黃小琪 鐘東明 何佩瑩 張明清 周惠強(qiáng) 舒琥
摘要:【目的】克隆大刺鰍(Mastacembelus armatus)促黃體生成素(LH)基因及明確其表達(dá)規(guī)律,為進(jìn)一步闡明LH基因在大刺鰍性腺發(fā)育過(guò)程中的生理功能及揭示大刺鰍的生殖調(diào)控機(jī)理提供參考依據(jù)?!痉椒ā坎捎肦ACE克隆大刺鰍LH基因cDNA全長(zhǎng)序列,從GenBank中選擇硬骨魚(yú)類(lèi)、兩棲動(dòng)物、鳥(niǎo)類(lèi)和哺乳動(dòng)物等物種的LH氨基酸序列,通過(guò)ClustalX 2.1進(jìn)行氨基酸序列比對(duì),以MEGA 6.0中的鄰接法(NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù),并應(yīng)用實(shí)時(shí)熒光定量PCR檢測(cè)分析大刺鰍LH基因在不同組織及不同性腺發(fā)育期的表達(dá)情況?!窘Y(jié)果】大刺鰍LH基因cDNA序列全長(zhǎng)799 bp,包括224 bp的5'非編碼區(qū)(5'-UTR)、131 bp的3'非編碼區(qū)(3'-UTR)和444 bp的開(kāi)放閱讀框(ORF),共編碼147個(gè)氨基酸殘基,第1~22位氨基酸殘基組成其信號(hào)肽區(qū)域。大刺鰍LH氨基酸序列C-末端區(qū)域高度保守,但N-末端區(qū)域與其他硬骨魚(yú)類(lèi)、兩棲動(dòng)物、鳥(niǎo)類(lèi)和哺乳動(dòng)物存在明顯差異。大刺鰍LH氨基酸序列與其他魚(yú)類(lèi)的LH氨基酸序列同源性較高,其中與黃鱔(Monopterus albus)的親緣關(guān)系最近。大刺鰍LH基因在其腦組織中的相對(duì)表達(dá)量最高,顯著高于在其他組織中的相對(duì)表達(dá)量(P<0.05);在卵巢、心臟、肝臟和精巢中的相對(duì)表達(dá)量次之;大刺鰍LH基因在不同發(fā)育期卵巢和精巢中的表達(dá)變化趨勢(shì)一致,從II期開(kāi)始其相對(duì)表達(dá)量隨之增加,至V期時(shí)達(dá)峰值?!窘Y(jié)論】大刺鰍LH氨基酸序列具有高度保守區(qū)域,其基因在各組織中廣泛表達(dá),尤其在腦組織和性腺中具有較高表達(dá)量,提示LH的靶基因可能在腦—垂體—性腺軸上,參與大刺鰍的性腺發(fā)育調(diào)控,主要促進(jìn)卵母細(xì)胞和精子成熟并刺激排卵或排精。
關(guān)鍵詞: 大刺鰍;促黃體生成素(LH);性腺發(fā)育;基因克隆;組織表達(dá)
中圖分類(lèi)號(hào): S965.199? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)07-1706-08
Abstract:【Objective】To clone luteinizing hormone(LH) gene from Mastacembelus armatus and clarify its expre-ssion rules, which could provide the reference for further elucidating the physiological functions of LH gene in the development of gonads and revealing the mechanism of reproductive regulation. 【Method】In this experiment, the full-length cDNA of M. armatus was cloned through the RACE techniques. The LH amino acid sequence of bony fish, amphibians, birds and mammals from GenBank were chosen while the amino acid sequence alignment was performed by ClustalX 2.1. Using the method of neighbour-joining(NJ) of MEGA 6.0 to construct the phylogenetic trees and the expression of LH gene in various tissues and at different gonads development stages were detected through qRT-PCR techniques. 【Result】The full length cDNAsequence of LH gene was 799 bp, including a 5' non-coding region(5'-UTR) of 224 bp, a 3'-UTR of 131 bp, and an open reading frame(ORF) of 444 bp. A total of 147 amino acid residues were encoded, and amino acid residues at positions 1-22 formed the signal peptide region. The C-terminal region of LH amino acid sequence of M. armatus was highly conserved, but the N-terminal region was different from that of other bony fish, amphibians, birds and mammals. The amino acid sequence of LH of M. armatus was highly homologous with that of other fishes, among which the closest relative was Monopterus albus. The relative expression level of LH gene of M. armatus was the highest in its brain tissue, which was significantly higher than that in other tissues(P<0.05). The relative expression in ovary, heart, liver and testis were followed behind brain. The expression of LH gene in ovary and testis of M. armatus showed the same trend at different developmental stages, and its relative expression increased from stage II to the peak at stage V. 【Conclusion】The LH amino acid sequences of the M. armatus have highly conserved regions and are widely expressed in various tissues, especially in the brain and gonads, which suggests that the target gene of LH might be on the brain-pituitary-gonadal axis and participate in the regulation of gonadal development of M. armatus. It mainly promotes oocyte and sperm maturation and stimulates ovulation and ejaculation.
Key words: Mastacembelus armatus; luteinizing hormone(LH); gonadal development; gene cloning; tissue expression
Foundation item: China-ASEAN Maritime Cooperation Foundation(Waicaihan〔2017〕513);Guangdong Marine Fishery Science and Technology Research and Development Project(A201601A05);Guangdong Marine and Fishery Development Special Project(2017A0007)
0 引言
【研究意義】大刺鰍(Mastacembelus armatus)隸屬于合鰓目(Synbranchiformes)刺鰍科(Mastacembelidae)刺鰍屬(Mastacembelus),廣泛分布在東南亞地區(qū)及我國(guó)長(zhǎng)江以南的各大水系,其肉質(zhì)鮮美,營(yíng)養(yǎng)豐富,深受消費(fèi)者青睞,是一種重要的淡水經(jīng)濟(jì)魚(yú)類(lèi)(趙子明和劉美劍,2017;周惠強(qiáng),2019)。近年來(lái),由于過(guò)度捕撈及生態(tài)環(huán)境惡化,我國(guó)大刺鰍野生資源急劇減少,福建、廣東、湖南等省已將其列為重點(diǎn)保護(hù)野生水生動(dòng)物(楊華強(qiáng)等,2016;舒琥等,2017)。因此,加強(qiáng)大刺鰍生殖調(diào)控機(jī)理研究,對(duì)其種質(zhì)資源的保護(hù)和利用具有重要意義?!厩叭搜芯窟M(jìn)展】至今,針對(duì)大刺鰍的研究主要集中在生物學(xué)特征(黃永春,1999;初慶柱等,2009)、人工繁殖技術(shù)(薛凌展,2016;曾慶祥等,2016)及遺傳多樣性分析(林婷婷,2017;江小璐,2018;舒琥等,2017;周惠強(qiáng)等,2019)等方面,有關(guān)其生殖調(diào)控相關(guān)基因的研究尚無(wú)報(bào)道。促黃體生成素(Luteinizing hormone,LH)是由腦垂體前葉細(xì)胞分泌,通過(guò)血液循環(huán)到達(dá)性腺及其他組織的一類(lèi)糖蛋白激素(Hurvitz et al.,2005;曹洪濤,2010)。Prat等(1996)采用放射免疫法測(cè)定虹鱒魚(yú)(Oncorhynchus mykiss)的促性腺激素(GTH),結(jié)果發(fā)現(xiàn)LH在性腺成熟時(shí)大量分泌并達(dá)峰值,其生物學(xué)功能是主要刺激7α,20β-二羥黃體酮生成,從而促使卵母細(xì)胞和精子成熟并刺激排卵和排精。也有研究證實(shí),大馬哈魚(yú)(Oncorhynchus keta)存在2種不同類(lèi)型的GTH,其表達(dá)形式及在不同發(fā)育時(shí)期的表達(dá)水平也存在明顯差異,其中LH主要調(diào)控性腺成熟及排精/排卵(Schulz et al.,2001,2002;Swanson et al.,2003)。目前,已從條紋狼鱸(Morone saxatilis)(Ha-ssin et al.,1995)、金頭鯛(Sparus aurata)(Elizur et al.,1996)、金魚(yú)(Carassius auratus)(Yoshiura et al.,1997)、真鯛(Pagrosomus major)(Gen et al.,2000)、半滑舌鰨(Cynoglossus semilaevis Gunther)(柳學(xué)周等,2014)及撫仙金線(xiàn)鲃(Sinocyclocheilus tingi)(楊國(guó)坤等,2016)等幾十種魚(yú)類(lèi)中成功克隆獲得LH基因,為揭示魚(yú)類(lèi)性腺發(fā)育的分子機(jī)制奠定了基礎(chǔ)?!颈狙芯壳腥朦c(diǎn)】LH對(duì)魚(yú)類(lèi)的生殖調(diào)控具有重要作用,但在大刺鰍上的研究至今鮮見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】采用RT-PCR和cDNA末端快速擴(kuò)增技術(shù)(RACE)克隆大刺鰍LH基因全長(zhǎng)cDNA序列,并以實(shí)時(shí)熒光定量PCR檢測(cè)分析大刺鰍LH基因在不同組織及不同性腺發(fā)育期的表達(dá)情況,為進(jìn)一步闡明LH基因在大刺鰍性腺發(fā)育過(guò)程中的生理功能及揭示大刺鰍的生殖調(diào)控機(jī)理提供參考依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
供試大刺鰍采自云南瀾滄江,體長(zhǎng)270±5 mm,體質(zhì)量150±5 g。選取3尾成年健康大刺鰍,以MS-222(50 mg/L)麻醉后進(jìn)行解剖,采集腦組織、性腺、心臟、肝臟、脾臟、腎臟、腸道、胃、鰓組織和眼睛等組織樣品,置于RNA Keeper(R501-01,南京諾維贊生物科技有限公司)中,液氮速凍后-80 ℃保存?zhèn)溆?。同時(shí)選擇不同性腺繁殖周期的大刺鰍(體長(zhǎng)200±5 mm,體質(zhì)量100±5 g),用MS-222麻醉后解剖采集卵巢和精巢,置于RNA Keeper中,液氮速凍后-80 ℃保存?zhèn)溆谩?/p>
1. 2 總RNA提取及cDNA合成
采用RNAprep pure動(dòng)物組織試劑盒[DP431,天根生化科技(北京)有限公司]從大刺鰍不同組織中提取總RNA,用1.2%瓊脂糖凝膠電泳檢測(cè)RNA完整性,并以酶標(biāo)儀(1807035,美國(guó)BioTek公司)檢測(cè)其濃度和純度。
1. 3 大刺鰍LH基因克隆及序列分析
通過(guò)同源克隆獲得大刺鰍LH基因的中間部分序列,然后根據(jù)中間部分序列設(shè)計(jì)引物L(fēng)HRC1、LHRC2、LHRC3、LHRC4和LHRC5(表1),采用Pri-meScript Ⅱ1st Strand cDNA Synthesis Kit試劑盒(634860,TaKaRa)反轉(zhuǎn)錄合成cDNA第一鏈,并以此為模板進(jìn)行RACE擴(kuò)增。擴(kuò)增程序:94 ℃預(yù)變性3 min;94 ℃ 30 s,60 ℃ 30 s,72 ℃ 2 min,進(jìn)行40個(gè)循環(huán);72 ℃延伸10 min。PCR擴(kuò)增產(chǎn)物采用1.0%瓊脂糖凝膠電泳進(jìn)行檢測(cè),目的片段采用DNA凝膠回收試劑盒[生工生物工程(上海)股份有限公司]進(jìn)行純化,然后連接至pMD19-T載體上,并轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,接種至含氨芐青霉素的固體培養(yǎng)基上,37 ℃培養(yǎng)12~16 h,挑菌擴(kuò)大培養(yǎng)后通過(guò)菌液PCR篩選陽(yáng)性克隆,送至生工生物工程(上海)股份有限公司測(cè)序。
將獲得的正向和反向序列在NCBI數(shù)據(jù)庫(kù)中進(jìn)行同源性比對(duì),使用SeqMan Pro Version 7.1.0對(duì)中間片段序列、正向和反向序列進(jìn)行剪切拼接(周惠強(qiáng),2019),以獲得大刺鰍LH基因全長(zhǎng)cDNA序列。使用NCBI數(shù)據(jù)庫(kù)中的BLAST對(duì)大刺鰍LH基因全長(zhǎng)cDNA序列進(jìn)行同源性比對(duì),以DNAMAN 6.0推導(dǎo)其氨基酸序列;從GenBank中選擇硬骨魚(yú)類(lèi)、兩棲動(dòng)物、鳥(niǎo)類(lèi)和哺乳動(dòng)物等物種的LH氨基酸序列(表2),應(yīng)用ClustalX 2.1進(jìn)行LH氨基酸序列比對(duì),具體操作為:選擇比對(duì)模型Multiple Alignment Mode(多序列比對(duì)),默認(rèn)參數(shù)設(shè)置,選用Do Complete Alignment(進(jìn)行完全比對(duì)),比對(duì)結(jié)果以BOXSHADE Server進(jìn)行著色處理。采用Multiple Sequence Alignment by CLUSTALW進(jìn)行物種同源性比對(duì),并以MEGA 6.0中的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù),選擇模型為Poisson Correction(泊松修正),自引導(dǎo)檢驗(yàn)(Bootstrap)設(shè)為1000。
1. 4 大刺鰍LH基因表達(dá)分析
采用實(shí)時(shí)熒光定量PCR對(duì)大刺鰍LH基因在不同組織及不同性腺發(fā)育期的表達(dá)情況進(jìn)行檢測(cè)分析。按照HiScript[?] II Q RT SuperMix for qPCR(R223-01,南京諾維贊生物科技有限公司)說(shuō)明反轉(zhuǎn)錄合成cDNA。以β-actin基因?yàn)閮?nèi)參基因、LHQF1和LHQR1為擴(kuò)增引物(表1),采用ChamQTM SYBR? q-PCR Master Mix(Q311-02,南京諾維贊生物科技有限公司)試劑盒在LightCycler 480熒光定量PCR儀上進(jìn)行操作,所用樣品設(shè)3個(gè)重復(fù)。使用2?ΔΔCt法換算目的基因的相對(duì)表達(dá)量(Livak and Schmittgen,2001),并以SPSS 19.0進(jìn)行單因素方差分析(One-way ANOVA)和Duncans多重比較。
2 結(jié)果與分析
2. 1 大刺鰍LH基因全長(zhǎng)cDNA序列及系統(tǒng)發(fā)育進(jìn)化分析結(jié)果
大刺鰍LH基因cDNA序列全長(zhǎng)799 bp(登錄號(hào)MK900635),包括224 bp的5'非編碼區(qū)(5'-UTR)、131 bp的3'非編碼區(qū)(3'-UTR)和444 bp的開(kāi)放閱讀框(ORF),共編碼147個(gè)氨基酸殘基(圖1)。利用SignalP 3.0 Server對(duì)大刺鰍LH基因的編碼氨基酸序列進(jìn)行信號(hào)肽預(yù)測(cè),結(jié)果顯示第1~22位氨基酸殘基組成其信號(hào)肽區(qū)域。大刺鰍LH氨基酸序列與其他魚(yú)類(lèi)的同源性較高,其中,與黃鱔(M. albus)和赤點(diǎn)石斑魚(yú)(E. akaara)的同源性高達(dá)87%,與青魚(yú)(M. piceus)的同源性為56%;與兩棲動(dòng)物大蠑螈(A. davidia-nus)和鳥(niǎo)類(lèi)紅原雞(G. gallus)的同源性分別為48%和39%;與哺乳動(dòng)物山羊(C. hircus)、灰倉(cāng)鼠(C. migratorius)及人類(lèi)(H. sapiens)的同源性分別為34%、34%和35%。根據(jù)LH氨基酸序列比對(duì)分析結(jié)果可知,大刺鰍LH氨基酸序列C-末端區(qū)域高度保守,但N-末端區(qū)域與其他硬骨魚(yú)類(lèi)、兩棲動(dòng)物、鳥(niǎo)類(lèi)和哺乳動(dòng)物存在明顯差異(圖2)?;贚H氨基酸序列同源性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹(shù)(圖3)也顯示,大刺鰍與其他魚(yú)類(lèi)聚為一支,其中與黃鱔的親緣關(guān)系最近;與魚(yú)類(lèi)、兩棲動(dòng)物、鳥(niǎo)類(lèi)和哺乳動(dòng)物的親緣關(guān)系越來(lái)越遠(yuǎn),與傳統(tǒng)的形態(tài)學(xué)分類(lèi)結(jié)果一致。
2. 2 大刺鰍LH基因的組織表達(dá)分布情況
實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果(圖4)顯示,大刺鰍LH基因在其腦組織中的相對(duì)表達(dá)量最高,顯著高于在其他組織中的相對(duì)表達(dá)量(P<0.05,下同);在卵巢、心臟、肝臟和精巢中的相對(duì)表達(dá)量次之,且在這4種組織中的相對(duì)表達(dá)量無(wú)顯著差異(P>0.05,下同);大刺鰍LH基因在其他組織中的相對(duì)表達(dá)量較低。
2. 3 大刺鰍LH基因在性腺不同發(fā)育期的表達(dá)情況
在雌性大刺鰍中,隨著卵巢的不斷發(fā)育成熟,從II期開(kāi)始LH基因的相對(duì)表達(dá)量隨之增加,但仍處于較低水平;至IV期顯著升高,V期的相對(duì)表達(dá)量達(dá)峰值,顯著高于其他發(fā)育期;至VI期LH基因的相對(duì)表達(dá)量顯著降低,與II期和III期的相對(duì)表達(dá)量無(wú)顯著差異(圖5)。在雄性大刺鰍中,隨著精巢的不斷發(fā)育成熟,從II期開(kāi)始LH基因的相對(duì)表達(dá)量也隨之增加,但仍處于較低水平;至IV期顯著升高,V期的相對(duì)表達(dá)量最高,顯著高于其他發(fā)育期;至VI期LH基因的相對(duì)表達(dá)量也顯著降低,但仍高于II期和III期的相對(duì)表達(dá)量(圖6)??梢?jiàn),大刺鰍LH基因在卵巢和精巢的表達(dá)變化趨勢(shì)一致。
3 討論
本研究成功克隆獲得大刺鰍LH基因全長(zhǎng)cDNA序列,并對(duì)其推導(dǎo)氨基酸序列進(jìn)行同源性比對(duì)分析,結(jié)果顯示,大刺鰍LH氨基酸序列與合鰓目中的黃鱔、鱸形目中的赤點(diǎn)石斑魚(yú)和花鱸的同源性較高,但與鯉形目中的青魚(yú)和草魚(yú)的同源性較低;基于LH氨基酸序列同源性構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹(shù)也顯示,大刺鰍與合鰓目中的黃鱔、鱸形目的赤點(diǎn)石斑魚(yú)和花鱸等魚(yú)類(lèi)聚為一支,與傳統(tǒng)的形態(tài)學(xué)分類(lèi)結(jié)果一致。大刺鰍LH基因的ORF包含12個(gè)半胱氨酸(Cys)殘基和1個(gè)N-糖基化位點(diǎn)(第42~44位氨基酸),與中華鱘(Cao et al.,2009)、南方鯰(Southern catfish)(Wu et al.,2009)、半滑舌鰨(柳學(xué)周等,2014)和撫仙金線(xiàn)鲃(楊國(guó)坤等,2016)的研究結(jié)果相似;與其他物種的LH氨基酸序列比對(duì)分析結(jié)果顯示,大刺鰍LH氨基酸序列C-末端區(qū)域高度保守,說(shuō)明大刺鰍LH與其他脊椎動(dòng)物的LH具有相似功能。
運(yùn)用熒光實(shí)時(shí)定量PCR檢測(cè)LH基因在大刺鰍各組織中的表達(dá)情況,結(jié)果顯示,大刺鰍LH基因在所有組織中均有所表達(dá),與金頭鯛(Wong and Zohar,2004)和斑馬魚(yú)(Danio rerio)(So et al.,2005)的研究結(jié)果相似。大刺鰍LH基因在其腦組織中的相對(duì)表達(dá)量最高,其次是在卵巢、心臟、肝臟和精巢中。在性腺和腦組織中高表達(dá),暗示LH的靶基因可能在腦—垂體—性腺軸上,參與大刺鰍的性腺發(fā)育調(diào)控。本研究還對(duì)大刺鰍LH基因在不同發(fā)育期卵巢和精巢中的表達(dá)情況進(jìn)行分析,結(jié)果發(fā)現(xiàn)大刺鰍的卵巢和精巢發(fā)育至II期時(shí),LH基因的相對(duì)表達(dá)量還很低,隨后的相對(duì)表達(dá)量逐漸穩(wěn)步上升,直到IV~V期其相對(duì)表達(dá)量急劇增加,在V期時(shí)達(dá)峰值。這與虹鱒魚(yú)(Natio et al.,1991;Prat et al.,1996;Gomez et al.,1999)和許氏平鲉(Sebastes schlegeli)(Kim et al.,2005)的研究結(jié)果一致,說(shuō)明LH主要促進(jìn)卵母細(xì)胞和精子成熟并刺激排精或排卵。半滑舌鰨LH基因在卵巢VI期的表達(dá)量顯著低于其他發(fā)育期(柳學(xué)周等,2014),而大刺鰍LH基因的最低表達(dá)量出現(xiàn)在卵巢Ⅱ期。由此可見(jiàn),LH基因在性腺中的表達(dá)模式具有種間差異性。
本研究通過(guò)RACE克隆得到大刺鰍LH基因全長(zhǎng)cDNA序列,對(duì)其進(jìn)行氨基酸序列比對(duì)分析,并通過(guò)熒光實(shí)時(shí)定量PCR檢測(cè)大刺鰍LH基因在不同組織中的特異性表達(dá)及在性腺不同發(fā)育期的表達(dá)變化情況,為進(jìn)一步闡明LH基因的生理功能打下了基礎(chǔ),同時(shí)為揭示大刺鰍性腺發(fā)育調(diào)控機(jī)理提供了理論依據(jù)。
4 結(jié)論
大刺鰍LH氨基酸序列具有高度保守區(qū)域,其基因在各組織中廣泛表達(dá),尤其在腦組織和性腺中具有較高表達(dá)量,提示LH的靶基因可能在腦—垂體—性腺軸上,參與大刺鰍的性腺發(fā)育調(diào)控,主要促進(jìn)卵母細(xì)胞和精子成熟并刺激排卵或排精。
參考文獻(xiàn):
曹洪濤. 2010. 齊口裂腹魚(yú)(Schizothorax prenanti)FSHβ亞基與LHβ亞基cDNA全序列克隆及生物信息學(xué)分析[D]. 雅安:四川農(nóng)業(yè)大學(xué). [Cao H T. 2010. Molecular cloning cDNAs and Bioinformation analysis of follicle-stimula-ting hormone(FSH)-β subunit and luteinizing hormone (LH)-β subunit of Schizothorax prenanti[D]. Ya?an:Sichuan Agricultural University.]
初慶柱,陳剛,張健東,潘傳豪,周暉. 2009. 大刺鰍消化系統(tǒng)的組織學(xué)研究[J]. 淡水漁業(yè),39(2):14-18. [Chu Q Z,Chen G,Zhang J D,Pan C H,Zhou H. 2009. Histological studies on digestive system of Mastacembelus armatus[J]. Freshwater Fisheries,39(2):14-18.]
黃永春. 1999. 汀江大刺鰍食性和繁殖生物學(xué)[J]. 水產(chǎn)學(xué)報(bào),23(S):1-6. [Huang Y C. 1999. Feeding habit and reproductive biology of Mastacembelus armatus in Tingjiang river[J]. Journal of Fisheries of China,23(S):1-6.]
江小璐. 2018. 華南及鄰近地區(qū)不同群體大刺鰍的遺傳多樣性及親緣地理研究[D]. 廣州:廣州大學(xué). [Jiang X L. 2018. Genetic diversity and phylogeography of different populations of Mastacembelus armatus in Southern China and its adjacent areas[D]. Guangzhou:Guangzhou University.]
林婷婷. 2017. 大刺鰍(Mastacembelus armatus)微衛(wèi)星標(biāo)記開(kāi)發(fā)及野生群體遺傳多樣性分析[D]. 廣州:廣州大學(xué). [Lin T T. 2017. Isolation of microsatellite markers and population genetic diversity analysis in Mastacembelus armatus[D]. Guangzhou:Guangzhou University.]
柳學(xué)周,史寶,王珊珊,徐永江,李曉曉. 2014. 半滑舌鰨促黃體激素基因克隆和表達(dá)分析及其血清濃度測(cè)定[J]. 中國(guó)工程科學(xué),16(9):50-60. [Liu X Z,Shi B,Wang S S,Xu Y J,Li X X. 2014. Full length cDNA cloning and expre-ssion of luteinizing hormone(LH) and which serum concentration was measured in half smooth tongue sole Cynoglossus semilaevis Günther[J]. Engineering Sciences,16(9):50-60.]
舒琥,江小璐,楊華強(qiáng),林婷婷,周惠強(qiáng),張明清,查廣才. 2017. 華南地區(qū)7個(gè)大刺鰍野生群體的形態(tài)差異分析[J]. 廣州大學(xué)學(xué)報(bào)(自然科學(xué)版),16(3):8-14. [Shu H,Jiang X L,Yang H Q,Lin T T,Zhou H Q,Zhang M Q,Zha G C. 2017. Analysis of morphological variations among seven wild populations of Mastacembelus armatus in South China area[J]. Journal of Guangzhou University(Natural Science Edition),16(3):8-14.]
薛凌展. 2016. 大刺鰍胚胎發(fā)育觀察[J]. 淡水漁業(yè),44(2):101-104. [Xue L Z. 2016. Observation on the embryonic development of Mastacembelue armatus[J]. Freshwater Fisheries,44(2):101-104.]
楊國(guó)坤,關(guān)佳佳,孫彩云,王曉愛(ài),潘曉賦,楊君興,李文笙. 2016. 撫仙金線(xiàn)鲃促性腺激素亞基基因克隆及組織表達(dá)分析[J]. 四川動(dòng)物,35(5):686-690. [Yang G K,Guan J J,Sun C Y,Wang X A,Pan X F,Yang J X,Li W S. 2016. Gonadotropin subunits cDNA cloning and tissue expression in Sinocyclocheilus tingi[J]. Sichuan Journal of Zoology,35(5):686-690.]
楊華強(qiáng),李強(qiáng),舒琥,岳磊,林婷婷,劉遠(yuǎn)波. 2016. 華南及鄰近地區(qū)大刺鰍遺傳多樣性的ISSR分析[J]. 水生生物學(xué)報(bào),40(1):63-70. [Yang H Q,Li Q,Shu H,Yue L,Lin T T,Liu Y B. 2016. Genetic diversity of Mastacembelus armatus in Southern China and surrounding areas based on ISSR analysis[J]. Acta Hydrobiologica Sinica,40(1):63-70.]
曾慶祥,方園,曾學(xué)平,劉斌,劉德亭,張建銘,張家海,黃雅貞. 2016. 大刺鰍的生物學(xué)特性與人工繁養(yǎng)殖技術(shù)[J]. 中國(guó)水產(chǎn),(3):70-73. [Zeng Q X,F(xiàn)ang Y,Zeng X P,Liu B,Liu D T,Zhang J M,Zhang J H,Huang Y Z. 2016. Bio-logical characteristics and artificial breeding technology of Mastacembelus armatus[J]. China Fisheries,(3):70-73.]
趙子明,劉美劍. 2017. 我國(guó)刺鰍生物學(xué)研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),45(4):9-12. [Zhao Z M,Liu M J. 2017. Research progress of biology of Mastacembelus aculeatus in China[J]. Jiangsu Agricultural Sciences,45(4):9-12.]
周惠強(qiáng),李芬,舒琥,鐘東明,何佩瑩,黃小琪,陳忠凱. 2019. 大刺鰍雌雄個(gè)體形態(tài)差異分析[J]. 廣東海洋大學(xué)學(xué)報(bào),39(1):1-6. [Zhou H Q,Li F,Shu H,Zhong D M,He P Y,Huang X Q,Chen Z K. 2019. Analysis on morphological indexes and discrimination of male and female Mastacembelus armatus[J]. Journal of Guangdong Ocean University,39(1):1-6.]
周惠強(qiáng). 2019. 大刺鰍(Mastacembelus armatus)繁殖生物學(xué)研究[D]. 廣州:廣州大學(xué). [Zhou H Q. 2019. Reproductive biology of Mastacembelus armatus[D]. Guangzhou:Guangzhou University.]
Cao H,Zhou L,Zhang Y Z,Wei Q W,Chen X H,Gui J F. 2009. Molecular characterization of Chinese sturgeon gonadotropins and cellular distribution in pituitaries of mature and immature individuals[J]. Molecular and Cellular Endocrinology,303(1-2):34-42.
Elizur A,Zmora N,Rosenfeld H,Meiri I,Hassin S,Gordin H,Zohar Y. 1996. Gonadotropins β-GtH I and β-GtH II from the gilthead seabream,Sparus aurata[J]. General and Comparative Endocrinology,102(1):39-46.
Gen K,Okuzawa K,Senthilkumaran B,Tanaka H,Moriyama S,Kagawa H. 2000. Unique expression of gonadotropin-I and -II subunit genes in male and female red seabream (Pagrus major) during sexual maturation[J]. Biology of Reprodution,63(1):308-319.
Gomez J M,Well C,Ollitrault M,Le Bail P Y,Breton B,Le Gac F. 1999. Growth hormone(GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss)[J]. General and Comparative En-docrinology,113(3):413-428.
Hassin S,Elizur A,Zohar Y. 1995. Molecular cloning and sequence analysis of striped bass(Morone saxatilis) gona-dotrophin-I and -II subunits[J]. Journal of Molecular Endocrinology,15(1):23-35.
Hurvitz A,Degani G,Goldberg D,Din S Y,Jackson K,Sivan B L. 2005. Cloning of FSHβ,LHβ,and glycoprotein α subunits from the Russian sturgeon(Acipenser gueldenstaedtii),β-subunit mRNA expression,gonad development,and steroid levels in irnrnature fish[J]. General and Comparative Endocrinology,140(1):61-73.
Kim D J,Cho Y C,Sohn Y C. 2005. Molecular characterization of rockfish(Sebastes schlegeli) gonadotropin subunits and their mRNA expression profiles during oogenesis[J]. General and Comparative Endocrinology,141(3):282-290.
Livak K J,Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2?△△Ct method[J]. Methods,25(4):402-408.
Natio N,Hyodo S,Okumoto N,Urano A,Nakai Y. 1991. Di-fferential production and regulation of gonadotropins (GTH I and GTH II) in the pituitary gland of rainbow trout, Oncorhynchus mykiss,during ovarian development[J]. Cell and Tissue Research,266(3):457-467.
Prat F,Sumpter J P,Tyler C R. 1996. Validation of radioimmunoassay for two salmon gonadotropins(GTH I and GTH II) and their plasma concentrations throughout the reproductive cycle in male and female rainbow trout(Oncorhynchus mykiss)[J]. Biology of Reproduction,54(6):1375-1382.
Schulz R W,Miura T. 2002. Spermatogenesis and its endocrine regulation[J]. Fish Physiology and Biochemisty,26(1):43-56.
Schulz R W,Viseher H F,Cavaco J E,Santos E M,Tyler C R,Goos H J,Bogerd J. 2001. Gonadotropins,their receptors,and the regulation of testicular functions in fish[J]. Comparative Biochemistry and Physiology. Part B:Biochemistry & Molecular Biology,129(2-3):407-417.
So W K,Kwok H F,Ge W. 2005. Zebrafish gonadotropins and their receptors:II. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone subunits—Their spatial-temporal expression patterns and receptor specificity[J]. Biology of Reproduction,72(6):1382-1396.
Swanson P,Dickey J T,Campbell B. 2003. Biochemistry and physiology of fish gonadotropins[J]. Fish Physiology and Biochemistry,8(1-4):53-59.
Wong T T,Zohar Y. 2004. Novel expression of gonadotropin subunit genes in oocytes of the gilthead seabream(Sparus aurata)[J]. Endocrinology,145(11):5210-5220.
Wu F R,Zhang X Y,Zhang W L,Huang B F,Liu Z H,Hu C J,Wang D S. 2009. Expression of three gonadotropin subunits in Southern catfish gonad and their possible roles during early gonadal development[J]. Comparative Biochemistry and Physiology. Part A:Molecular & Integrative Physiology,153(1):44-48.
Yoshiura Y,Kobayashi M,Kato Y,Aida K. 1997. Molecular cloning of the cDNAs encoding two gonadotropin beta subunits(GTH-I beta and -II beta) from the goldfish,Cara-ssius auratus[J]. General and Comparative Endocrinology,105(3):379-389.
(責(zé)任編輯 蘭宗寶)