国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

改變定向凝固工藝參數(shù)抑制DZ22B合金與高純Al2O3模殼面層的界面反應(yīng)

2020-10-16 04:50劉雁燾劉滿平孫少純
航空材料學(xué)報 2020年5期
關(guān)鍵詞:合金定向界面

劉雁燾,劉滿平,孫少純

(江蘇大學(xué) 材料科學(xué)與工程學(xué)院,江蘇 鎮(zhèn)江 212013)

目前鎳基高溫合金材料已經(jīng)廣泛應(yīng)用于燃氣輪機及航空發(fā)動機等領(lǐng)域,其主要用于生產(chǎn)高溫抗拉強度、持久強度和蠕變性能優(yōu)異的渦輪葉片[1-3]。定向凝固熔模鑄造是一種根據(jù)所要求的晶體取向進行凝固的技術(shù),具有確保結(jié)構(gòu)緊湊,消除垂直于主應(yīng)力方向的橫向晶界的特點,已廣泛用于制造具有關(guān)鍵和復(fù)雜細節(jié)以及精確尺寸公差要求的定向凝固鎳基高溫合金葉片。定向凝固熔模鑄造工藝能夠大大提升高溫合金葉片永久強度和塑性,以及提高葉片的蠕變強度和抗熱沖擊性等優(yōu)點。通過將蠟?zāi)7磸?fù)沾漿和淋砂直到形成預(yù)期厚度的陶瓷模殼,在制備高精度和高冶金質(zhì)量定向凝固葉片的過程中起到極其重要的作用[4-9]。通常在定向凝固葉片熔模鑄造過程中,高溫合金熔體保持液態(tài)數(shù)十分鐘至數(shù)小時,陶瓷模殼承受溫度高于1500 ℃以上的合金熔體較長時間的浸泡作用,模殼材料和合金熔體中的活性元素之間很容易發(fā)生較強的熱物理化學(xué)相互作用,因而在模殼-合金界面處生成新的化合物并導(dǎo)致合金污染以及鑄件表面上粘砂缺陷的形成[10-11]。因此,定向凝固的模殼應(yīng)具有高耐火度、高軟化點及低雜質(zhì)含量,而且還應(yīng)具有良好的化學(xué)穩(wěn)定性,從而確保葉片的冶金質(zhì)量和尺寸精度。

DZ22合金作為我國第一代含Hf定向鎳基高溫合金,其合金成分及力學(xué)性能同美國的第一代高強度定向鎳基高溫合金PWA1422相仿,已廣泛且較成熟的應(yīng)用于我國地面燃氣輪機渦輪零件及某渦軸型航空發(fā)動機用高溫合金材料[12]。C元素在高溫合金中通過析出碳化物起到強化晶界作用。在高溫合金中添加Hf元素旨在提高熔體的流動性以及改善熔體與面層之間非反應(yīng)性潤濕系統(tǒng)的潤濕性,從而提升合金的可鑄性。與此同時,Hf元素能夠影響高溫合金中晶界處碳化物的分布和轉(zhuǎn)變,可以顯著提高合金的蠕變性能[13]。但是,近年來關(guān)于鎳基高溫合金與陶瓷模殼間界面反應(yīng)的報道顯示,C、Hf及Cr和Al是導(dǎo)致模殼-合金間發(fā)生相互作用的活性元素。Chen等[14]報道隨著Ni3Al基高溫合金中C和Hf的增加,合金熔體在陶瓷模具上的潤濕角減小,界面反應(yīng)變得更加嚴(yán)重。Li等[15]報道,Cr和Hf在高溫下加速界面反應(yīng),反應(yīng)產(chǎn)物主要由HfO2和Al2O3組成。Zheng等[16]指出高溫合金中的Cr,Al和Ti與氧化硅反應(yīng)形成Cr2O3,在合金表面形成一些金屬結(jié)節(jié)狀凸起。

氧化鋁是高溫合金葉片定向凝固中使用最廣泛的耐火材料之一[17-18]。它具有穩(wěn)定的高溫機械性能,較低的熱膨脹系數(shù)和與大多數(shù)合金熔體相對高的化學(xué)惰性。然而,在制備含有活性元素的定向凝固葉片的過程中,例如DZ417G,DZ22和DD6,在葉片表面上還是發(fā)現(xiàn)了嚴(yán)重的粘砂缺陷。Valenza等[19]研究三種高溫合金在不同陶瓷基材(藍寶石,多晶氧化鋁,氧化鋯和莫來石)上的界面反應(yīng)。姜衛(wèi)國等[20]對比分析了K441高溫合金與不同陶瓷型殼的界面反應(yīng),指出剛玉型殼與合金的反應(yīng)程度最弱,鑄件表面粗糙度最低。一些研究人員[21-22]研究合金熔體與熔融氧化鋁模殼面層之間的界面反應(yīng),并初步探討了粘砂缺陷的形成機理。然而,在以前的文獻中很少報道從熔模鑄造工藝參數(shù)方面解決定向凝固高溫合金葉片粘砂缺陷的方法。

本工作研究了在DZ22B鎳基高溫合金定向凝固過程中,選取不同澆注溫度與抽拉速率工藝參數(shù)對高溫合金與高純度Al2O3陶瓷模殼之間界面反應(yīng)形成類型與反應(yīng)趨勢的影響。在不同工藝參數(shù)條件下分析界面反應(yīng)產(chǎn)物的成分及物相組成,并且探討界面反應(yīng)機理,對控制澆注溫度與抽拉速率來減少陶瓷模殼與合金熔體的界面反應(yīng)引起的粘砂缺陷,提高定向凝固鎳基高溫合金葉片表面質(zhì)量具有重要的指導(dǎo)意義。

1 實驗材料及方法

1.1 高溫合金樣品制備

本工作所選擇的合金材料為DZ22B鎳基高溫合金,該合金是在DZ22高溫合金的基礎(chǔ)上進行了性能的改進,具有密度低、中溫強度高、蠕變性能好、可塑性高、組織穩(wěn)定、無有價元素等優(yōu)點[11,23]。適用于980 ℃以下工作時制造渦輪葉片和導(dǎo)向葉片等高溫部件[24]。本工作實驗用DZ22B合金鑄錠的化學(xué)成分如表1所示。

表1 DZ22B 高溫合金的化學(xué)成分(質(zhì)量分?jǐn)?shù)/%)Table 1 Chemical composition of DZ22B superalloy( mass fraction/%)

1.2 蠟?zāi)=M樹及陶瓷模殼制備

本工作選用?18 mm × 220 mm 的圓柱形蠟棒以每組10根進行蠟?zāi)=M樹,組樹方式如圖1所示,共組樹蠟?zāi)K慕M。

制備的具有熔融氧化鋁基面層的陶瓷模殼,其中主要漿料由熔融氧化鋁(α-Al2O3質(zhì)量分?jǐn)?shù)不小于 99.7 %,德國伊美瑞熔融礦物齊諾維茨股份有限公司),硅溶膠粘結(jié)劑(河北潤木鑄造材料有限公司),潤濕劑(河北潤木鑄造材料有限公司),消泡劑(河北潤木鑄造材料有限公司)和高純?nèi)ルx子水(自制)。熔融氧化鋁粉末的尺寸為325目,其化學(xué)組成如表2所示。

圖1 蠟棒組樹圖Fig.1 Group tree pattern of wax rods

表2 熔融氧化鋁粉末的化學(xué)成分(質(zhì)量分?jǐn)?shù)/%)Table 2 Chemical composition of fused alumina powder(mass fraction/%)

面層、過渡層及背層漿料成分詳見表3。首先通過將蠟?zāi)M耆朊鎸訚{料中,然后用80目熔融氧化鋁粉涂覆表面粘有漿料的蠟?zāi)碇苽涮沾赡っ鎸?。?5 °C,60 %相對濕度的環(huán)境中干燥面層24 h。之后,將帶有面層的蠟?zāi)U橙∵^渡層漿料,并且用60目的熔融氧化鋁砂均勻涂覆其表面制成過渡層;重復(fù)上步操作,共制備3層過渡層。同理,將帶有過渡層的蠟?zāi)U橙”硨訚{料后,將其均勻淋上30目的熔融氧化鋁砂制成背層;重復(fù)上述操作,共制備3層背層。期間將每個過渡層及背層在空氣速率為 3 m/s,25 ℃,60 % 相對濕度環(huán)境下干燥8 h。在制備完七層(包括面層、過渡層和背層)模殼之后,沾取備層漿料而不淋砂進行封漿操作。隨后將包裹陶瓷模殼的蠟?zāi)7湃敫邏赫羝撓灨?,?0.75 MPa的氣壓下高壓蒸汽 15 min,然后以0.1 MPa/min的受控減壓循環(huán)條件下,脫去陶瓷模殼型腔中的蠟。最后,在焙燒爐中將陶瓷模殼加熱至1200 ℃的空氣溫度并燒制4 h后,獲得可用于制備DZ22B定向凝固試棒的模殼。

1.3 試棒樣品制備

定向凝固實驗在具有加熱區(qū)和抽氣室的Bridgman工業(yè)真空爐中進行。將陶瓷模殼置于爐腔加熱區(qū)的水冷銅盤上。然后,將爐內(nèi)氣壓抽真空至0.5 Pa的真空度并將模殼溫度加熱至1500 ℃。隨后,將放置在坩堝中的DZ22B高溫合金錠以20 K/min的感應(yīng)加熱速率熔化至澆注溫度并倒入陶瓷模殼中。約5 min后,以一定的抽拉速率將裝有金屬液的陶瓷模殼從加熱區(qū)取出至冷卻區(qū)從而實現(xiàn)合金定向凝固。將四組模組使用不同的定向凝固工藝參數(shù),重復(fù)上述同樣操作制得定向凝固試棒。表4列出了四組模組所使用的不同的定向凝固工藝參數(shù)。

表3 陶瓷模殼的面層、過渡層及背層漿料的成分Table 3 Composition of the surface layer,transition layer and backup layer slurry of the ceramic mold shell

表4 4 組模組對應(yīng)的定向凝固工藝參數(shù)Table 4 Directional solidification process parameters corresponding to the 4 groups of modules

1.4 表征

用數(shù)碼相機拍攝各組試棒的外觀,使用體式顯微鏡(SLM)拍攝各組試棒不同高度表面反應(yīng)層的宏觀外貌。使用角磨機將試棒沿橫截面切割,取每組試棒相同高度處的一部分試樣進行樹脂包埋鑲嵌并打磨拋光,使用配備有能量色散譜(EDS)分析的掃描電子顯微鏡(SEM)對試樣微觀結(jié)構(gòu)進行表征。另一部分試樣用于通過X射線衍射(XRD)進行相鑒定;通過X射線光電子能譜(XPS)測定反應(yīng)產(chǎn)物的價態(tài)。

2 結(jié)果與分析

2.1 粘砂缺陷的表征

圖2 不同工藝參數(shù)下帶有粘砂層的定向凝固DZ22B試棒照片及試棒表面不同高度局部體式顯微鏡放大圖 (a)澆注溫度:1550 ℃,抽拉速率:4 mm?min–1;(b)澆注溫度:1530 ℃,抽拉速率:4 mm?min–1;(c)澆注溫度:1550 ℃,抽拉速率:5 mm?min–1;(d)澆注溫度:1510 ℃,抽拉速率:6 mm?min–1Fig.2 Photographs of directional solidification DZ22B test bar with sand layer under different process parameters and magnified image of local body microscope with different heights on the surface of test bar (a)pouring temperature:1550 ℃,withdrawal rate: 4 mm ?min–1; ( b) pouring temperature: 1530 ℃ ,withdrawal rate: 4 mm ?min–1; ( c) pouring temperature:1550 ℃,withdrawal rate:5 mm?min–1;(d)pouring temperature:1510 ℃,withdrawal rate:6 mm?min–1

圖2顯示在具有熔融氧化鋁面層的陶瓷模殼模組上使用不同定向凝固工藝參數(shù)澆鑄的DZ22B合金試棒的照片。從圖2中可以看出,每根合金試棒表面反應(yīng)層沿著定向凝固方向大致分為3個特征區(qū)域。每根試棒底部位置(region 1)的表面都是平滑且具有金屬光澤,且沒有發(fā)現(xiàn)粘砂缺陷。每根試棒的中間位置(region 2)包覆著不同反應(yīng)劇烈程度的白色凸起粘砂缺陷物質(zhì),觀察到試棒1表面幾乎完全被較厚的白色反應(yīng)物覆蓋;而試棒2表面分散密度較大的白色凸起反應(yīng)物;相較于試棒2,試棒3表面白色凸起反應(yīng)物的分布密度小了很多;與此同時,在試棒2與試棒3的表面上這些明顯的凸起反應(yīng)物之間還均勻的包覆著較厚的白色粘砂物質(zhì);相較而言,試棒4的region 2更小一些,且表面均勻包覆的白色粘砂物質(zhì)的厚度也較薄。觀察每根試棒的頂部位置在白色反應(yīng)物質(zhì)的基礎(chǔ)上均又出現(xiàn)了不同程度粉紅色的新反應(yīng)生成物,試棒1、2和3 region 3的表面粉紫色反應(yīng)物的包覆程度很相似,都均勻分布在白色凸起反應(yīng)物之間,而試棒4的region 3 表面粉紅色反應(yīng)物的分散密度較小,能比較清楚看到試棒的金屬質(zhì)地。

試棒在定向凝固過程中,底部金屬熔體靠近水冷銅盤散熱快,所以在整個定向凝固過程該部位最先冷卻并凝固;因此,DZ22B高溫合金熔體與熔融氧化鋁陶瓷模殼之間接觸時間較短因而相互作用弱,試棒底部位置上未形成粘砂缺陷。當(dāng)合金熔體定向凝固到試棒的中間部位時,這意味著合金熔體與模殼之間有了較長時間接觸并在高溫下發(fā)生相互作用生成白色的反應(yīng)物;當(dāng)試棒的定向凝固過程快要結(jié)束時,試棒頂部位置的合金熔體與陶瓷模殼接觸時間最長,相互作用更為充分,從而在白色粘砂物質(zhì)生成的基礎(chǔ)上又產(chǎn)生新的粉紅色反應(yīng)物。盡管這些合金與模殼之間產(chǎn)生的粘砂缺陷可以通過噴丸和磨削加工去除,但是這些機械加工的處理方式引起合金內(nèi)部的殘余應(yīng)力,在隨后的熱處理過程中高溫合金的定向凝固組織會發(fā)生再結(jié)晶等缺陷,因而會降低定向凝固合金的使用性能及用途[25-26]。因此,使用DZ22B高溫合金制備的定向凝固渦輪葉片及其精密鑄造零部件的主要報廢原因之一就是合金熔體與陶瓷模殼界面反應(yīng)引起的粘砂缺陷。

2.2 形態(tài)表征

圖3(a)、(b)是未經(jīng)腐蝕劑腐蝕試棒特征區(qū)域region 2和region 3橫截面的SEM微觀結(jié)構(gòu)照片。從圖3(a)中可以看出,試棒界面反應(yīng)特征區(qū)域region 2 表面有著明顯的界面反應(yīng)層與粘砂缺陷層,與合金接觸的界面反應(yīng)層觀察到均勻分布的一層孔洞結(jié)構(gòu),與多孔結(jié)構(gòu)層緊密相連的是一層結(jié)構(gòu)緊密、質(zhì)地均勻的一層粘砂物質(zhì)。同樣地,如圖3(b)所示試棒界面反應(yīng)特征區(qū)域region 3也具有著相似的孔洞結(jié)構(gòu)的界面反應(yīng)層和結(jié)構(gòu)緊密的粘砂層分布。相應(yīng)地,對特征區(qū)域region 2和region 3的界面反應(yīng)層和粘砂層進行EDS線掃描,EDS分析結(jié)果分別見表5與表6。由表5的EDS分析數(shù)據(jù)可知,特征區(qū)域region 2的界面反應(yīng)層富含Al、O和Hf元素;而特征區(qū)域region 3的界面反應(yīng)層主要富含Al、O及Cr元素。而特征區(qū)域region 2及region 3的粘砂層物質(zhì)EDS分析均顯示Al和O是主要元素,這表明是陶瓷模殼在DZ22B高溫合金定向凝固過程中與界面反應(yīng)物粘連在一起并隨試棒剝落下來的Al2O3。

圖4(a),(b)為經(jīng)腐蝕劑腐蝕后試棒特征區(qū)域region 2 和 region 3 橫截面的微觀結(jié)構(gòu)。從圖 4(a)中可以看出,在合金表面緊密附著一些白色物質(zhì),通過 EDS 測量圖 4(a)中三個區(qū)域(1,2和 3)的元素組成,并列于表7中。EDS分析的結(jié)果表明,區(qū)域2及3主要含有Al,O及Hf等元素,說明特征區(qū)域region 2界面反應(yīng)層物質(zhì)是DZ22B高溫合金中的合金化元素Hf在定向凝固過程中發(fā)生化學(xué)反應(yīng)形成氧化物;而區(qū)域1除Hf元素略降低外,其元素組成非常接近基礎(chǔ)合金,表明合金中的Hf元素在界面反應(yīng)中被消耗。同樣地,在圖4(b)也觀察到相似的現(xiàn)象。特征區(qū)域region 3的微觀圖像顯示合金表面緊密粘結(jié)著粘砂層物質(zhì)并且還觀察到一些邊界平整具有正方體及棱柱體規(guī)則形狀的物質(zhì),對圖4(b)中的區(qū)域位點1,2和3進行EDS分析,結(jié)果列于表8中,分析發(fā)現(xiàn)粘砂層主要含有Al,O和Cr元素。根據(jù)陶瓷模具面層及DZ22B合金的成分,可以推斷Al,O來自陶瓷模殼的面層,而Cr元素應(yīng)該從合金中擴散反應(yīng)而來。因此特征區(qū)域region 3界面反應(yīng)層物質(zhì)是DZ22B高溫合金中的合金化元素Cr在定向凝固過程中發(fā)生化學(xué)反應(yīng)形成的氧化物。

圖3 未經(jīng)腐蝕劑腐蝕試棒特征區(qū)域橫截面的 SEM 微觀結(jié)構(gòu)圖像 (a)region 2;(b)region 3Fig.3 SEM microstructure images of the cross section of the characteristic area of the test bar without corrosion agent(a)region 2;(b)region 3

表5 圖 3(a)中界面反應(yīng)層與粘砂層的 EDS 分析結(jié)果(原子分?jǐn)?shù)/ %)Table 5 EDS analysis results of interface reaction layer and sand layer in Fig.3(a)(atom fraction/%)

表6 圖 3(b)中界面反應(yīng)層與粘砂層的 EDS 分析結(jié)果(原子分?jǐn)?shù)/ %)Table 6 EDS analysis results of interface reaction layer and sand layer in Fig.3(atom fraction/%)

2.3 物相種類分析

由于EDS屬于半定量型分析,因此使用XRD分析手段對合金和陶瓷模殼之間界面處物質(zhì)進行相分析,使用XPS實驗測試DZ22B合金與熔融氧化鋁陶瓷模殼接觸處的元素Al,Cr,Hf和O的化合價狀態(tài)。

圖4 經(jīng)腐蝕劑腐蝕試棒特征區(qū)域橫截面的 SEM 微觀結(jié)構(gòu)圖像 (a)region 2;(b)region 3Fig.4 SEM microstructure images of the cross section of the characteristic region of the test rod by corrosive agent(a)region 2;(b)region 3

表7 圖 4(a)中界面反應(yīng)層與粘砂層的 EDS 分析結(jié)果(原子分?jǐn)?shù)/ %)Table 7 EDS analysis results of interface reaction layer and sand layer in Fig.4(a)(atom fraction/%)

圖5顯示合金與陶瓷模殼界面反應(yīng)特征區(qū)域region 2和 region 3的 XRD物相分析結(jié)果。結(jié)果表明 Hf元素以 HfO2形式存在,Cr元素都以Al1.98Cr0.02O3的形式存在于界面反應(yīng)層中,Al2O3來自于模殼材料。在特征區(qū)域region 2合金金屬表面主要生成HfO2及少量Cr2O3,而特征區(qū)域region 3合金金屬表面主要生成的是Cr2O3。其中由于Cr2O3與Al2O3完全固溶,因而在高溫情況下界面反應(yīng)生成的Cr2O3固溶到模殼材料中的Al2O3中,形成粉紅色的Al1.98Cr0.02O3固溶體,這就是界面反應(yīng)特征區(qū)域region 3宏觀外貌呈粉紅色的原因。由于特征區(qū)域region 2生成的Cr2O3含量較少,雖然也有Al1.98Cr0.02O3的存在,但特征區(qū)域region 2宏觀外貌還呈白色。

表8 圖 4(b)中界面反應(yīng)層與粘砂層的 EDS 分析結(jié)果(原子分?jǐn)?shù)/ %)Table 8 EDS analysis results of interface reaction layer and sand layer in Fig.4(b)(atom fraction/%)

圖5 DZ22B 合金界面反應(yīng)特征區(qū)域 region 2 與 region 3 產(chǎn)物的XRD圖譜Fig.5 XRD pattern of the region 2 and region 3 products of the DZ22B alloy interface reaction characteristic region

圖6顯示沿合金與陶瓷模殼之間界面反應(yīng)特征區(qū)域region 2的XPS測試結(jié)果。根據(jù)它們的結(jié)合能量對峰進行索引。Hf4+在圖6(a)中識別出的結(jié)合能為16.5 eV和18.6 eV,這與表9中列出的其在 HfO2中的 16.7 eV和 18.2 eV一致。同樣圖7所示為沿合金與陶瓷模殼之間界面反應(yīng)特征區(qū)域region 3的XPS測試結(jié)果。在圖7中識別出Cr3+的結(jié)合能為576.7 eV 和586.5 eV,Al3+的結(jié)合能73.8 eV,這與表9中檢索出Cr2O3與Al2O3的結(jié)合能一致。在兩種情況下由它們的結(jié)合能確定的反應(yīng)產(chǎn)物與SEM-EDS及XRD測試結(jié)果一致。

2.4 定向凝固組織分析

圖8分別為采用表4工藝參數(shù)進行定向凝固實驗得到的4組定向凝固試棒橫截面的枝晶形貌圖??梢?,在不同定向凝固工藝參數(shù)下都得到了典型定向凝固“十字”花紋枝晶形貌圖。定向凝固合金的一次枝晶間距λ1按式(1)計算[30]:

式中:A為視場面積,μm2;n為視場中的枝晶數(shù)目。圖8(b)與圖8(a)相比一次枝晶間距變化不大,說明在只改變澆注溫度的條件下對枝晶間距影響不大,這主要原因是在較低澆注溫度下合金熔體存在的未溶MC碳化物充當(dāng)形核核心,較小程度改變澆注溫度對形核核心的數(shù)目改變不大。圖8(b)與圖8(a)相比合金一次枝晶間距有明顯減小,圖8(d)與圖8(a)相比合金一次枝晶間距更小,所以在改變抽拉速率能夠?qū)辖鸲ㄏ蚰探M織起到顯著降低枝晶間距和細化枝晶的作用,這主要由于提高抽拉速率和溫度梯度,冷卻速率同時也加大,一次枝晶間距也隨之迅速減少。

圖6 DZ22B 合金界面反應(yīng)特征區(qū)域 region 2 產(chǎn)物的 XPS 分析 (a)Hf;(b)OFig.6 XPS analysis of the DZ22B alloy interfacial reaction characteristic region products of the region 2 (a)Hf;(b)O

表9 與先前研究相比 HfO2,Cr2O3 和 Al2O3 的 XPS 峰的數(shù)值數(shù)據(jù)Table 9 Numerical data of XPS peaks of HfO2,Cr2O3 and Al2O3 compared with previous studies

圖7 DZ22B 合金界面反應(yīng)特征區(qū)域 region 3 產(chǎn)物的 XPS 分析 (a)Cr;(b)Al;(c)OFig.7 XPS analysis of the DZ22B alloy interfacial reaction characteristic region products of the region 3 (a)Cr;(b)Al;(c)O

圖8 不同定向凝固工藝參數(shù)條件下DZ22B合金定向凝固試棒橫截面枝晶形貌Fig.8 Cross-section dendritic morphologies of DZ22B alloy directional solidification test bar under different directional solidification process parameters

2.5 討論

由實驗及各種表征結(jié)果分析可以看出,DZ22B合金與高純Al2O3模殼在定向凝固過程中呈現(xiàn)出沿定向凝固方向分區(qū)域發(fā)生不同界面反應(yīng)形成粘砂缺陷。從圖2(a)到圖2(d)可以看出,通過改變定向凝固的工藝參數(shù)澆注溫度與抽拉速率可以明顯改善合金和模殼之間的界面反應(yīng)情況。結(jié)合圖8可知,雖然降低澆注溫度對改變合金定向凝固組織作用并不顯著,但是可以顯著抑制合金與陶瓷模殼間的界面反應(yīng),從而減輕鑄件表面的粘砂缺陷。提高抽拉速率不僅可以細化枝晶組織,同時可以優(yōu)先于合金與陶瓷模殼發(fā)生界面反應(yīng)完成定向凝固。在保證合金定向凝固組織的同時,通過降低澆注溫度和提高抽拉速率耦合改變定向凝固工藝參數(shù),能夠明顯改善定向凝固精密鑄件的表面質(zhì)量。

根據(jù)SLM,SEM-EDS,XRD和XPS的分析,證實DZ22B沿定向凝固方向粘砂缺陷大致分成合金表面無粘砂具有金屬光澤的無反應(yīng)區(qū)域region 1,主要包裹著白色粘砂物質(zhì)HfO2的界面反應(yīng)特征區(qū)域region 2和主要包裹著粉紅色粘砂物質(zhì)Al1.98Cr0.02O3的界面反應(yīng)特征區(qū)域region 3。界面反應(yīng)特征區(qū)域region 2主要是Hf元素和氧化鋁之間的界面反應(yīng)(式1),在合金/陶瓷模殼界面處以層或以微晶的形式形成新的氧化物,并且界面上的HfO2形成也很容易通過熱力學(xué)確定。相比之下,界面反應(yīng)特征區(qū)域region 3主要發(fā)生的與Cr元素相關(guān)的一系列復(fù)雜的化學(xué)反應(yīng),其中包括Cr元素與陶瓷模殼中一些諸如Fe2O3、Na2O等微量的雜質(zhì)氧化物之間的化學(xué)反應(yīng)(式2,3)生成了Cr2O3,但是由于模殼中雜質(zhì)氧化物含量很少,難以引起在宏觀外貌如此明顯的界面反應(yīng),因此此類反應(yīng)并不能起到主導(dǎo)界面反應(yīng)的作用。一些報道中發(fā)現(xiàn)合金中的活性元素C能與模殼面層中硅溶膠成分SiO2發(fā)生反應(yīng),合金中的Cr元素與該反應(yīng)產(chǎn)物在高溫下作用,生成了Cr2O3,由于合金中C元素含量和模殼面層中SiO2的含量較模殼中微量雜質(zhì)氧化物多,因此該反應(yīng)為界面反應(yīng)的主導(dǎo)反應(yīng)[13]。由于界面反應(yīng)生成的Cr2O3與 模殼材料中的Al2O3具有相同的晶格結(jié)構(gòu),高溫下能夠形成在反應(yīng)物表面呈現(xiàn)粉紅色的連續(xù)固溶體 Al1.98Cr0.02O3。(式(2)、(3)及(4)為在T = 1500 ℃ 下計算的[31]。)

為了提高定向凝固精密鑄件的性能及實際生產(chǎn)精密鑄件的良品率,對鑄件表面質(zhì)量良好無粘砂缺陷有著嚴(yán)格的要求。隨著鎳基高溫合金的發(fā)展及提高合金各項性能需求下,一些高活性的合金化的元素的添加,在定向凝固精密鑄造過程中合金就會不可避免的和陶瓷模殼在高溫下發(fā)生界面反應(yīng)從而形成鑄件的粘砂缺陷。因此,在保證定向凝固合金組織的前提下,又能通過調(diào)整定向凝固工藝參數(shù)抑制合金與陶瓷模殼間的界面反應(yīng),對鑄件表面質(zhì)量的影響有著重要的實際價值。

3 結(jié)論

(1)通過對不同工藝參數(shù)組合條件下制備的DZ22B合金定向凝固試棒表面粘砂層的成分分析,確定了在定向凝固方向上分區(qū)域發(fā)生不同類型的界面反應(yīng)。

(2)在金屬與陶瓷模殼之間沿著定向凝固方向上優(yōu)先發(fā)生的界面反應(yīng)主要產(chǎn)物為HfO2。沿著定向凝固方向較后發(fā)生的界面反應(yīng)主要產(chǎn)物為Cr2O3,在高溫下Cr2O3與陶瓷模殼成分固溶一起,形成粉紅色的Al1.98Cr0.02O3的固溶體。

(3)對于DZ22B合金定向凝固鑄件長度在220 mm以內(nèi),降低澆注溫度至1510 ℃,提高抽拉速率至 6 mm?min–1,在得到良好定向凝固組織前提下,可顯著抑制定向凝固過程中DZ22B合金與高純Al2O3陶瓷模殼界面反應(yīng)的發(fā)生,減少粘砂缺陷的形成,提高定向凝固鑄件表面質(zhì)量。

猜你喜歡
合金定向界面
奧科寧克與NASA聯(lián)合研發(fā)3D打印用Al-Cu-Zn-Mg合金
定向運動的遷移價值研究
反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
不同截面類型鋼管RPC界面粘結(jié)性能對比研究
專利名稱:一種Al-Cu-Li-Yb合金三級均勻化處理工藝
微重力下兩相控溫型儲液器內(nèi)氣液界面仿真分析
小班定向式軍事游戲的開展
中班定向式軍事游戲的開展
大班定向式軍事游戲的開展
國企黨委前置研究的“四個界面”
苏尼特右旗| 禹城市| 兰西县| 抚远县| 玉树县| 桂阳县| 定陶县| 浦东新区| 清镇市| 灌阳县| 肃宁县| 长泰县| 田林县| 始兴县| 延长县| 靖边县| 镇康县| 来宾市| 平江县| 竹山县| 鄱阳县| 嘉兴市| 连南| 玉山县| 准格尔旗| 晋城| 剑河县| 太康县| 容城县| 崇州市| 阜平县| 临泉县| 自贡市| 红河县| 沁源县| 迁西县| 兖州市| 大渡口区| 玛沁县| 汉阴县| 琼海市|