張海亮,劉澳星,米思遠(yuǎn),李想,羅漢鵬,鄢新義,王雅春
奶牛育種中的長壽性狀
張海亮,劉澳星,米思遠(yuǎn),李想,羅漢鵬,鄢新義,王雅春
(中國農(nóng)業(yè)大學(xué)動物科學(xué)技術(shù)學(xué)院,北京 100193)
長壽性狀是奶牛育種中最重要的功能性狀之一,除產(chǎn)量性狀之外,長壽性狀具有最大的經(jīng)濟(jì)價值。由于遺傳力低、數(shù)據(jù)分布特殊和性狀表現(xiàn)晚等特點(diǎn),長壽性狀也是選育難度最大的性狀之一。自上世紀(jì)50年代起,長壽性狀就進(jìn)入了各國奶牛育種家的視野,針對長壽性狀的研究持續(xù)進(jìn)行;上世紀(jì)90年代后,各奶業(yè)發(fā)達(dá)國家陸續(xù)將長壽性狀納入其奶牛綜合選擇指數(shù)。目前,我國奶牛綜合選擇指數(shù)(CPI)中尚不包含長壽性狀,對長壽性狀的研究也處于起步階段。文章通過整理分析奶牛長壽性狀的有關(guān)研究,從性狀定義、遺傳評估方法、與其他性狀的關(guān)系、遺傳標(biāo)記、性狀選育策略等方面系統(tǒng)介紹了長壽性狀的研究和選育情況。通過匯總有關(guān)長壽性狀與其他性狀遺傳相關(guān)的研究,闡述了長壽性狀與其他性狀之間的復(fù)雜關(guān)系;通過收集各國奶牛選育方案中的相關(guān)信息,重點(diǎn)介紹了各主要奶業(yè)發(fā)達(dá)國家對長壽性狀的選育策略。此外,本文還通過收集在我國奶牛群體中針對長壽性狀開展的研究,概述了奶牛長壽性狀在我國的研究現(xiàn)狀。長壽性狀有許多不同的定義,可使用不同的模型對其進(jìn)行遺傳評估,包括線性模型、閾模型、生存分析模型和隨機(jī)回歸模型等。長壽性狀與產(chǎn)量、體型、繁殖、健康和管理類性狀等存在低到中等的遺傳相關(guān),線性體型性狀中,與泌乳系統(tǒng)有關(guān)的體型性狀與長壽性狀的遺傳相關(guān)較高;繁殖和健康性狀表現(xiàn)更好的奶牛,其長壽性狀通常表現(xiàn)更好;長壽性狀與其他性狀之間的遺傳關(guān)系受牛群選育方向的影響較大,在不同群體中,長壽性狀與同一性狀的遺傳相關(guān)不盡相同。奶業(yè)發(fā)達(dá)國家的奶牛綜合選擇指數(shù)中均包含長壽性狀,這些國家除了使用直接長壽進(jìn)行選擇之外,部分國家還同時采用間接選擇的方法對長壽性狀進(jìn)行選育,常用于間接選擇長壽性的其他性狀主要包括泌乳系統(tǒng)、腰強(qiáng)度、尻角度、肢蹄和乳房炎抗性等。在不同群體中,均發(fā)現(xiàn)了大量與長壽性狀相關(guān)的遺傳標(biāo)記,其中大多數(shù)標(biāo)記都定位在已報(bào)道的與繁殖、疾病和體型等性狀相關(guān)的遺傳區(qū)域內(nèi)。文章還提出了從數(shù)據(jù)收集、遺傳參數(shù)估計(jì)、遺傳標(biāo)記挖掘、評估模型和選擇策略探討等方面針對我國奶牛群體進(jìn)行長壽性狀研究的必要性。
奶牛;長壽性;遺傳評估;遺傳相關(guān);遺傳標(biāo)記;遺傳選育
長壽是奶牛生產(chǎn)盈利的基礎(chǔ)要素,除了產(chǎn)量性狀之外,長壽性狀具有最大的經(jīng)濟(jì)價值,是奶牛育種中最重要的功能性狀之一。每頭奶牛只有彌補(bǔ)了其在后備牛階段的培育成本之后,才有可能為牧場帶來收益。一般認(rèn)為奶牛在第二個泌乳期能夠保持收支平衡,只有達(dá)到第三個泌乳期及以上,才能夠獲得較高的利潤率[1]。提高奶牛長壽性,可以延長奶牛盈利期的長度,獲得更高的收益;可以減少后備牛的飼養(yǎng)頭數(shù),降低牛群更新的成本;在牛群規(guī)模不變的情況下,可以允許牧場進(jìn)行更高比例的主動淘汰,增加選擇強(qiáng)度,進(jìn)而加快牛群的遺傳進(jìn)展;牛群更加長壽意味著群體的健康水平更高,牧場的獸藥和獸醫(yī)投入也會更少[2-4]。
影響奶牛長壽性的因素有很多,所有能夠影響奶牛淘汰的因素均會對奶牛長壽性產(chǎn)生影響。奶牛淘汰時所記錄的淘汰原因多種多樣,按照牧場管理者淘汰時的意愿,可以分為主動淘汰和被動淘汰[5]。主動淘汰的原因主要有年老、低產(chǎn)或育種計(jì)劃等,被動淘汰則包括繁殖障礙、產(chǎn)后疾病、乳房疾病、肢蹄疾病、消化代謝疾病、外傷等,這些疾病和外界因素將導(dǎo)致奶牛生產(chǎn)能力下降或消失,甚至個體死亡,從而影響奶牛的長壽性。由于長壽性影響因素復(fù)雜、性狀定義多樣、數(shù)據(jù)分布特殊、性狀表現(xiàn)晚、遺傳力低(大多在0.02—0.15[6-8])等特點(diǎn),長壽性狀是奶牛育種中最復(fù)雜、選育最困難的性狀之一。本文將從長壽性狀的定義、遺傳評估、與其他性狀的關(guān)系、遺傳標(biāo)記、選育方法等方面對長壽性狀進(jìn)行概述,以期能幫助我國相關(guān)研究人員系統(tǒng)地了解奶牛長壽性狀,對我國奶牛長壽性狀的研究和選育提供參考和借鑒。
根據(jù)觀察值的數(shù)據(jù)類型,可將各種長壽性狀的定義分為兩類。第一類定義以奶牛在牧場中整個生存周期或某一(幾)個生存階段中的生存時間(單位為天、月、胎次等)作為觀察值[9-10],包括在群壽命(herd life)、生產(chǎn)壽命(productive life)、產(chǎn)奶壽命(milking life)和產(chǎn)犢次數(shù)(胎次數(shù))等。在群壽命代表了一頭奶牛從出生到離群的整個過程中,在牧場中度過的時間;生產(chǎn)壽命代表了一頭奶牛從頭胎產(chǎn)犢到離群,在牧場中度過的時間;在生產(chǎn)壽命的基礎(chǔ)上,去除奶牛各胎次的干奶期長度,即為產(chǎn)奶壽命。第二類定義以個體在某一(幾)個生存階段內(nèi)生存或死亡的狀態(tài)(survival)作為觀察值,作為二分類閾性狀(0或1)[11-13],可將此類性狀稱為某階段(觀測時間點(diǎn))存活率。為了能與以時間長度定義的第一類長壽性狀保持一致,通常將存活定義為1,淘汰或死亡定義為0。在計(jì)算個體的表型時,不同定義的性狀所需要的信息不同;在選育中,不同定義的長壽性狀對奶牛的側(cè)重點(diǎn)也不盡相同。
此外,對長壽性狀進(jìn)行遺傳評估時,根據(jù)是否校正個體產(chǎn)量水平,可將長壽性狀分為功能長壽(functional longevity,校正產(chǎn)量)和真實(shí)長壽(true longevity,不校正產(chǎn)量)[11]。功能長壽代表了奶??贡粍犹蕴哪芰?,而真實(shí)長壽則同時代表了奶??贡粍犹蕴涂怪鲃犹蕴哪芰Α8鶕?jù)長壽性狀的信息組成,可將長壽性狀分為直接長壽和間接長壽。直接長壽利用奶牛的生存信息定義性狀,直接描述了一頭奶牛的存活狀態(tài)或存活時間;而間接長壽則利用各種能夠早期測定且與直接長壽遺傳相關(guān)較高的其他性狀,間接預(yù)測了一頭奶牛的生存能力[13]。
針對不同定義的各種長壽性狀,不同國家和研究單位使用不同的方法對長壽性狀進(jìn)行遺傳評估,常用的模型有線性模型、閾模型[14]、隨機(jī)回歸模型[15-16]和生存分析模型等[17-18]。線性模型可以對以時間長度定義的壽命類或以存活狀態(tài)定義的生存率類長壽性狀進(jìn)行遺傳評估,閾模型可以對存活率類性狀進(jìn)行遺傳評估。這兩種模型的數(shù)據(jù)準(zhǔn)備過程簡單,可選用的評估軟件較多,各種軟件的計(jì)算速度通常較快,其評估結(jié)果一般能夠滿足公牛排隊(duì)中對育種值估計(jì)可靠性和參數(shù)估計(jì)穩(wěn)定性的要求。對存活率類長壽性狀進(jìn)行遺傳評估時,線性模型和閾模型評估結(jié)果之間的秩相關(guān)高達(dá)0.90以上[14],這兩種評估模型對公牛排隊(duì)的影響較小;使用相同軟件時,線性模型的計(jì)算速度通常更快。
生存分析是研究生存數(shù)據(jù)及其統(tǒng)計(jì)規(guī)律的一種分析方法,生存數(shù)據(jù)描述了從事件起始到事件結(jié)束之間的時間長度,長壽性狀的觀測值是一類典型的生存數(shù)據(jù)。根據(jù)模型特點(diǎn),可將生存分析模型劃分為參數(shù)模型、半?yún)?shù)模型和非參數(shù)模型,常用的參數(shù)模型有指數(shù)分布模型、對數(shù)邏輯斯諦分布模型、威布爾分布模型、伽瑪分布模型、對數(shù)正態(tài)分布模型等。根據(jù)比例風(fēng)險(xiǎn)模型中基礎(chǔ)風(fēng)險(xiǎn)函數(shù)的分布,可劃分為基礎(chǔ)風(fēng)險(xiǎn)函數(shù)為常數(shù)的指數(shù)比例風(fēng)險(xiǎn)模型、基礎(chǔ)風(fēng)險(xiǎn)函數(shù)服從Weibull 分布的Weibull比例風(fēng)險(xiǎn)模型、基礎(chǔ)風(fēng)險(xiǎn)函數(shù)任意的Cox比例風(fēng)險(xiǎn)模型等。生存分析能更好地?cái)M合長壽性狀的數(shù)據(jù)分布,且能利用存活個體的數(shù)據(jù)(刪失數(shù)據(jù)),其評估結(jié)果的可靠性通常優(yōu)于其他方法[7];但該方法也存在計(jì)算速度慢、表型數(shù)據(jù)完整度要求較高、數(shù)據(jù)準(zhǔn)備復(fù)雜等限制因素。此外,受軟件計(jì)算能力限制,使用參數(shù)模型的生存分析目前無法使用動物模型進(jìn)行評估。評估生產(chǎn)壽命性狀時,線性模型與生存分析模型評估結(jié)果的差異主要來自于所用數(shù)據(jù)的差異;數(shù)據(jù)相同時(例如,生存分析中不考慮刪失數(shù)據(jù)),兩種方法評估結(jié)果的秩相關(guān)可達(dá)0.90以上[19-20]。
出于對長壽性狀進(jìn)行間接選擇的考慮,長壽性狀與其他性狀之間的關(guān)系一直是長壽性狀的研究重點(diǎn)。通過不同的方法,長壽性狀與體型、產(chǎn)量、繁殖、健康、管理等五大類性狀之間的關(guān)系被大量報(bào)道。例如,采用多性狀遺傳分析的方法,探究長壽性狀與其他性狀之間的遺傳相關(guān);采用生存分析的方法,研究各性狀的變異對奶牛淘汰風(fēng)險(xiǎn)的影響,確定各性狀能夠解釋長壽性狀變異的相對大?。焕脝涡誀钅P头謩e評估獲得的育種值,計(jì)算長壽性狀與其他性狀之間的近似遺傳相關(guān);利用回歸的方法確定長壽性狀與其他性狀的關(guān)系等。
在荷斯坦牛[21-22]、西門塔爾牛[23]、更賽牛[24]和瑞士褐牛[25]等常見乳用品種中,長壽性狀與部分線性體型性狀之間均存在低到中等的遺傳相關(guān)。本文收集分析了各國奶牛群體中長壽性狀與主要線性體型性狀之間的遺傳相關(guān),長壽性狀與各體型性狀的遺傳相關(guān)范圍如圖1所示。在不同群體中,泌乳系統(tǒng)相關(guān)的線性體型性狀與長壽性狀存在較高的遺傳相關(guān),如泌乳系統(tǒng)得分、乳房深度、前乳頭位置、后乳房高度、后乳房寬度等[26-28];與運(yùn)動相關(guān)的體型性狀與長壽性之間的遺傳相關(guān)較低,甚至接近于零,如肢蹄、骨質(zhì)地、蹄角度、后肢后視等[29];與體軀大小相關(guān)的線性體型性狀與長壽性狀之間多呈低到中等的負(fù)遺傳相關(guān),如體軀容量、體高、體深等。同一群體中,隨著牛只出生年份的變化,荷斯坦牛線性體型性狀與長壽性狀之間的遺傳相關(guān)也在不斷變化[21, 28]。
本文收集分析了各國奶牛群體中常見的產(chǎn)量、繁殖、健康和管理性狀與長壽性狀之間的遺傳相關(guān),長壽性狀與各性狀的遺傳相關(guān)范圍如圖2所示。在各國群體中,產(chǎn)量性狀與長壽性狀間的遺傳相關(guān)范圍較大。在一些群體中,基于頭胎產(chǎn)量水平進(jìn)行的大量主動淘汰造成長壽性狀和產(chǎn)量性狀呈現(xiàn)較高的正遺傳相關(guān)[26, 30];當(dāng)使用校正頭胎產(chǎn)量的功能長壽時,長壽性狀與產(chǎn)量性狀之間的遺傳相關(guān)明顯降低。隨著對牛群產(chǎn)量的高強(qiáng)度選育,高產(chǎn)給予奶牛對抗主動淘汰的優(yōu)勢不再明顯。例如,在1979—1993年間出生的美國荷斯坦牛中,產(chǎn)量性狀與生產(chǎn)壽命之間的遺傳相關(guān)逐漸減小[28]。與低產(chǎn)奶牛相比,高產(chǎn)奶??贡粍犹蕴哪芰Ω?;在部分群體中,產(chǎn)量性狀與功能長壽之間存在負(fù)遺傳相關(guān)[25]。在各國群體中,繁殖性狀與長壽性狀存在低到中等的遺傳相關(guān),繁殖性能表現(xiàn)更好的母牛,其長壽性表現(xiàn)更好。疾病是引起奶牛淘汰的重要因素,奶牛乳房炎和部分繁殖疾?。ǚ敝痴系K、卵巢囊腫)與長壽性狀存在低到中等的負(fù)遺傳相關(guān)[30-33],奶牛疾病抗性越強(qiáng)則長壽性表現(xiàn)越好。此外,與體細(xì)胞評分相比,臨床乳房炎與長壽性之間的遺傳相關(guān)更高[32- 34]。
采用生存分析的方法可以分析各性狀的變異對長壽性的影響,尤其適用于各種分類性狀,如線性體型性狀、疾病性狀和部分繁殖性狀等。通過比較模型中納入各性狀時模型似然率的變化,可以估計(jì)各性狀能夠解釋長壽性狀變異的相對大??;通過計(jì)算各性狀不同水平的相對淘汰風(fēng)險(xiǎn)(OR),可以反應(yīng)各性狀的變異對長壽性的具體影響。
在各線性體型性狀中,泌乳系統(tǒng)相關(guān)的性狀對長壽性有最大的影響,如乳房深度、前乳房附著、后乳房高度、中央懸韌帶等性狀[35-38];除乳頭長度外,泌乳系統(tǒng)相關(guān)性狀表現(xiàn)更好的奶牛,其相對淘汰風(fēng)險(xiǎn)越低[35]。對于體軀容量性狀,荷斯坦牛中,擁有中等體型的奶牛,其相對淘汰風(fēng)險(xiǎn)更低[35, 38];而在娟姍牛和愛爾夏等體型較小的品種中,體型更大的奶牛,其淘汰風(fēng)險(xiǎn)更低[39]。體軀容量相關(guān)的性狀受牛群遺傳改良方向的影響較大,在不同群體間,同一種性狀對長壽性的影響差異較大。此外,乳用特征、泌乳速度等體型性狀對長壽性也有較大的影響。
以存活狀態(tài)定義的長壽性狀統(tǒng)一轉(zhuǎn)換為存活率(將存活定義為1),其估計(jì)育種值的有利方向與以時間長度定義的長壽性狀一致;不返情率、臨床乳房炎和繁殖疾病分別以不返情、臨床乳房炎發(fā)病、繁殖疾病發(fā)病定義為1;圖中“”“”“”分別表示繪圖時參考的遺傳相關(guān)研究數(shù)目<5條、5—10條、>10條;遺傳相關(guān)數(shù)值的參考文獻(xiàn)略
在荷斯坦牛、娟姍牛和愛爾夏牛中,產(chǎn)犢難易、犢牛大小、授精次數(shù)、產(chǎn)后首配日齡、首配至妊娠間隔及空懷天數(shù)等繁殖或產(chǎn)犢性狀對功能生產(chǎn)壽命有顯著影響,繁殖性狀表現(xiàn)越好的奶牛,其相對淘汰風(fēng)險(xiǎn)越低[40]。例如,產(chǎn)犢間隔、空懷天數(shù)和首配至妊娠間隔越短,奶牛淘汰風(fēng)險(xiǎn)越低。體細(xì)胞評分對功能生產(chǎn)壽命有顯著的影響,母牛的淘汰風(fēng)險(xiǎn)隨體細(xì)胞評分的升高而增加,高體細(xì)胞評分奶牛的淘汰風(fēng)險(xiǎn)可達(dá)到牛群平均體細(xì)胞評分個體的4—6倍[41];與高體細(xì)胞數(shù)牛場相比,個體體細(xì)胞數(shù)相同幅度的增加,低體細(xì)胞數(shù)牛場的個體淘汰風(fēng)險(xiǎn)的增加幅度更大[42];與健康牛相比,泌乳期內(nèi)任何時間患乳房炎均會造成奶牛淘汰風(fēng)險(xiǎn)的增加,泌乳高峰期時淘汰風(fēng)險(xiǎn)的增加幅度最大[34]。此外,通過生存分析的方法,發(fā)現(xiàn)泌乳性情[43]、泌乳速度[43]、出生時母親年齡[44]、牛奶尿素氮含量[45]、乳糖率[45]、近交率[46]等性狀的變異對荷斯坦牛、愛爾夏牛和娟姍牛的長壽性存在顯著影響。
篩查前人通過QTL定位的結(jié)果或根據(jù)基因已知的生理功能初步篩選長壽性狀潛在的候選基因,通過候選基因關(guān)聯(lián)分析的方法,可以評估目標(biāo)基因與長壽性狀的關(guān)系,進(jìn)而發(fā)現(xiàn)長壽性狀的候選基因。在長壽性狀的候選基因關(guān)聯(lián)分析中,通常使用生產(chǎn)壽命育種值作為關(guān)聯(lián)表型,使用線性混合模型或生存分析模型進(jìn)行關(guān)聯(lián)分析,各研究中選擇進(jìn)行關(guān)聯(lián)分析的基因大多為已報(bào)道的影響奶牛產(chǎn)奶性能、健康狀況和繁殖性能的基因。在不同群體中,α酪蛋白s1(casein alpha s1,)催乳素受體(prolactin receptor,)奶脂肪球-EGF因子蛋白8(milk fat globule-EGF factor 8 protein,)非受體酪氨酸激酶,SRC原癌基因(SRC proto-oncogene, non-receptor tyrosine kinase,)?;视蚈-酰基轉(zhuǎn)移酶1(diacylglycerol O-acyltransferase 1,)β酪蛋白(casein beta)[47]瘦素(leptin,)[48]硬脂酰輔酶A去飽和酶(stearoyl-CoA desaturase,)[49]絲氨酸蛋白酶抑制因子,分支A(α-1抗蛋白酶,抗胰蛋白酶),成員14(serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin),member 14,別稱)[50]鈣抑素(calpastatin,)[51]和serpin家族A成員1(serpin family A member 1,)[52]等基因存在與長壽性狀顯著關(guān)聯(lián)的SNP或單倍型,這些基因可作為長壽性狀的候選基因。
在部分發(fā)達(dá)國家的奶牛群體中,因低產(chǎn)而進(jìn)行的主動淘汰是影響奶牛長壽性的重要原因;由于對產(chǎn)量性狀的影響,可能造成了[53]和[54-55]等基因在特定群體中間接影響了長壽性狀;在波蘭群體中,當(dāng)校正個體產(chǎn)量水平的影響后,則對長壽性狀沒有顯著的影響[48]。酪蛋白家族基因在奶牛的泌乳和健康中扮演著主要的角色[53-56],和與長壽性狀間的關(guān)系進(jìn)一步證明了這一點(diǎn)。在不同群體中,與奶牛的適應(yīng)性、代謝和健康之間的具體關(guān)系存在爭議,其中一些研究報(bào)道了與疾病風(fēng)險(xiǎn)[57]、死產(chǎn)[58]和犢牛存活率[58]等性狀之間存在顯著的關(guān)系,而這些性狀導(dǎo)致的奶牛淘汰均是長壽性狀的重要組成部分。
全基因組關(guān)聯(lián)分析(genome-wide association analysis,GWAS)是一種鑒定目標(biāo)性狀相關(guān)分子標(biāo)記的有效方法,各國研究人員采用不同的GWAS方法鑒定了大量與長壽性狀顯著相關(guān)的分子標(biāo)記(表1),這些信息為長壽性狀的標(biāo)記輔助選擇和基因組選擇提供了有用信息,同時也為闡釋長壽性狀的分子遺傳基礎(chǔ)奠定了基礎(chǔ)。在長壽性狀的GWAS中,以存活時間長度為單位的生產(chǎn)壽命和在群壽命是最常用的性狀定義方法,單標(biāo)記回歸是最常用的關(guān)聯(lián)分析方法,逆回歸育種值則是最常用的關(guān)聯(lián)分析偽表型。
在各關(guān)聯(lián)分析中,在6、14、16、18和X染色體上發(fā)現(xiàn)的顯著SNP最多,這些SNP大多定位在已知的與奶牛臨床乳房炎、體細(xì)胞數(shù)(評分)、產(chǎn)犢性狀(產(chǎn)犢難易、犢牛大小、死產(chǎn))、繁殖性狀、體型性狀相關(guān)的QTL區(qū)間內(nèi)。如,Cole等[59]利用1 654頭荷斯坦母牛進(jìn)行長壽性GWAS時,分別在7號染色體15.8 Mb處和X染色體106 Mb處發(fā)現(xiàn)了兩個與體細(xì)胞評分、女兒妊娠率共同相關(guān)的遺傳區(qū)域;Nayeri等[60]利用6 116頭公牛進(jìn)行長壽性GWAS時,在13號染色體59 Mb和18號染色體42 — 65 Mb處定位到的遺傳區(qū)域均與前人發(fā)現(xiàn)的產(chǎn)犢性狀QTL區(qū)域重合。在各國群體中,健康和繁殖問題均是引起奶牛淘汰的主要原因,各種長壽性狀實(shí)際上度量了奶牛受產(chǎn)量、健康和繁殖等因素影響的存活時間(能力)。因此,對奶牛長壽性狀進(jìn)行的GWAS,大多發(fā)現(xiàn)了與上述性狀共同相關(guān)的遺傳標(biāo)記。
上世紀(jì)50年代以來,對長壽性狀的大量研究已經(jīng)證明長壽性是可遺傳的,對牛群的長壽性進(jìn)行選育提高是可能的。上世紀(jì)90年代之后,各國奶牛育種協(xié)會陸續(xù)將長壽性狀納入遺傳評估計(jì)劃,隨著對長壽性狀的持續(xù)研究,長壽性狀的定義和遺傳評估方法也在不斷發(fā)展[66]。目前,世界各主要奶業(yè)發(fā)達(dá)國家對長壽性狀的選育情況如表2所示。大多數(shù)國家的奶牛綜合選育指數(shù)中都包含長壽性狀,其權(quán)重多在5%—10%,德國尤其重視奶牛的長壽性選育,其總性能指數(shù)(RZG,2018)中長壽性狀的權(quán)重高達(dá)20%。各國對長壽性狀的定義和評估方法不盡相同,將長壽性狀定義為奶牛在某幾個生命階段的存活狀態(tài)是最常見的定義方法;大多數(shù)國家采用線性模型對各種長壽性狀進(jìn)行遺傳評估,以法國為代表的歐洲聯(lián)合遺傳評估組織使用生存分析的方法進(jìn)行遺傳評估,荷蘭則使用隨機(jī)回歸的方法對長壽性狀進(jìn)行遺傳評估。
利用線性模型評估不同定義的直接長壽,需等到公牛的部分后裔淘汰或死亡后,才能獲得表型信息;能夠利用刪失數(shù)據(jù)的生存分析方法,其估計(jì)育種值的可靠性也僅取決于公牛后裔中非刪失的女兒數(shù)[67],這使得長壽性狀的選育十分困難,長壽性狀成為了奶牛育種中世代間隔最長的性狀。因此,在利用直接長壽進(jìn)行選擇的同時,許多國家也考慮了一些與長壽性狀遺傳相關(guān)較高、并能早期測定的性狀進(jìn)行間接選擇,如美國、加拿大、法國和新西蘭等(表2)。
在性狀的選擇上,早期測定、遺傳力較高的線性體型性狀成為了長壽性狀間接選擇的首選性狀[68],其中體型總分、泌乳系統(tǒng)、腰強(qiáng)度、尻角度、肢蹄等最為常用;在各國群體中,體細(xì)胞評分(數(shù))和臨床乳房炎也是間接選擇長壽性的常用性狀;在美國群體中,因產(chǎn)量水平進(jìn)行的主動淘汰比例較高,產(chǎn)奶量、乳脂量和乳蛋白量也是長壽性狀間接選擇的重要性狀;此外,泌乳速度和部分繁殖性狀也比較常用。
表1 長壽性狀全基因組關(guān)聯(lián)分析研究
由于能夠縮短世代間隔、提高選擇的準(zhǔn)確性,加快遺傳進(jìn)展,基因組選擇方法已經(jīng)在越來越多國家的奶牛育種中得以應(yīng)用[69]。對于表現(xiàn)時間晚、遺傳力低的長壽性狀,基因組選擇的應(yīng)用潛力巨大。通過建立長壽性狀基因組選擇的參考群,使長壽性的選育不再依賴被選擇個體的后裔淘汰信息,能夠大幅縮短長壽性狀的世代間隔。目前,許多國家都已經(jīng)開展了長壽性狀基因組選擇的研究和應(yīng)用,奶業(yè)發(fā)達(dá)國家的成功應(yīng)用證明對長壽性狀進(jìn)行基因組選擇是可行的。據(jù)報(bào)道,德國荷斯坦公牛長壽性狀的基因組育種值可靠性可以達(dá)到51%,比系譜指數(shù)提高了17%[70];美國荷斯坦公牛長壽性狀的基因組育種值可靠性可以達(dá)到45%,比系譜指數(shù)提高了18%[71]。
據(jù)調(diào)查,我國規(guī)模化奶牛場中荷斯坦牛的平均利用胎次不足三胎[72],遠(yuǎn)沒有達(dá)到奶牛生產(chǎn)力最高的階段,嚴(yán)重影響著奶牛養(yǎng)殖的效益。目前,在奶牛育種中,兼顧高產(chǎn)和健康長壽的平衡育種理念已經(jīng)成為各國奶牛育種界的共識。在我國,長壽性狀還沒有納入中國奶牛選育指數(shù),對長壽性狀的研究處于起步階段,僅有使用局部地區(qū)的牛群數(shù)據(jù)進(jìn)行的少量研究。例如,分別針對北京地區(qū)[10]和上海地區(qū)[73]牛群進(jìn)行的遺傳參數(shù)估計(jì)、使用微衛(wèi)星標(biāo)記定位方法[74]和候選基因關(guān)聯(lián)分析方法[75-78]挖掘長壽性狀的遺傳標(biāo)記。目前,我國奶牛群體的長壽性表現(xiàn)較差,不僅嚴(yán)重影響了生產(chǎn)效率,而且也擠壓了進(jìn)行高強(qiáng)度主動淘汰選育其他性狀的空間,我國牛群的長壽性狀選育刻不容緩。在常規(guī)遺傳評估中,各國研究人員從模型和性狀定義等角度提出了許多對長壽性狀進(jìn)行早期選擇的方法;基因組選擇技術(shù)在奶牛育種中成功應(yīng)用之后,有效解決了該性狀選擇世代間隔長的問題;因此,在基因組評估中,長壽性狀評估時所使用的定義和模型還需進(jìn)一步探討。有研究指出,在基因組選擇中,將與目標(biāo)性狀相關(guān)的分子標(biāo)記信息加入到基因組數(shù)據(jù)中可以提高基因組選擇的準(zhǔn)確性[79-80];在我國奶牛群體中,挖掘與長壽性狀相關(guān)的遺傳標(biāo)記可以為該性狀的基因組選擇和標(biāo)記輔助選擇提供有用的信息。此外,長壽性狀的遺傳力較低,其受遺傳與環(huán)境互作效應(yīng)及氣候條件、牧場管理等非遺傳因素的影響較大;我國奶牛養(yǎng)殖在全國各地均有分布,不同地區(qū)之間生產(chǎn)環(huán)境條件和管理模式的差異較大,研究長壽性狀中遺傳與環(huán)境之間的互作具有較大意義。綜上,針對我國奶牛群體,有必要統(tǒng)籌全國牛群數(shù)據(jù),從長壽性狀的遺傳參數(shù)估計(jì)、遺傳評估方法論證、遺傳標(biāo)記挖掘、基因組選擇方法和選育策略等方面開展系統(tǒng)研究十分必要。
表2 各國長壽性狀遺傳評估及選育情況
信息節(jié)選自Interbull(https://interbull.org/index)、各國品種協(xié)會官方網(wǎng)站;表中各項(xiàng)信息均為長壽性狀在荷斯坦牛中的選育信息
Adapted from website of Interbull (https://interbull.org/index) and breed associations from various countries. The information in this table is the selection information of longevity traits in Holstein cattle
隨著我國奶牛養(yǎng)殖對長壽性狀的不斷認(rèn)識,以及育種數(shù)據(jù)的不斷積累,未來一段時間,長壽性狀將會成為我國奶牛遺傳育種領(lǐng)域的研究熱點(diǎn),將長壽性狀納入奶牛選育指數(shù)是我國奶牛育種的必然趨勢。最終,通過遺傳選育的手段,改善牛群的長壽性,進(jìn)而提高奶牛的終生效益,不斷提高我國奶牛養(yǎng)殖的競爭力。
[1] MURRAY B. Finding the tools to achieve longevity in Canadian dairy cows., 2013, 25: 15-28.
[2] JAIRATH L K, HAYES J F, CUE R I. Multitrait restricted maximum likelihood estimates of genetic and phenotypic parameters of lifetime performance traits for Canadian Holsteins., 1994, 77(1): 303-312. DOI: 10.3168/jds.S0022-0302(94)76955-1.
[3] ESSL A. Longevity in dairy cattle breeding: a review., 1998, 57(1): 79-89. DOI: 10.3168/jds.S0022- 0302(94)76955-1.
[4] BROTHERSTONE S, VEERKAMPeerkamp R F, Hill W G. Genetic parameters for a simple predictor of the lifespan of Holstein- Friesian dairy cattle and its relationship to production., 1997, 65(1): 31-37. DOI: 10.1017/S135772980001626X.
[5] WEIGEL K A, PALMER R W, CARAVIELLO D Z. Investigation of factors affecting voluntary and involuntary culling in expanding dairy herds in Wisconsin using survival analysis., 2003, 86(4): 1482-1486. DOI: 10.3168/jds.S0022-0302(03)73733-3.
[6] SEWALEM A, KISTEMAKER G J, DUCROCQ V. Genetic analysis of herd life in Canadian dairy cattle on a lactation basis using a Weibull proportional hazards model., 2005, 88(1): 368-375. DOI: 10.3168/jds.S0022-0302(05)72696-5.
[7] CARAVIELLO D Z, WEIGEL K A, GIANOLA D. Comparison between a Weibull proportional hazards model and a linear model for predicting the genetic merit of US Jersey sires for daughter longevity., 2004, 87(5): 1469-1476. DOI: 10.3168/ jds.S0022-0302(04)73298-1.
[8] DUCROCQ V, QUAAS R L, POLLAK E J. Length of productive life of dairy cows. 2. variance component estimation and sire evaluation., 1988, 71(11): 3071-3079. DOI: 10.3168/ jds.S0022-0302(88)79907-5.
[9] TSURUTA S, MISZTALisztal I, LAWLOR T J. Changing definition of productive life in US Holsteins: effect on genetic correlations., 2005, 88(3): 1156-1165. DOI: 10.3168/ jds.S0022-0302(05)72782-X.
[10] 李想, 鄢新義, 羅漢鵬, 劉林, 郭剛, 王新宇, 王雅春. 不同模型估計(jì)中國荷斯坦牛生產(chǎn)壽命遺傳參數(shù). 畜牧獸醫(yī)學(xué)報(bào), 2019, 50(06): 1162-1170. DOI: 10.11843/j.issn.0366-6964.2019.06.006.
LI X, YAN X Y, LUO H P, LIU L, GUO G, WANG X Y, WANG Y C. Genetic parameters for productive life of Chinese Holsteins by different models.2019, 50(06): 1162-1170. DOI: 10.11843/j.issn.0366-6964.2019.06. 006. (in Chinese)
[11] SHORT T H, LAWLOR T J. Genetic parameters of conformation traits, milk yield, and herd life in Holsteins., 1992, 75(7): 1987-1998. DOI: 10.3168/jds.S0022-0302(92)77958-2.
[12] VISSCHER P M, GODDARD M E. Genetic parameters for milk yield, survival, workability, and type traits for Australian dairy cattle., 1995, 78(1): 205-220. DOI: 10.3168/jds. S0022-0302(95)76630-9.
[13] JAIRATH L, DEKKERS J C, SCHAEFFER L R. Genetic evaluation for herd life in Canada., 1998, 81(2): 550-562. DOI: 10.3168/jds.S0022-0302(98)75607-3.
[14] BOETTCHER P J, JAIRATH L K, DEKKERS J C. Comparison of methods for genetic evaluation of sires for survival of their daughters in the first three lactations., 1999, 82(5): 1034. DOI: 10.3168/jds.S0022-0302(99)75324-5.
[15] VEERKAMP R F, BROTHERSTONE S, ENGEL B. Analysis of censored survival data using random regression models., 2001, 72(1): 1-10. DOI: 10.1017/S1357729800055491.
[16] PELT M L VAN, MEUWISSEN T H E, JONG G DE. Genetic analysis of longevity in Dutch dairy cattle using random regression., 2015, 98(6): 4117-4130. DOI: 10.3168/jds. 2014-9090.
[17] IMBAYARWO-CHIKOSI V E, DZAMA K, HALIMANI T E. Genetic prediction models and heritability estimates for functional longevity in dairy cattle., 2015, 45(2): 105-121. DOI: 10.4314/sajas.v45i2.1.
[18] SASAKI O. Estimation of genetic parameters for longevity traits in dairy cattle: A review with focus on the characteristics of analytical models., 2013, 84(6): 449-460. DOI: 10.1111/asj.12066.
[19] VOLLEMA A R, GROEN A F. A comparison of breeding value predictors for longevity using a linear model and survival analysis., 1998, 81(12): 3315-3320. DOI: 10.3168/jds.S0022-0302(98)75897-7.
[20] LUBBERS R, BROTHERSTONE S, DUCROCQ V P. A comparison of a linear and proportional hazards approach to analyse discrete longevity data in dairy cows., 2000, 70(2): 197-206. DOI: 10.1017/S1357729800054667.
[21] VOLLEMA A R, GROEN A F. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle population., 1997, 80(11): 3006-3014. DOI: 10.3168/jds.S0022-0302(97)76267-2.
[22] ZAVADILOA L, STIPKOVA M. Genetic correlations between longevity and conformation traits in the Czech Holstein population., 2012, 57(3): 125-136. DOI: 10.17221/5566-CJAS.
[23] ZAVADILOA L, NEMCOVA E, STIPKOVA M. Relationships between longevity and conformation traits in Czech Fleckvieh cows., 2009, 54(9): 385-394. DOI: 10. 17221/1685-CJAS.
[24] CRUICKSHANK J, WEIGEL K A, DENTINE M R. Indirect prediction of herd life in Guernsey dairy cattle., 2002, 85(5): 1307-1313. DOI: 10.3168/jds.S0022-0302(02) 74195-7.
[25] VUKASINOVIC N, MOLL J, KUNZI N. Genetic relationships among longevity, milk production, and type traits in Swiss Brown cattle., 1995, 41(1): 11-18. DOI: 10.1016/0301-6226(94)00044-8.
[26] WEIGEL K A, LAWLOR J T J, VANRADEN P M. Use of linear type and production data to supplement early predicted transmitting abilities for productive life., 1998, 81(7): 2040-2044. DOI: 10.3168/jds.S0022-0302(98)75778-9.
[27] SETATI M M, NORRIS D, BANGA C B. Relationships between longevity and linear type traits in Holstein cattle population of Southern Africa., 2004, 36(8): 807-814. DOI: 10.1023/B:TROP.0000045965.99974.9c.
[28] TSURUTA S, MISZTAL I, LAWLOR T J. Genetic correlations among production, body Size, udder, and productive life traits over time in Holsteins., 2004, 87(5): 1457-1468. DOI: 10.3168/jds.S0022-0302(04)73297-X.
[29] PEREZ-CABAL M A, GARCIA C, GONZALEZ-RECIO O. Genetic and phenotypic relationships among locomotion type traits, profit, production, longevity, and fertility in Spanish dairy cows., 2006, 89(5): 1776-1783. DOI: 10.3168/jds.S0022-0302 (06)72246-9.
[30] HAILE-MARIAM M, BOWMAN P J, GODDARD M E. Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle., 2003, 80(3): 189-200. DOI: 10.1016/ S0301-6226(02)00188-4.
[31] HOLTSMARK M, HERINGSTAD B, MADSEN P. Genetic relationship between culling, milk production, fertility, and health traits in Norwegian Red cows., 2008, 91(10): 4006-4012. DOI: 10.3168/jds.2007-0816.
[32] PFEIFFER C, FUERST C, DUCROCQ V. Short communication: Genetic relationships between functional longevity and direct health traits in Austrian Fleckvieh cattle., 2015, 98(10): 7380-7383. DOI: 10.3168/jds.2015-9632.
[33] ROGERS G W, BANOS G, NIELSEN U S. Genetic correlations among somatic cell scores, productive life, and type traits from the United States and udder health measures from Denmark and Sweden., 1998, 81(5): 1445-1453. DOI: 10.3168/ jds.S0022-0302(98)75708-X.
[34] NEERHOF H J, MADSEN P, DUCROCQ V P. Relationships between mastitis and functional longevity in Danish Black and White dairy cattle estimated using survival analysis., 2000, 83(5): 1064-1071. DOI: 10.3168/jds.S0022-0302(00) 74970-8.
[35] BUENGER A, DUCROCQ V, SWALVE H H. Analysis of survival in dairy cows with supplementary data on type scores and housing systems from a region of northwest Germany., 2001, 84(6): 1531-1541. DOI: 10.3168/jds.S0022-0302(01) 70187-7.
[36] LARROQUE H, DUCROCQ V. Relationships between type and longevity in the Holstein breed., 2001, 33(1): 39-59. DOI: 10.1186/1297-9686-33-1-39.
[37] SEWALEM A, KISTEMAKER G J, MIGLIOR F. Analysis of the relationship between type traits and functional survival in Canadian Holsteins using a Weibull proportional hazards model., 2004, 87(11): 3938-3946. DOI: 10.3168/jds.S0022- 0302(04)73533-X.
[38] DADPASAND M, MIRAEI-ASHTIANI S R, MORADI SHAHREBABAK M. Impact of conformation traits on functional longevity of Holstein cattle of Iran assessed by a Weibull proportional hazards model., 2008, 118(3): 204-211. DOI: 10.1016/j.livsci.2008. 01.024.
[39] SEWALEM A, KISTEMAKER G J, VAN DOORMAAL B J. Relationship between type traits and longevity in Canadian Jerseys and Ayrshires using a Weibull proportional hazards model., 2005, 88(4):1552-1560. DOI: 10.3168/jds.S0022- 0302(05)72824-1
[40] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Relationship between reproduction traits and functional longevity in Canadian dairy cattle., 2008, 91(4): 1660-1668. DOI: 10.3168/jds.2007-0178.
[41] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Analysis of the relationship between somatic cell score and functional longevity in Canadian dairy cattle., 2006, 89(9): 3609- 3614. DOI: 10.3168/jds.S0022-0302(06)72400-6.
[42] CARAVIELLO D Z, WEIGEL K A, Shook G E. Assessment of the impact of somatic cell count on functional longevity in Holstein and Jersey cattle using survival analysis methodology., 2005, 88(2): 804-811. DOI: 10.3168/jds.S0022-0302(05) 72745-4.
[43] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Analysis of the relationship between workability traits and functional longevity in Canadian dairy breeds., 2010, 93(9): 4359-4365. DOI: 10.3168/jds.2009-2969.
[44] FUERST-WALTL B, REICHL A, FUERST C. Effect of maternal age on milk production traits, fertility, and longevity in cattle., 2004, 87(7): 2293-2298. DOI: 10.3168/jds.S0022- 0302(04)70050-8.
[45] MIGLIOR F, SEWALEM A, JAMROZIK J. Analysis of milk urea nitrogen and lactose and their effect on longevity in Canadian dairy cattle., 2006, 89(12): 4886-4894. DOI: 10.3168/jds.S0022-0302(06)72537-1.
[46] SEWALEM A, KISTEMAKER G J, MIGLIOR F. Analysis of inbreeding and its relationship with functional longevity in Canadian dairy cattle., 2006, 89(6): 2210-2216. DOI: 10.3168/jds.S0022-0302(06)72291-3.
[47] FONTANESI L, CALO D G, GALIMBERTI G. A candidate gene association study for nine economically important traits in Italian Holstein cattle., 2014, 45(4): 576-580. DOI: 10.1111/ age.12164.
[48] SZYDA J, MOREK-KOPEC M, KOMISAREK J. Evaluating markers in selected genes for association with functional longevity of dairy cattle., 2011, 12:30. DOI: 10.1186/1471-2156-12-30.
[49] KOMISAREK J, DORYNEK Z. Effect of,,andgene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls., 2009, 50(2): 125-132. DOI: 10.1007/ BF03195663.
[50] KHATIB H, SCHUTZKUS V, CHANG Y M. Pattern of expression of the uterine milk protein gene and its association with productive life in dairy cattle., 2007, 90(5): 2427-2433. DOI: 10.3168/jds.2006-722.
[51] GARCIA M D, MICHAL J J, GASKINS C T. Significant association of the calpastatin gene with fertility and longevity in dairy cattle., 2006, 37(3): 304-305. DOI: 10.1111/j.1365-2052. 2006.01443.x.
[52] KHATIB H, HEIFETZ E, DEKKERS J C. Association of the protease inhibitor gene with production traits in Holstein dairy cattle., 2005, 88(3): 1208-1213. DOI: 10.3168/jds.S0022- 0302(05)72787-9.
[53] RUSSO V, FONTANESI L, DOLEZAL M, DOLEZAL M, LIPKIN E, SCOTTI E, ZAMBONELLI P, DALL’OLIO S, BIGI D, DAVOLI R, CANAVESI F, MEDUGORAC I, FOSTER M, SOLKNER J, SCHIAVINI F, BAGNATO A, SOLLER M. A whole genome scan for QTL affecting milk protein percentage in Italian Holstein cattle, applying selective milk DNA pooling and multiple marker mapping in a daughter design., 2012, 43(1): 72. DOI: 10.1111/ j.1365-2052.2012.02353.x.
[54] HILL R, CANAL A, BONDIOLI K, MORELL R, GARCIA M D. Molecular markers located on the DGAT1, CAST, and LEPR genes and their associations with milk production and fertility traits in Holstein cattle., 2016, 15(1). DOI:10.4238/gmr.15017794.
[55] GAUTIER M, CAPITAN A, FRITZ S, EGGEN A, BOICHARD D, DRUET T. Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle., 2007, 90(6): 2980-2988. DOI:10.3168/jds. 2006-707.
[56] HUANG W, PENAGARICANO F, AHMAD K R, LUCEY J A, WEIGEL K A, KHATIB H. Association between milk protein gene variants and protein composition traits in dairy cattle., 2012, 95(1): 440-449. DOI:10.3168/jds.2011-4757.
[57] CHEBEL R C, SUSCA F, SANTOS J E P. Leptin genotype is associated with lactation performance and health of Holstein cows., 2008, 91(7): 2893-2900. DOI:10.3168/ jds.2007-0891.
[58] BRICKELL J S, POLLOTT G E, CLEMPSON A M, OTTER N, WATHES D C. Polymorphisms in the bovine leptin gene associated with perinatal mortality in Holstein-Friesian heifers., 2010, 93(1): 340-347. DOI:10.3168/jds.2009-2457.
[59] COLE J B, WIGGANS G R, MA L. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows., 2011, 12(1): 408.
[60] NAYERI S, SARGOLZAEI M, ABO-ISMAIL M K. Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle., 2017, 100(2): 1246-1258. DOI: 10.3168/jds.2016- 11770.
[61] STERI R, MOIOLI B, CATILLO G. Genome-wide association study for longevity in the Holstein cattle population., 2019, 13(7): 1350-1357. DOI: 10.1017/S1751731118003191.
[62] HAY E H, ROBERTS A. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed., 2017, 95(4): 1467-1471. DOI: 10.2527/jas2016.1355.
[63] SAOWAPHAK P, DUANGJINDA M, PLAENGKAEO S. Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle., 2017, 16(2). DOI: 10.4238/gmr16029091.
[64] ZHANG Q, GULDBRANDTSEN B, THOMASEN J R. Genome- wide association study for longevity with whole-genome sequencing in 3 cattle breeds., 2016, 99(9): 7289-7298. DOI: 10.3168/jds.2015-10697.
[65] MESZAROS G, EAGLEN S, WALDMANN P. A genome wide association study for longevity in cattle., 2014, 4(1): 46-55. DOI: 10.4236/ojgen.2014.41007.
[66] MIGLIOR F, FLEMING A, MALCHIODI F. A 100-year review: identification and genetic selection of economically important traits in dairy cattle., 2017, 100(12): 10251-10271. DOI: 10.3168/jds.2017-12968.
[67] VUKASINOVIC N, SCHLEPPI Y, KUNZI N. Using conformation traits to improve reliability of genetic evaluation for herd life based on survival analysis., 2002, 85(6): 1556-1562. DOI: 10.3168/jds.S0022-0302(02)74225-2.
[68] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Short communication: Modification of genetic evaluation of herd life from a three-trait to a five-trait model in Canadian dairy cattle., 2007, 90(4): 2025-2028. DOI: 10.3168/jds.2006-719.
[69] VANRADEN P M. Efficient methods to compute genomic predictions., 2008, 91(11): 4414-4423. DOI: 10.3168/ jds.2007-0980.
[70] LIU Z, SEEFRIED F R, REINHARDT F. Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction., 2011, 43:19. DOI: 10.1186/1297-9686-43-19.
[71] VANRADEN P M, VAN TASSELL C P, WIGGANS G R. Invited review: reliability of genomic predictions for North American Holstein bulls., 2009, 92(1): 16-24. DOI: 10.3168/jds.2008-1514.
[72] 鄢新義, 劉澳星, 董剛輝, 郭剛, 王新宇, 劉林, 張勝利, 王雅春. 北京地區(qū)中國荷斯坦牛長壽性及其影響因素分析. 中國畜牧雜志, 2016, 52(23):1-6.
YAN X Y, LIU A X, DONG G H, GUO G, WANG X Y, LIU L, ZHANG S L, WANG Y C. Analysis of longevity and its influencing factors in Chinese Holstein population in Beijing.2016, 52(23): 1-6.(in Chinese)
[73] 毛杰. 上海地區(qū)荷斯坦牛體型性狀與產(chǎn)奶性狀、SCS和壽命性狀的遺傳分析[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2015.
MAO J. Genetic analysis between type traits, milk production traits, SCS and longevity traits of Holstein cattle in Shanghai[D]. Nanjing: Nanjing Agricultural University, 2015.(in Chinese)
[74] 儲明星, 葉素成, 陳國宏. 微衛(wèi)星標(biāo)記與奶牛數(shù)量性狀QTL定位. 遺傳, 2003(3): 337-340.
CHU M X, YE S C, CHEN G H. Mapping quantitative trait loci for quantitative traits in dairy cattle microsatellite markers.. 2003(3): 337-340.(in Chinese)
[75] 王夢琦, 倪煒, 張慧敏, 楊章平, 王西樸, 蔣彥森, 毛永江. 中國荷斯坦?;蚓幋a區(qū)SNP多態(tài)與臨床乳房炎和生產(chǎn)壽命的關(guān)聯(lián)分析. 中國農(nóng)業(yè)科學(xué), 2017, 50(12): 2359-2370. DOI:10.3864/j.issn.0578-1752.2017.12.016.
WANG M Q, NI W, ZHANG H M, YANG Z P, WANG X P, JIANG Y S, MAO Y J. Association between SNPs in the CDS regions ofgene and the clinical mastitis and lifetime for Chinese Holstein., 2017, 50(12): 2359-2370. DOI:10.3864/j.issn.0578-1752.2017.12.016. (in Chinese)
[76] 王夢琦, 倪煒, 郭譯蔚, 張慧敏, 楊章平, 毛永江. 中國荷斯坦?;騍NP突變與奶牛疾病及泌乳性能的相關(guān)性分析. 中國獸醫(yī)學(xué)報(bào), 2017, 37(12): 2418-2424. DOI: 10.16303/j.cnki.1005- 4545.2017.12.30.
WANG M Q, NI W, GUO Y W, ZHANG H M, YANG Z P, MAO Y J. Correlation analysis between diseases and milking traits and SNP offor Chinese Holstein cow., 2017, 37(12): 2418-2424. DOI: 10.16303/j.cnki.1005-4545. 2017.12.30. (in Chinese)
[77] 趙佳強(qiáng). 中國荷斯坦奶牛生產(chǎn)壽命、體型線性性狀分子標(biāo)記的研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2013.
ZHAO J Q. Research on molecular markers and productive life, liner type traits of Holstein cattle in China[D]. Wuhan: Huazhong Agricultural University, 2013.(in Chinese)
[78] 陳星. 奶牛乳房炎相關(guān)天然免疫基因的篩選及其功能研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2016.
CHEN X. Dairy cow mastitis related innate immune genes screening and function study[D]. Wuhan: Huazhong Agricultural University, 2016.(in Chinese)
[79] LIU A, LUND M S, BOICHARDARD D, KARAMAN E, FRITZ S, AAMAND G P, NIELSEN U S, WANG Y, SU G. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data., 2020, 124:37-49. DOI:10.1038/s41437-019-0246-7.
[80] BRONDUM R F, SU G, JANSS L, SAHANA G, GULDBRANDTSEN B, BOICHARD D, Lund M S. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction., 2015, 98(6): 4107–4116. DOI:10.3168/jds.2014-9005.
A Review on Longevity Trait in Dairy Cattle Breeding
ZHANG HaiLiang, LIU AoXing, MI SiYuan, LI Xiang, LUO HanPeng, YAN XinYi, WANG YaChun
(College of Animal Science and Technology, China Agricultural University, Beijing 100193)
Longevity is an important functional trait in dairy cattle. In addition to yield traits, longevity is more economically important than other traits in dairy breeding. The characteristics of longevity include low heritability, unfollowing normal distribution and performance later, hence longevity is the most difficult trait to select in dairy breeding. Since the 1950s, dairy breeders have begun to pay attention to longevity traits. Now, researches on longevity traits have continued. After the 1990s, longevity has been included in total selection index in many countries. However, longevity traits currently are not included in China Dairy Performance Index (CPI), and the study on longevity traits is also in its infancy in China. This review presented the trait definitions, methods of genetic evaluation, relationships between other traits, genetic makers, and selection strategies on longevity traits to systematically introduce its research and application in dairy industry. The complex relationships between longevity and other traits were described by summarizing the genetic correlation coefficients reported by many studies. The selection strategies for longevity traits in the various countries with developed dairy industry were highlighted by summarizing information collected from their dairy breeding program. Furthermore, this review also summarized the studies on longevity traits in dairy cattle in China. Longevity traits had various definitions, and there were various models used to preform genetic analysis, including linear model, threshold model, survival model and random regression model. There were low to moderate genetic correlations between longevity and other traits, including yield, linear type, fertility, health and workability traits, in which the higher genetic correlations were found between longevity and linear type traits in udder system. Generally, dairy cows with better performance on fertility and health traits were better on longevity. Among different populations, there were some differences on relationships between longevity and other traits, which were largely influenced by selection goals of current population. The total selection indexes in many countries included longevity. In addition to using direct longevity to select it, the indirect selection methods were also used in many countries. Udder system, strength, rump angle, feet and leg system, and mastitis resistance were comment traits used to indirect selection. Many genetic markers associated with longevity have been found in various populations, most of which were in genetic regions that have been reported to be associated with traits such as reproduction, disease and body type. Finally, this review also proposed the necessities of collecting longevity data, estimating genetic parameters, locating genetic markers, exploring evaluation model and selection strategy in China dairy cattle population.
longevity; genetic evaluation; genetic correlation; genetic maker; genetic selection; dairy cattle
2019-11-08;
2020-01-13
現(xiàn)代農(nóng)業(yè)(奶牛)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-36)、長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT_15R62)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系北京市奶牛創(chuàng)新團(tuán)隊(duì)(BAIC06-2019)、研究生國際化培養(yǎng)提升項(xiàng)目(31051521)
張海亮,Tel:18813071851;E-mail:18813071851@163.com。通信作者王雅春,E-mail:wangyachun@cau.edu.cn
(責(zé)任編輯 林鑒非)