛在機(jī)制主要包括4個(gè)方面:狹窄的生態(tài)位(圖2a)、高度的種間競(jìng)爭(zhēng)(圖2b)、低競(jìng)爭(zhēng)能力(圖2c)和捕食頻率(圖2d)。功能高度專(zhuān)一化的物種只有在特定的適宜環(huán)境下才能大量存在,而在大多數(shù)環(huán)境中以稀有形式存在,生態(tài)位狹窄(圖2a)。生物相互作用在解釋稀有性方面也有重要意義,對(duì)于那些競(jìng)爭(zhēng)能力弱、無(wú)法構(gòu)建生物膜等保護(hù)性結(jié)構(gòu)或無(wú)法利用關(guān)鍵資源的微生物而言,隨著競(jìng)爭(zhēng)對(duì)手的增加,其豐富度下降(圖2b)。一個(gè)對(duì)于資源沒(méi)有競(jìng)爭(zhēng)力的物種可能經(jīng)常保持稀有而不滅絕狀態(tài)(圖2c)。許多微生物在大多數(shù)情況下通常都是不活躍的,豐度很低,只有在更有利的條件出現(xiàn)時(shí)才逐漸占優(yōu)勢(shì)(圖2d),例如某些物種過(guò)度地捕食其他物種為稀有物種留下生存的空間,導(dǎo)致稀有物種相對(duì)豐度的增加。
3 稀有微生物群落的研究方法
復(fù)雜的微生物群落包含大量的低豐度物種且低豐度物種占有相當(dāng)大的比例。研究表明稀有微生物圈包含關(guān)鍵物種,并充當(dāng)基因組多樣性的儲(chǔ)存庫(kù)以促進(jìn)群落的適應(yīng)能力。所以說(shuō)稀有微生物圈在一定程度上控制著微生物群落,并占據(jù)重要的生態(tài)位。如表1所示,傳統(tǒng)的純培養(yǎng)技術(shù)在研究高度多樣化環(huán)境(如土壤)中的微生物時(shí)具有重要價(jià)值[36,37],因?yàn)樵谂囵B(yǎng)中獲取的稀有物種能夠進(jìn)行特定的生理生化試驗(yàn),結(jié)合單細(xì)胞基因組學(xué)和重建基因組學(xué)可以深入了解它們的功能作用,然而傳統(tǒng)培養(yǎng)技術(shù)卻也在一定程度上限制了人類(lèi)對(duì)稀有微生物群落的理解。高通量測(cè)序技術(shù)的發(fā)明和改進(jìn)使得微生物群落結(jié)構(gòu)的深入分析成為可能[38-42]。但測(cè)序顯示的是特定時(shí)間地點(diǎn)存在的物種,提供有關(guān)特定物種或群落潛在功能的有用信息仍需通過(guò)試驗(yàn)來(lái)驗(yàn)證完成;并且測(cè)序數(shù)據(jù)分析過(guò)程中的人為處理導(dǎo)致細(xì)菌群落中大量先前未被發(fā)現(xiàn)的稀有物種消失,使得稀有群落在各種生態(tài)系統(tǒng)中的功能的重要性無(wú)法探知。因此,將傳統(tǒng)培養(yǎng)方法與現(xiàn)代測(cè)序技術(shù)相結(jié)合,比單獨(dú)采用一種方法更能夠描述稀有微生物群落的多樣性[43-47],再加上細(xì)胞分離、基因組恢復(fù)、多重置換擴(kuò)增、穩(wěn)定同位素探測(cè)、功能性亞基因組學(xué)、稀有類(lèi)群的靶向擴(kuò)增和培養(yǎng)、共生網(wǎng)絡(luò)和指示物種分析等技術(shù)手段,可以更全面地了解稀有微生物圈在微生物群落中的分布和作用[3]。
4 稀有微生物群落的功能作用
稀有物種可以驅(qū)動(dòng)地球化學(xué)循環(huán)的關(guān)鍵過(guò)程,能夠響應(yīng)并適應(yīng)環(huán)境的變化,是溫室氣體產(chǎn)生與消耗、污染物降解的參與者。它們可以通過(guò)阻止新物種的入侵來(lái)影響群落的聚集,并在波動(dòng)的環(huán)境中穩(wěn)定群落。此外,稀有微生物能夠阻止病原菌群落的建立和刺激宿主發(fā)生免疫反應(yīng),是動(dòng)植物宿主相關(guān)微生物群的重要組成部分。
4.1 驅(qū)動(dòng)地球化學(xué)循環(huán)
微生物是驅(qū)動(dòng)地球生物地球化學(xué)循環(huán)的重要引擎[48],物質(zhì)循環(huán)過(guò)程中,稀有微生物種屬能夠產(chǎn)生巨大影響。研究發(fā)現(xiàn),高活性的稀有關(guān)鍵物種Chromatium okenii屬(約占細(xì)胞總數(shù)的0.3%)貢獻(xiàn)了系統(tǒng)中40%以上的銨和70%以上的碳的吸收量,對(duì)環(huán)境介質(zhì)中氮和碳的吸收至關(guān)重要[49]。Zhang等[50]研究發(fā)現(xiàn)土壤稀有微生物(細(xì)菌和真菌)在調(diào)節(jié)土壤有效氮含量方面作用明顯。反硝化菌的減少導(dǎo)致土壤中潛在的反硝化活性顯著降低[51]。稀有微生物還能夠還原硫酸鹽,進(jìn)而抑制甲烷的排放。在缺氧環(huán)境中,亞硫酸鹽和硫酸鹽還原微生物(SRM)能夠?qū)⒘蚝吞嫉难h(huán)聯(lián)系在一起,Vigneron等[52]對(duì)14個(gè)生態(tài)系統(tǒng)樣品中的SRM研究發(fā)現(xiàn),環(huán)境變化導(dǎo)致SRM分布不斷擴(kuò)大,其中96%以上可被視為稀有生物圈的SRM。泥炭地硫酸鹽的減少可以大大減少甲烷的排放。Hausmann等[53]對(duì)泥炭地中異養(yǎng)硫酸鹽還原研究發(fā)現(xiàn),低豐度OTUs(<1%的基因組豐度)對(duì)硫酸鹽的添加有顯著反應(yīng)。這些OTUs包括已知的硫酸鹽還原類(lèi)群,如脫硫孢子菌、脫硫弧菌等,也包括未知硫酸鹽還原劑或其代謝相互作用類(lèi)群。Pester等[54]在泥炭地長(zhǎng)期試驗(yàn)場(chǎng)中同樣發(fā)現(xiàn),一種僅占微生物群落16S rRNA基因總數(shù)0.006%的脫硫孢子菌是一種重要的硫酸鹽還原劑,能夠轉(zhuǎn)化碳流,改變它們對(duì)全球變暖的影響。
4.2 指示環(huán)境變化
稀有微生物群落對(duì)環(huán)境變化敏感[24]。目前與人類(lèi)活動(dòng)有關(guān)的環(huán)境變化,如全球氣候變化、土地集約利用等,均能夠?qū)ο∮猩锶拖嚓P(guān)的生態(tài)系統(tǒng)功能產(chǎn)生影響[55]。監(jiān)測(cè)稀有微生物群落相對(duì)豐度或活性的變化可以作為環(huán)境變化的早期預(yù)警[56]。在水環(huán)境介質(zhì)中,研究發(fā)現(xiàn)短時(shí)間內(nèi)環(huán)境的變化能夠改變鹽沼上覆水體中稀有類(lèi)群(<1%總豐度)的群落結(jié)構(gòu)[57],水體理化性質(zhì)的變化能夠改變稀有浮游細(xì)菌群落結(jié)構(gòu),總磷、銨態(tài)氮和葉綠素是制約水環(huán)境中稀有類(lèi)群變異的主要環(huán)境因子[58]。Wang等[59]研究發(fā)現(xiàn)稀有類(lèi)群有助于微生物群落對(duì)水體里的有機(jī)污染物做出反應(yīng)。在土壤環(huán)境介質(zhì)中溫度改變后,能夠使稀有細(xì)菌群落進(jìn)行重新組合[60]。Bartram等[61]對(duì)蘇格蘭克雷布斯通實(shí)驗(yàn)農(nóng)場(chǎng)土壤中的微生物研究發(fā)現(xiàn),傳統(tǒng)分析方法無(wú)法識(shí)別的OTUs與不同的pH具有相關(guān)性。因此,稀有類(lèi)群有助于提高微生物群落對(duì)環(huán)境擾動(dòng)的響應(yīng),加強(qiáng)稀有微生物的研究,對(duì)于更好地理解微生物多樣性的價(jià)值具有重要意義。
稀有微生物群落還可以提供一個(gè)長(zhǎng)期支持生態(tài)系統(tǒng)穩(wěn)定的生物庫(kù),響應(yīng)干擾并適應(yīng)干擾。干擾改變微生物群落組成,影響生態(tài)系統(tǒng)潛在過(guò)程。生態(tài)系統(tǒng)適應(yīng)環(huán)境擾動(dòng)的能力取決于干擾持續(xù)的時(shí)間和強(qiáng)度以及系統(tǒng)整體的生物多樣性[62]。Gomez-alvarez等[63]研究顯示稀有類(lèi)群在模擬飲用水分配系統(tǒng)中受到干擾(消毒、改變運(yùn)行參數(shù)、生物膜階段)時(shí),結(jié)構(gòu)發(fā)生變化,但卻能夠恢復(fù)到穩(wěn)定狀態(tài)。而Sj?stedt等[64]研究表明干擾(鹽度變化)能夠?qū)Ω∮渭?xì)菌群落組成造成影響,稀有類(lèi)群在受到干擾后變得更加豐富,而這些稀有浮游細(xì)菌在維持生態(tài)系統(tǒng)功能過(guò)程中具有重要作用。
4.3 參與溫室氣體甲烷的產(chǎn)生與消耗
Yang等[65]以mcrA基因?yàn)榘悬c(diǎn)對(duì)環(huán)境中的稀有產(chǎn)甲烷古菌進(jìn)行研究發(fā)現(xiàn),在考慮稀有類(lèi)群的情況下,α多樣性與甲烷的產(chǎn)生呈正相關(guān),條件稀有產(chǎn)甲烷類(lèi)群在很大程度上解釋了稀有微生物圈的整體群落動(dòng)態(tài),并可能在有利的環(huán)境條件下轉(zhuǎn)化為優(yōu)勢(shì)群落。Sierocinski等[66]研究發(fā)現(xiàn)天然群落的初始組成與甲烷產(chǎn)量之間沒(méi)有相關(guān)性,但在實(shí)驗(yàn)室條件下進(jìn)行生態(tài)選擇后,稀有物種在甲烷生成群落中起著重要作用,與甲烷產(chǎn)量之間呈現(xiàn)正相關(guān)關(guān)系;認(rèn)為產(chǎn)甲烷菌群幾乎沒(méi)有功能上的冗余,因此,在厭氧消化過(guò)程中,繁殖條件變化造成的多樣性損失都有可能減少甲烷的產(chǎn)生。而Wagner等[67]對(duì)北極阿拉斯加土壤中產(chǎn)甲烷微生物進(jìn)行研究,結(jié)果與Sierocinski等[66]不同,認(rèn)為產(chǎn)甲烷菌可能存在高度的功能冗余,稀有物種豐度可能是微生物群之間的驅(qū)動(dòng)力,影響北極甲烷產(chǎn)量。而B(niǎo)odelier等[68]在研究微生物群落結(jié)構(gòu)組成在調(diào)節(jié)河漫灘甲烷排放中的作用時(shí)發(fā)現(xiàn),河岸濕地甲烷消耗的動(dòng)態(tài)和強(qiáng)度與甲烷氧化菌(MOB)相對(duì)豐度和活性有關(guān),MOB作為該生態(tài)系統(tǒng)中微生物群落的次要組成部分,其多樣性參數(shù)與體外甲烷消耗量呈線性關(guān)系。
4.4 降解污染物
微生物多樣性的減少會(huì)降低污染物的降解[69]。Wei等[70]應(yīng)用培養(yǎng)技術(shù)和16S rRNA測(cè)序技術(shù)對(duì)污泥中膽固醇厭氧降解途徑的研究過(guò)程中發(fā)現(xiàn),膽固醇的降解能力為某些稀有微生物種群所保留。稀有物種可能是提供了催化復(fù)雜降解過(guò)程所需的基因庫(kù),即污染物通常是由原始樣品中低于檢測(cè)限的物種完成降解[71]。這種解釋得到了Fuentes等[72]的驗(yàn)證,其研究土壤微生物群落在石油烴污染及不同生物修復(fù)處理下短期動(dòng)態(tài)變化過(guò)程中發(fā)現(xiàn),試驗(yàn)中受柴油污染的土壤中都觀察到一種天然的γ-蛋白桿菌迅速而顯著增長(zhǎng)的情況,該操作分類(lèi)單元在試驗(yàn)初期相對(duì)豐度僅占0.1%,但在6周后竟高達(dá)60%以上。這種從稀有到豐富的豐度的轉(zhuǎn)變,說(shuō)明了稀有微生物群落在面對(duì)環(huán)境干擾時(shí)的潛在作用。
4.5 保障機(jī)體/環(huán)境健康
小麥根際致病菌銅綠假單胞菌的入侵會(huì)隨著微生物多樣性的降低而增加,入侵程度與微生物多樣性成反比[73],高多樣性的土壤微生物群落是防止李斯特菌入侵的生物屏障[74]。Gera Hol等[75]在量化稀有種群在生態(tài)系統(tǒng)中作用的過(guò)程中發(fā)現(xiàn),土壤稀有微生物群落能夠增加植物的防御能力,在作物保護(hù)中發(fā)揮作用。低豐度菌群在植物根際代謝活躍,是植物根際細(xì)菌群落組成的主要驅(qū)動(dòng)因子[76],在一定程度上稀有菌群有助于植物葉面積和根長(zhǎng)等性狀的表達(dá)[77];稀有物種的喪失會(huì)影響植物的生產(chǎn)力[78]。綜上所述,稀有微生物群落在控制有害微生物的入侵、保障機(jī)體/環(huán)境健康等方面起到了至關(guān)重要的作用[79,80],分析原因可能是由于其占據(jù)了關(guān)鍵生態(tài)位,減緩了入侵物種群落的建立[81]。
5 總結(jié)和展望
近年來(lái),稀有微生物群落的生態(tài)學(xué)意義和潛在的進(jìn)化學(xué)意義受到越來(lái)越多的關(guān)注,以下幾方面問(wèn)題亟需解決。①稀有微生物群落在分類(lèi)上存在盲點(diǎn),識(shí)別和解決這些盲點(diǎn)將有助于發(fā)現(xiàn)新的系統(tǒng)發(fā)育譜系。②隨著測(cè)試手段的不斷創(chuàng)新,數(shù)以百萬(wàn)甚至千萬(wàn)的低豐度序列會(huì)被發(fā)現(xiàn),測(cè)試結(jié)果中大部分OTUs屬于稀有微生物部分,且很大一部分基因序列未被分類(lèi)。如何科學(xué)有效地處理和分析這些數(shù)據(jù),這些基因序列對(duì)應(yīng)著怎樣的功能,如何使這些基因序列為人類(lèi)所用,都值得研究。③不同環(huán)境中稀有微生物種群究竟以怎樣的存在方式發(fā)揮作用,是否存在功能上的冗余;對(duì)于全球氣候的變化稀有微生物群落又起到怎樣的作用?,F(xiàn)階段人類(lèi)可能只觸及稀有微生物的表面,稀有微生物很可能包含比迄今為止所發(fā)現(xiàn)的更多的多樣性。因此,有關(guān)稀有微生物的分類(lèi)學(xué)、基因組學(xué)和生態(tài)學(xué)還需進(jìn)一步探究。
參考文獻(xiàn):
[1] NEMERGUT D R,COSTELLO E K,HAMADY M,et al. Global patterns in the biogeography of bacterial taxa[J]. Environmental microbiology,2011,13(1):135-144.
[2] JOUSSET A,BIENHOLD C,CHATZINOTAS A,et al. Where less may be more: How the rare biosphere pulls ecosystems strings[J]. The ISME Journal,2017,11(4):853-862.
[3] LYNCH M D J,NEUFELD J D. Ecology and exploration of the rare biosphere[J]. Nature reviews microbiology,2015,13(4):217-229.
[4] NEUFELD J D,VOHRA J,DUMONT M G,et al. DNA stable-isotope probing[J]. Nature protocols,2007,2(4):860-866.
[5] VERASTEGUI Y,CHENG J,ENGEL K,et al. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities[J]. American society for microbiology,2014,5(4):e01157-14.
[6] GREEN S J,MINZ D. Suicide polymerase endonuclease restriction, a novel technique for enhancing PCR amplification of minor DNA templates[J]. Applied and environmental microbiology,2005,71(8):4721-4727.
[7] ZENGLER K,TOLEDO G,RAPPE M,et al. Cultivating the uncultured[J]. Proceedings of the national academy of sciences of the United States of America,2002,99(24):15681-15686.
[8] ZHOU Q,ZHANG X M,HE R J,et al. The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of phragmites Australis[J]. Diversity-Basel,2019,11(6):98.
[9] YACHI S,LOREAU M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis[J]. Proceedings of the national academy of sciences of the United States of America,1999,96(4):1463-1468.
[10] JONES S E,LENNON J T. Dormancy contributes to the maintenance of microbial diversity[J]. Proceedings of the national academy of sciences of the United States of America,2010,107(13):5881-5886.
[11] NEWTON R J,HUSE S M,MORRISON H G,et al. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling[J]. PLoS ONE,2013,8(9):e74265.
[12] VERGIN K L,DONE B,CARLSON C A,et al. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean[J]. Aquatic microbial ecology,2013,71(1):1-13.
[13] YOUSSEF N,SHEIK C S,KRUMHOLZ L R,et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys[J]. Applied and environmental microbiology,2009,75(16):5227-5236.
[14] GOKUL J K,CAMERON K A,IRVINE-FYNN T D L,et al. Illuminating the dynamic rare biosphere of the Greenland ice sheet's dark zone[J]. FEMS Microbiology Ecology,2019,95(12):177.
[15] MO Y Y,ZHANG W J,YANG J,et al. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes[J]. The ISME Journal,2018,12(9):2198-2210.
[16] GOODFELLOW M,NOUIOUI I,SANDERSON R,et al. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils[J]. Antonie van Leeuwenhoek international journal of general and molecular microbiology,2018,111(8):1315-1332.
[17] GALAND P E,CASAMAYOR E O,KIRCHMAN D L,et al. Ecology of the rare microbial biosphere of the Arctic Ocean[J]. Proceedings of the national academy of sciences of the United States of America,2009,106(52):22427-22432.
[18] GIOVANNONI S J,STINGL U. Molecular diversity and ecology of microbial plankton[J]. Nature,2005,437(7057):343-348.
[19] PHOLCHAN M K,BAPTISTA J C,DAVENPORT R J,et al. Microbial community assembly, theory and rare functions[J]. Frontiers in microbiology,2013,4:68.
[20] LEIT?O R P,ZUANON J,VILLEGER S,et al. Rare species contribute disproportionately to the functional structure of species assemblages[J]. Proceedings of the royal society b-biological sciences,2016,283(1828):20160084.
[21] AI D X C,CHU C J,ELLWOOD M D F,et al. Migration and niche partitioning simultaneously increase species richness and rarity[J]. Ecological modelling,2013,258: 33-39.
[22] GUDELJ I,WEITZ J S,F(xiàn)ERENCI T,et al. An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure[J]. Ecology letters,2010,13(9):1073-1084.
[23] NARISAWA N,HARUTA S,ARAI H,et al. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria[J]. Applied and environmental microbiology,2008,74(12):3887-3894.
[24] GASTON K J. Biodiversity and extinction: the importance of being common[J]. Progress physical geography,2008,32(1):73-79.
[25] FLAMM B R. The biological aspects of rare plant conservation[J]. Journal of wildlife management,1983,47(3):892.
[26] SOGIN M L,MORRISON H G,HUBER J A,et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”[J]. Proceedings of the national academy of sciences of the United States of America,2006,103(32):12115-12120.
[27] GLOOR G B,HUMMELEN R,MACKLAIM J M,et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products[J]. PLoS ONE,2010,5(10):e15406.
[28] PEDR?S-ALI? C. The rare bacterial biosphere[J]. Annual review of marine science,2012,4:449-466.
[29] SKOPINA M Y,VASILEVA A A,PERSHINA E V,et al. Diversity at low abundance: The phenomenon of the rare bacterial biosphere[J]. Microbiology,2016,85(3):272-282.
[30] QIN J J,LI R Q,RAES J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464(7285):59-65.
[31] GOBET A,QUINCE C,RAMETTE A. Multivariate Cutoff Level Analysis (MultiCoLA) of large community data sets[J]. Nucleic acids research,2010,38(15):e155.
[32] HAEGEMAN B,HAMELIN J,MORIARTY J,et al. Robust estimation of microbial diversity in theory and in practice[J]. The ISME Journal,2013,7(6):1092-1101.
[33] CURTIS T P,SLOAN W T,SCANNELL J W. Estimating prokaryotic diversity and its limits[J]. Proceedings of the national academy of sciences of the United States of America,2002,99(16):10494-10499.
[34] CURTIS T P,SLOAN W T. Prokaryotic diversity and its limits: Microbial community structure in nature and implications for microbial ecology[J]. Current opinion in microbiology,2004,7(3):221-226.
[35] CURTIS T P,HEAD I M,LUNN M,et al. What is the extent of prokaryotic diversity?[J]. Philosophical transactions of the royal society b-biological sciences,2006,361(1475):2023-2037.
[36] PORTILLO M C,LEFF J W,LAUBER C L,et al. Cell size distributions of soil bacterial and archaeal taxa[J]. Applied and environmental microbiology,2013,79(24):7610-7617.
[37] KURM V,VAN DER PUTTEN W H,DE BOER W,et al. Low abundant soil bacteria can be metabolically versatile and fast growing[J]. Ecology,2017,98(2):555-564.
[38] WU L,SUN Q,NI J. Not all of the rare operational taxonomic units (otus) play the same role in maintaining community stability[J]. Applied ecology and environmental research,2017,15(1):105-112.
[39] LIU M,XUE Y Y,YANG J. Rare plankton subcommunities are far more affected by DNA extraction kits than abundant plankton[J]. Frontiers in microbiology,2019,10:454.
[40] KUNIN V,ENGELBREKTSON A,OCHMAN H,et al. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates[J]. Environmental microbiology,2010,12(1):118-123.
[41] ASHBY M N,RIN J,MONGODIN E F,et al. Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities[J]. Applied and environmental microbiology,2007,73(14):4532-4542.
[42] HU B Y,XU B X,YUN J L,et al. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge[J]. Lab on a Chip,2020,20(2):363-372.
[43] KURM V,VAN DER PUTTEN W H,GERA HOL W H. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium[J]. PLoS ONE,2019,14(1):e0210073.
[44] SHADE A,HOGAN C S,KLIMOWICZ A K,et al. Culturing captures members of the soil rare biosphere[J]. Environmental microbiology,2012,14(9):2247-2252.
[45] CRESPO B G,WALLHEAD P J,LOGARES R,et al. Probing the rare biosphere of the North-West Mediterranean Sea: An experiment with high sequencing effort[J]. PLoS ONE,2016,11(7):e0159195.
[46] HAMASAKI K,TANIGUCHI A,TADA Y,et al. Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing[J]. Gene,2016,576(2):650-656.
[47] PODAR M,ABULENCIA C B,WALCHER M,et al. Targeted access to the genomes of low-abundance organisms in complex microbial communities[J]. Applied and environmental microbiology,2007,73(10):3205-3214.
[48] FALKOWSKI P G,F(xiàn)ENCHEL T,DELONG E F. The microbial engines that drive Earth's biogeochemical cycles[J]. Science,2008,320(5879):1034-1039.
[49] MUSAT N,HALM H,WINTERHOLLER B,et al.A single-cell view on the ecophysiology of anaerobic phototrophic bacteria[J]. Proceedings of the national academy of sciences of the United States of America,2008,105(46):17861-17866.
[50] ZHANG Y,DONG S K,GAO Q Z,et al. “Rare biosphere” plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes[J]. Agriculture ecosystems & environment,2019,279:187-193.
[51] PHILIPPOT L,SPOR A,HENAULT C,et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. The ISME Journal,2013,7(8):1609-1619.
[52] VIGNERON A,CRUAUD P,ALSOP E,et al. Beyond the tip of the iceberg; a new view of the diversity of sulfite- and sulfate-reducing microorganisms[J]. The ISME Journal,2018,12(8):2096-2099.
[53] HAUSMANN B,KNORR K H,SCHRECK K,et al. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms[J]. The ISME Journal,2016,10(10):2365-2375.
[54] PESTER M,BITTNER N,DEEVONG P,et al. A ‘rare biosphere microorganism contributes to sulfate reduction in a peatland[J]. The ISME Journal,2010,4(12):1591-1602.
[55] RODRIGUES J L M,PELLIZARI V H,MUELLER R,et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities[J]. National academy of sciences of the United States of America,2013,110(3):988-993.
[56] CHAMBERS L G,GUEVARA R,BOYER J N,et al. Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil[J]. Wetlands,2016,36(2):361-371.
[57] KEARNS P J,HOLLOWAY D,ANGELL J H,et al. Effect of short-term, diel changes in environmental conditions on active microbial communities in a salt marsh pond[J]. Aquatic microbial ecology,2018,80(1):29-41.
[58] JIAO C C,ZHAO DY,HUANG R,et al. Abundant and rare bacterioplankton in freshwater lakes subjected to different levels of tourism disturbances[J]. Water,2018,10(8):1075.
[59] WANG Y Q,HATT J K,TSEMENTZI D,et al. Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem[J]. Applied and environmental microbiology,2017,83(8):e03321-16.
[60] JIAO S,LU Y H. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J/OL]. Environmental microbiology,2019,DOI:10.11 11/1462-2920.14815.
[61] BARTRAM A K,JIANG X P,LYNCH M D J,et al. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm[J]. ?FEMS microbiology ecology,2014,87(2):403-415.
[62] PREISNER E C,F(xiàn)ICHOT E B,NORMAN R S. Microbial mat compositional and functional sensitivity to environmental disturbance[J]. Frontiers in microbiology,2016,7:1632.
[63] GOMEZ-ALVAREZ V, PFALLER S, PRESSMAN J G, et al. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria[J]. Environmental science-water research & technology,2016,2(4):645-657.
[64] SJ?STEDT J,KOCH-SCHMIDT P,PONTARP M,et al. Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance[J]. Applied and environmental microbiology,2012,78(5):1361-1369.
[65] YANG S Z,WINKEL M,WAGNER D,et al. Community structure of rare methanogenic archaea: insight from a single functional group[J]. FEMS microbiology ecology,2017,93(11):126.
[66] SIEROCINSKI P,BAYER F,YVON-DUROCHER G,et al. Biodiversity-function relationships in methanogenic communities[J]. Molecular ecology,2018,27(22):4641-4651.
[67] WAGNER R,ZONA D,OECHEL W,et al. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils[J]. Environmental microbiology,2017,19(8):3398-3410.
[68] BODELIER P L E,MEIMA-FRANKE M,HORDIJK C A,et al. Microbial minorities modulate methane consumption through niche partitioning[J]. ISME Journal,2013,7(11):2214-2228.
[69] DELGADO-BAQUERIZO M,GIARAMIDA L,REICH P B,et al.Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning[J]. Journal of ecology,2016,104(4):936-946.
[70] WEI S T S,WU Y W,LEE T H,et al. Microbial functional responses to cholesterol catabolism in denitrifying sludge[J]. Msystems,2018,3(5):e00113-18.
[71] GIEBLER J,WICK L Y,CHATZINOTAS A,et al. Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles[J]. FEMS microbiology ecology,2013,86(2):45-58.
[72] FUENTES S,BARRA B,CAPORASO J G,et al. From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation[J]. Applied and environmental microbiology,2016,82(3):888-896.
[73] MATOS A,KERKHOF L,GARLAND JL. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere[J]. Microbial ecology,2005,49(2):257-264.
[74] VIVANT A L,GARMYN D,MARON P A,et al. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil[J]. PLoS ONE,2013,8(10):e76991.
[75] GERA HOL W H, DE BOER W, TERMORSHUIZEN A J, et al. Reduction of rare soil microbes modifies plant-herbivores interactions[J]. Ecology Letters,2010,13(3):292-301.
[76] DAWSON W,HOR J,EGERT M,et al. A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization[J]. Frontiers in microbiology,2017,8:975.
[77] HENNING J A,WESTON D J,PELLETIER D A,et al. Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways[J]. American journal of botany,2019,106(11):1423-1434.
[78] GERA HOL W H,DE BOER W,DE HOLLANDER M,et al. Context dependency and saturating effects of loss of rare soil microbes on plant productivity[J]. Frontiers in plant science,2015,6:485.
[79] MALLON C A,POLY ?F,LE ROUX X,et al. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities[J]. Ecology,2015,96(4):915-926.
[80] GERA HOL W H,GARBEVA P,HORDIJK C,er al. Non-random species loss in bacterial communities reduces antifungal volatile production[J]. Ecology,2015,96(8):2042-2048.
[81] VAN DER GAST C J,WALKER A W,STRESSMANN F A,et al.Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities[J]. The ISME Journal,2011,5(5):780-791.