陳銘泰 黎美歡 張健 張忠 欒杰男
摘要?“心與小腸相表里”源自中醫(yī)經(jīng)典理論,強(qiáng)調(diào)“心”與“小腸”作為臟腑互為表里、相互配合作用,此理論與現(xiàn)代研究所證實(shí)的心血管疾病(CVD)和腸道微生態(tài)密切相關(guān)理念相吻合。通過(guò)論述“心與小腸相表里”的中醫(yī)理論源流、CVD與腸道微生態(tài)的聯(lián)系、以腸道微生態(tài)作為中醫(yī)藥治療CVD靶點(diǎn)的3個(gè)方面,望能闡明“心與小腸相表里”的理論內(nèi)涵以及在指導(dǎo)研究CVD與腸道微生態(tài)上的現(xiàn)實(shí)意義,并為進(jìn)一步深入研究和臨床診療CVD提供新思路。
關(guān)鍵詞?心與小腸相表里;中醫(yī);腸道微生態(tài);腸道菌群;心血管疾病;動(dòng)脈粥樣硬化;心力衰竭;高血壓
Abstract?“Interior and Exterior of Heart and Intestine” originated from traditional Chinese medicine(TCM)theory,emphasizing that “Xin(Heart)” and “Xiao Chang(Small Intestine)” have a strong correlation and work as exterior-interior viscera.This theory coincides with the concept that cardiovascular disease(CVD)is closely related to intestinal microecology confirmed by modern research.In this paper,we will clarify the“the exterior and interior relationship between heart and small intestine”by discussing the theoretical source of traditional Chinese medicine,the relationship between CVD and intestinal microecology,and the use of intestinal microecology as the target of traditional Chinese medicine treatment of CVD.It is hoped to clarify the theoretical connotation of“the exterior and interior relationship between heart and the small intestine”and to study practical significance in guiding the research of CVD and intestinal microecology,and to provide new ideas for further in-depth research and clinical diagnosis and treatment of CVD.
Keywords?Interior and exterior of heart and intestine; Traditional Chinese medicine; Intestinal microecology; Intestinal flora; Cardiovascular diseases; Atherosclerosis; Heart failure; Hypertention
中圖分類號(hào):R223.1文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2020.19.014
隨著社會(huì)經(jīng)濟(jì)快速發(fā)展、人們的工作節(jié)奏加快、生活方式以及飲食結(jié)構(gòu)改變,我國(guó)心血管?。–ardiovascular Disease,CVD)患病率呈持續(xù)上升趨勢(shì),死亡率居各病因之首[1-2],伴隨現(xiàn)代研究的不斷深入,發(fā)現(xiàn)腸道微生態(tài)與CVD息息相關(guān)。腸道微生態(tài)包括腸道菌群以及其生存的環(huán)境(腸道菌群代謝產(chǎn)物、腸黏膜及腸神經(jīng)等)[3-5],這與中醫(yī)“心與小腸相表里”理論有許多共通之處,此理論涵蓋了心與小腸在經(jīng)絡(luò)、生理、病理上存在互通互用的聯(lián)系,基于此理論有利于理解CVD與腸道微生態(tài)之間的相互作用關(guān)系,并能指導(dǎo)開(kāi)展相關(guān)研究。
1?“心與小腸相表里”的中醫(yī)理論源流
“心與小腸相表里”的理論來(lái)源于中醫(yī)經(jīng)典古籍,《靈樞·本輸》首次提到:“心合小腸,小腸者,受盛之腑”,《脈要精微論篇》記載:“心為牡藏,小腸為之使”,《本藏》曰:“心合小腸,小腸者,脈其應(yīng)”。“心與小腸相表里”的理論體現(xiàn)在二者在經(jīng)絡(luò)上相互聯(lián)系,生理上相互配合,病理上互相影響。
1.1?“心與小腸相表里”的經(jīng)絡(luò)聯(lián)系?《內(nèi)經(jīng)·靈樞》中指出:“心手少陰之脈,起于心中,出屬心系,下膈絡(luò)小腸……”“小腸手太陽(yáng)之脈,起于小指之端,循手外側(cè)上腕……入缺盆絡(luò)心,循咽下膈,抵胃屬小腸”,即手少陰心經(jīng)屬于心并絡(luò)小腸,手太陽(yáng)小腸經(jīng)屬于小腸并且絡(luò)心,心經(jīng)與小腸經(jīng)的生理功能、病理基礎(chǔ)以及發(fā)病機(jī)制屬于兩者在經(jīng)絡(luò)上相互聯(lián)系的體現(xiàn)[6]。經(jīng)絡(luò)是人體運(yùn)行氣血,聯(lián)絡(luò)臟腑肢節(jié),溝通上下內(nèi)外的通道,在生理功能失調(diào)時(shí),又是病邪傳注的途徑,疾病的發(fā)生、發(fā)展及演變均可從經(jīng)絡(luò)聯(lián)系中探究,明確經(jīng)絡(luò)關(guān)系,可指導(dǎo)臨床治療,如《針灸大全·標(biāo)幽賦》:“陰陽(yáng)相通,表里相應(yīng)也。本經(jīng)者,受病之經(jīng)。如心之病,必取小腸之穴兼之”。
1.2?“心與小腸相表里”的生理聯(lián)系?《素問(wèn)·靈蘭秘典論》:“小腸者,受盛之官,變化出焉”,《醫(yī)經(jīng)精義便讀·上卷》:“小腸中所盛者,只是食物,乃陽(yáng)質(zhì)也,飲主化氣,食主化血,食物在小腸皆化為液,以出于連綱,遂上奉心而生血,所以小腸為心之腑,乃心所取材處”《醫(yī)旨緒余》:“小腸為心之府,心色赤,故小腸為赤腸,主引心火濁氣下行,而不使上干于華蓋,所謂容受之府也”,以上均說(shuō)明在心與小腸在生理功能方面相互為用。一方面“心主血脈”的功能建立在“心陽(yáng)”與“心陰”充足的基礎(chǔ)上,首先是“心陽(yáng)”體現(xiàn)在心中陽(yáng)氣飽滿起到溫煦血脈、推動(dòng)血液正常運(yùn)行的作用,再有“心陰”體現(xiàn)在心中陰血、精微營(yíng)養(yǎng)物質(zhì)充足保證了心臟、血脈正常功能物質(zhì)儲(chǔ)備,起到濡養(yǎng)心臟、血脈的作用,二者結(jié)合通過(guò)經(jīng)絡(luò)聯(lián)系起到推動(dòng)小腸傳化物功能的作用;另一方面小腸主司受盛化物、泌別清濁,實(shí)現(xiàn)人體消化、吸收及排泄等功能,小腸功能的正常發(fā)揮,是血脈調(diào)和、五臟得養(yǎng)、糟粕排泄的重要條件,其吸收水谷精微,上奉于心,化血以養(yǎng)心脈,重濁之糟粕、水液則下注大腸及膀胱[7]。
1.3?“心與小腸相表里”的病理聯(lián)系?《諸病源候論》:“心痛而多唾者,停飲乘心之絡(luò)故也,停飲者,水液之所為也……小腸,心之腑也,其水氣下行于小腸,為溲便,則心絡(luò)無(wú)有停飲也……若冷熱相乘,致臟腑不調(diào),津液水飲停積,上迫于心,令心氣不宣暢,故痛而多唾也”,據(jù)條文所述如果小腸“受盛化物”的正常功能受到影響,會(huì)導(dǎo)致其傳化功能障礙,營(yíng)養(yǎng)精微物質(zhì)生成減少,無(wú)法提供血脈正常的養(yǎng)供,一方面引起血脈正常推動(dòng)血液功能下降,另一方面引起機(jī)體氣血虧虛的狀態(tài),導(dǎo)致血液運(yùn)行減緩,日久漸致血瘀。如果小腸的“泌別清濁”的功能失調(diào),那么“清濁”物質(zhì)的升降失去控制,清者不升,可生為飧泄,濁者不降,則會(huì)產(chǎn)生痰飲、水濕等病理性產(chǎn)物,而痰濁、血瘀導(dǎo)致心血失榮、心陽(yáng)不振、心脈痹阻,發(fā)為胸痹,這與現(xiàn)代醫(yī)學(xué)中冠心病發(fā)病機(jī)制的闡述相似[8-9]。
2?CVD與腸道微生態(tài)的相互聯(lián)系印證“心與小腸相表里”理論
近年來(lái)研究證實(shí),CVD的發(fā)生發(fā)展與腸道微生態(tài)的失衡有著密切的聯(lián)系,一方面印證了“心與小腸相表里”的中醫(yī)理論;另一方面在此理論的指導(dǎo)下,有助于進(jìn)一步開(kāi)展CVD與腸道微生態(tài)的研究[10]。
小腸“受盛化物”的功能與腸道微生態(tài)系統(tǒng)對(duì)機(jī)體物質(zhì)進(jìn)行代謝、消化、吸收功能相契合,腸道菌群不但促進(jìn)營(yíng)養(yǎng)物質(zhì)吸收,還能將多種物質(zhì)進(jìn)行代謝產(chǎn)生對(duì)心血管系統(tǒng)具有調(diào)節(jié)作用的產(chǎn)物(如三甲胺、短鏈脂肪酸、次級(jí)膽汁酸、內(nèi)毒素等);小腸“泌別清濁”的功能則與腸道微生態(tài)免疫功能、對(duì)有害物質(zhì)進(jìn)行識(shí)別并抵御吸收的功能相關(guān),一方面腸道屏障屬于機(jī)體免疫的“第一道屏障”,是抵抗病原菌易位引起機(jī)體感染、產(chǎn)生炎性反應(yīng)的重要組織;另一方面腸道屏障生理情況下能夠限制內(nèi)毒素、炎性遞質(zhì)吸收、調(diào)控次級(jí)膽汁酸等代謝物質(zhì)攝入。因此,正如《醫(yī)經(jīng)精義便讀·上卷》所言:“小腸中所盛者……遂上奉心而生血”,“心”的物質(zhì)供應(yīng)主要來(lái)源于“小腸”“泌別清濁”“受盛化物”生理功能的正常運(yùn)作,若“小腸”的生理功能失常,既有礙于“心”對(duì)營(yíng)養(yǎng)物質(zhì)吸收也促進(jìn)了“心”對(duì)有害物質(zhì)的吸收,腸道微生態(tài)系統(tǒng)的失衡是促進(jìn)CVD發(fā)生發(fā)展的重要危險(xiǎn)因素。
2.1?腸道微生態(tài)與冠心病?冠心病(CHD)的主要病理基礎(chǔ)是動(dòng)脈粥樣硬化(AS),炎性反應(yīng)、脂質(zhì)浸潤(rùn)促進(jìn)AS斑塊形成,導(dǎo)致冠狀動(dòng)脈狹窄甚至閉塞進(jìn)而引起心肌缺血。腸道菌群是組成腸道微生態(tài)系統(tǒng)的重要部分之一,目前越來(lái)越多的研究表明AS的發(fā)生發(fā)展與腸道菌群的組成結(jié)構(gòu)、功能狀態(tài)有著密不可分的關(guān)系,其中在各類患有動(dòng)脈粥樣硬化的人群中發(fā)現(xiàn),他們腸道中Collinsella菌屬豐度顯著增加[11]。新近研究[5,12-13]表明,細(xì)菌病原體與AS之間具有十分強(qiáng)的相關(guān)性,細(xì)菌通過(guò)微生物相關(guān)分子模式、宿主模式識(shí)別受體直接引起宿主慢性感染,產(chǎn)生慢性炎性反應(yīng),加速AS進(jìn)程,參與此過(guò)程的細(xì)菌包括肺炎衣原體、牙齦卟啉單胞菌、幽門(mén)螺桿菌、科林斯拉菌和放線桿菌,值得關(guān)注的是上述細(xì)菌除了在原發(fā)部位以外,被發(fā)現(xiàn)不僅存在于腸道中,同時(shí)還被發(fā)現(xiàn)在AS斑塊里。
除此以外,腸道菌群的代謝產(chǎn)物也是影響CHD的重要因素。氧化三甲胺(TMAO)是腸道菌群代謝物(TMA)的衍生物,臨床上血漿TMAO水平和心血管不良事件發(fā)生關(guān)系密切,宿主血漿TMAO的水平與動(dòng)脈粥樣硬化斑塊的大小、心肌梗死和猝死風(fēng)險(xiǎn)呈正相關(guān),并且TMAO的危險(xiǎn)比(HR)遠(yuǎn)高于傳統(tǒng)危險(xiǎn)因素,因此TMAO已被公認(rèn)為冠心病預(yù)測(cè)的風(fēng)險(xiǎn)因子[14-18]。TMAO的前體是TMA,TMA主要來(lái)源于腸道菌群對(duì)于膽堿、甜菜堿、左旋肉堿等物質(zhì)的代謝產(chǎn)物,經(jīng)肝臟黃素單加氧酶(Flavin Monooxygenase,F(xiàn)MO)氧化代謝成為T(mén)MAO。TMAO一方面可以增加AS前清除受體分化抗原36和清道夫受體A的表達(dá),導(dǎo)致膽固醇蓄積,另一方面抑制膽汁酸合成酶(CYP7A1)表達(dá),降低膽固醇轉(zhuǎn)運(yùn),共同促進(jìn)了泡沫細(xì)胞的形成[19-20]。研究發(fā)現(xiàn)膽汁酸(BAs)代謝對(duì)AS的發(fā)生發(fā)展有著重要的影響,BAs不僅是一類經(jīng)腸道菌群代謝的產(chǎn)物,還是一類可通過(guò)腸肝循環(huán)對(duì)機(jī)體產(chǎn)生各種效應(yīng)的信號(hào)分子,BAs能夠調(diào)節(jié)脂質(zhì)、糖類代謝以及炎性反應(yīng)等,因此BAs的代謝被認(rèn)為是AS潛在的防治靶點(diǎn)[21-22],腸道菌群與BAs代謝共同在機(jī)體中形成了“腸道菌群-膽汁酸”腸肝軸[23-24]。膽固醇首先在肝臟中經(jīng)代謝生成初級(jí)膽汁酸,經(jīng)膽道分泌至腸道由腸道菌群進(jìn)一步代謝生成次級(jí)膽汁酸,臨床研究[25]表明,對(duì)次級(jí)膽汁酸組成成分的調(diào)控作用主要與具有膽汁鹽水解酶活性的腸道菌群代謝相關(guān),如擬桿菌、雙歧桿菌和乳酸桿菌等。膽汁酸與膽汁酸受體之間構(gòu)成信號(hào)通路是膽汁酸對(duì)AS產(chǎn)生效應(yīng)過(guò)程中關(guān)鍵的環(huán)節(jié)[26],不同的次級(jí)膽汁酸對(duì)不同膽汁酸受體起產(chǎn)生效應(yīng)各異,研究[27]發(fā)現(xiàn)白藜蘆醇可通過(guò)調(diào)節(jié)腸道菌群結(jié)構(gòu)對(duì)膽汁酸組成成分進(jìn)行調(diào)控,而膽汁酸能夠調(diào)控腸肝軸中法尼酯X激活受體(Farnesoid X-activated Receptor,F(xiàn)XR)/成纖維母細(xì)胞生長(zhǎng)因子15(Fibroblast Growth Factor 15,F(xiàn)GF15)進(jìn)而對(duì)機(jī)體脂質(zhì)代謝進(jìn)行調(diào)節(jié);另有研究用INT-777可通過(guò)激活G蛋白偶聯(lián)膽汁酸受體1(TGR5)抑制巨噬細(xì)胞內(nèi)的NF-κB轉(zhuǎn)錄活性,減輕炎性浸潤(rùn),延緩AS的病理進(jìn)程[28]。
2.2?腸道微生態(tài)與心力衰竭?心力衰竭(HF)的病理進(jìn)程長(zhǎng)期以來(lái)被認(rèn)為與腸道微生態(tài)改變密切相關(guān)[29-30],目前研究發(fā)現(xiàn)腸道微生態(tài)主要通過(guò)以下的方式影響HF的發(fā)生發(fā)展:1)腸道屏障功能改變導(dǎo)致內(nèi)毒素易位引發(fā)全身炎性反應(yīng)[31];2)腸道菌群結(jié)構(gòu)改變直接影響腸道屏障功能[32];3)腸道菌群代謝產(chǎn)物直接發(fā)揮效應(yīng)[33]。
HF患者伴有不同程度的腸道屏障功能障礙,HF發(fā)生時(shí)會(huì)導(dǎo)致心輸出量的減少和交感神經(jīng)興奮刺激循環(huán)血量適應(yīng)性再分配,引起腸道屏障局部缺水、水腫,一半的失代償HF患者可觀察到腸黏膜內(nèi)酸中毒[34-35],腸道結(jié)構(gòu)、功能的破壞導(dǎo)致腸屏障完整性受損,使更多內(nèi)毒素進(jìn)入血液易位引起全身炎性因子激活,參與心肌細(xì)胞凋亡、肥大以及纖維化過(guò)程,而炎性因子增加腸屏障的通透性,繼而促進(jìn)內(nèi)毒素易位、炎性因子激活,形成惡性循環(huán)[31,36]。腸道菌群結(jié)構(gòu)的改變能夠影響腸道屏障的正常功能,有隊(duì)列研究發(fā)現(xiàn)HF患者腸道菌群結(jié)構(gòu)、功能發(fā)生改變,由黏膜生物膜組成的細(xì)菌過(guò)度生成以及細(xì)菌黏附性增加[37],隨后的研究發(fā)現(xiàn)致病菌如念珠菌、志賀氏菌、耶爾森菌等存在,增加了HF患者腸道屏障通透性,并與HF患者腸道中并與心力衰竭的嚴(yán)重程度相關(guān)[38]。腸道菌群代謝產(chǎn)物也是影響HF的重要因素,通過(guò)16SrRNA檢測(cè),HF患者腸道菌群的α多樣性與對(duì)照組比較顯著下降,通過(guò)基因富集分析發(fā)現(xiàn)此類患者的腸道菌群大多參與內(nèi)毒素以及TMA等代謝產(chǎn)物的合成[39-42];另有實(shí)驗(yàn)研究[43]表明,無(wú)論是給主動(dòng)脈縮窄術(shù)后HF模型小鼠額外補(bǔ)充膽堿、還是直接喂養(yǎng)TMAO都會(huì)增加其心肌纖維化程度、加重血流動(dòng)力學(xué)紊亂、額外各種解剖學(xué)參數(shù),而通過(guò)喂食DMB(3,3-Dimethyl-1-butanol),一種TMA抑制劑,可以顯著下調(diào)TMAO水平,減輕心肌纖維化程度,改善血流動(dòng)力學(xué)情況;臨床研究[44]表明血漿TMAO增加與心臟舒張功能障礙相關(guān),表明TMAO可能影響到心肌組織力學(xué),另外有研究[45-46]也證實(shí)了血漿TMAO水平較BNP更能作為預(yù)測(cè)HF預(yù)后、再住院率的指標(biāo)。腸道菌群另一種關(guān)鍵的代謝產(chǎn)物——短鏈脂肪酸(SCFAs)不僅能夠維持腸道屏障的穩(wěn)定性,還能調(diào)節(jié)機(jī)體免疫系統(tǒng),起到抵御致病菌、有害物質(zhì)入侵的防御功能[47],另外SCFAs可通過(guò)特定的宿主受體識(shí)別通過(guò)調(diào)節(jié)宿主血壓、抑制心室重構(gòu)等改善心力衰竭預(yù)后[48-49]。膽汁酸的代謝依賴腸道菌群的作用,HF患者膽汁酸組成和含量水平較正常對(duì)照組發(fā)生顯著改變,尤其是次級(jí)膽汁酸譜的改變,特定的次級(jí)膽汁酸(如熊去氧膽酸)可通過(guò)調(diào)節(jié)FXR膽汁酸受體進(jìn)而抑制NF-kB引起的炎性反應(yīng),研究也表明靶向治療FXR能減少心肌細(xì)胞凋亡、纖維化,從而改善心力衰竭預(yù)后[50-53]。
2.3?腸道微生態(tài)與高血壓?越來(lái)越多研究表明腸道微生態(tài)在高血壓的發(fā)生發(fā)展中起到重要作用,腸道微生態(tài)可通過(guò)腸道菌群的代謝物、腸道神經(jīng)系統(tǒng)、腸道免疫與炎性反應(yīng)等多種途徑參與高血壓的形成[54]。
腸道菌群通過(guò)參與機(jī)體代謝可生成多種影響血壓的代謝產(chǎn)物,如SCFAs、TMAO、酪氨酸、硫酸氫鹽和色氨酸等。高血壓動(dòng)物模型中代謝產(chǎn)生SCFAs的菌群豐度發(fā)生了變化[55],SCFAs可通過(guò)與G蛋白偶聯(lián)受體(G Protein Coupled Receptors,GPCRs)產(chǎn)生作用,GPCRs包括蛋白偶聯(lián)受體41和嗅覺(jué)受體[56],腸道菌群可通過(guò)產(chǎn)生乙酸鹽、丙酸鹽與OLFR78作用介導(dǎo)的腎素分泌使血壓升高,而SCFAs與GPR41作用起到降壓的作用[57];TMAO可通過(guò)參與AngII受體的肽類激素蛋白質(zhì)加工顯著延長(zhǎng)AngII引起的升壓效果[58-59],促進(jìn)高血壓的發(fā)生發(fā)展;酪氨酸改變交感神經(jīng)遞質(zhì)(多巴胺,去甲腎上腺素和腎上腺素)并導(dǎo)致交感神經(jīng)興奮[54]引起血壓升高;另外,硫酸氫鹽可松弛血管平滑肌、抗炎抗氧化,進(jìn)而調(diào)節(jié)血壓[60];再有,色氨酸通過(guò)血腦屏障在中樞神經(jīng)系統(tǒng)中生成5-羥色胺,腸道神經(jīng)系統(tǒng)和自主神經(jīng)系統(tǒng)通過(guò)5-羥色胺相互溝通協(xié)同作用,自主神經(jīng)系統(tǒng)能夠通過(guò)處理腸道神經(jīng)系統(tǒng)和腸道菌群代謝物的信號(hào),改變了自主神經(jīng)系統(tǒng)的活動(dòng)進(jìn)而調(diào)節(jié)血壓[61]。除此以外,特定腸道菌群的缺乏導(dǎo)致腸道相關(guān)淋巴組織的發(fā)育不足以及異常的全身免疫和中樞免疫,引發(fā)炎性反應(yīng),進(jìn)而導(dǎo)致血壓升高[62-63]。
3?以腸道微生態(tài)為靶點(diǎn)的中醫(yī)藥治療心血管疾病
在美國(guó)克利夫蘭醫(yī)學(xué)中心進(jìn)行的研究中,首次發(fā)現(xiàn)了通過(guò)調(diào)控腸道微生態(tài)從而治療心血管疾病,并提出腸道菌群是眾多心血管疾病的一個(gè)關(guān)鍵靶點(diǎn)[64],而在中醫(yī)“心與小腸相表里”的理論指導(dǎo)下,越來(lái)越多研究表明在中醫(yī)藥治療心血管疾病的作用機(jī)制中,中醫(yī)藥與腸道微生態(tài)相互作用的過(guò)程是關(guān)鍵的一個(gè)環(huán)節(jié)。中藥與腸道微生態(tài)之間的相互作用主要體現(xiàn)在:一方面中藥有效成分對(duì)腸道菌群結(jié)構(gòu)、代謝功能的調(diào)節(jié),以及對(duì)腸道屏障功能的調(diào)控;另一方面,腸道菌群對(duì)中藥有效成分結(jié)構(gòu)的修飾,腸道屏障對(duì)中藥的吸收與代謝等過(guò)程[65-66]。隨著近年來(lái)中醫(yī)藥研究在腸道微生態(tài)領(lǐng)域的不斷深入,很有可能將如我國(guó)著名微生態(tài)創(chuàng)始人之一的魏曦教授曾經(jīng)推斷的“微生態(tài)學(xué)很可能成為打開(kāi)中醫(yī)奧秘大門(mén)的一把金鑰匙”,應(yīng)用腸道微生態(tài)學(xué)打開(kāi)中醫(yī)藥作用機(jī)制的“黑箱”。
3.1?中藥單體?CVD與腸道微生態(tài)的中醫(yī)藥研究目前仍以中藥單體為主,中藥單體能通過(guò)改善腸道菌群、腸道屏障的結(jié)構(gòu)和功能對(duì)CVD發(fā)揮具體作用。黃連的有效成分包括黃連素、黃連堿。研究證實(shí)了黃連素通過(guò)調(diào)控腸道菌群組成結(jié)構(gòu)與功能特性,從而起到調(diào)節(jié)機(jī)體血脂水平、血糖水平和胰島功能[67],具體機(jī)制是黃連素通過(guò)抑制腸道厚壁桿菌、擬桿菌的生物活性,促進(jìn)小鼠腸上皮禁食誘導(dǎo)脂肪細(xì)胞因子相關(guān)基因的上調(diào),抑制小鼠對(duì)糖類降解與吸收,改善糖脂代謝紊亂,從而控制血糖、血脂水平[68];另外黃連素還能提升如Blautia、Allobaculum菌群的豐度,增加SCFAs水平,調(diào)節(jié)能量代謝及免疫炎性反應(yīng)[69];黃連素還能激活FXR、TGF膽汁酸受體,調(diào)節(jié)腸道菌群,促進(jìn)膽汁酸的腸肝循環(huán),改善機(jī)體炎性反應(yīng)、脂質(zhì)水平[70]。黃連堿具有與黃連素相似的生理活性,其可通過(guò)下調(diào)變形菌門(mén)豐度調(diào)節(jié)腸道菌群結(jié)構(gòu)組成、通過(guò)抑制內(nèi)毒素的吸收與釋放改善腸道屏障的通透性,進(jìn)而抑制TLR4信號(hào)通路起到抗炎、減重的作用[71]。有研究表明,黃芩苷具有調(diào)節(jié)腸道菌群、抗炎的作用,黃芩苷實(shí)驗(yàn)組小鼠能夠較高脂模型組小鼠顯著降低脫硫弧菌屬豐度,同時(shí)高劑量黃芩苷實(shí)驗(yàn)組小鼠的血清TNF-α、IL-6、內(nèi)毒素均較高脂模型組明顯下降[72]。人參主要成分之一是人參皂苷Re,其在腸道中經(jīng)擬桿菌門(mén)分解為人參皂苷Rg1、Rb1和次級(jí)人參皂苷20(S)-Rg2,研究[73]表明人參皂苷Rg1可改善心肌梗死大鼠缺血/再灌注損傷大鼠的心肌氧化應(yīng)激,減小心肌梗死面積,還能促進(jìn)心肌梗死部位血管新生、改善左心室射血分?jǐn)?shù),抑制心室重構(gòu)[74]。Chen等研究證實(shí)白藜蘆醇能夠改善高脂模型小鼠腸道菌群結(jié)構(gòu),抑制FXR/FGF腸肝軸循環(huán),促進(jìn)肝臟膽汁酸合成,調(diào)節(jié)脂質(zhì)代謝,另外白藜蘆醇還能通過(guò)調(diào)節(jié)腸道菌群結(jié)構(gòu)以下調(diào)TMAO的合成,共同起到延緩動(dòng)脈粥樣硬化的作用[26]。
3.2?中藥復(fù)方?多個(gè)研究證實(shí)中藥復(fù)方可通過(guò)改善血脂、血糖以及炎性反應(yīng)水平進(jìn)而控制CVD的危險(xiǎn)因素、抑制CVD進(jìn)程。在基礎(chǔ)實(shí)驗(yàn)研究中,有研究[75-76]證實(shí)黃連解毒湯不但能夠上調(diào)高脂血癥小鼠乳桿菌、雙歧桿菌和擬桿菌的水平,調(diào)節(jié)能量代謝,還能降低TNF-α、IL-6和內(nèi)毒素水平起到重要的抗炎作用;此外,有研究[77]表明越鞠丸可通過(guò)上調(diào)雙歧桿菌科、乳桿菌科、毛螺菌科等菌群豐度,下調(diào)紅蝽菌科、普雷沃菌科、氣單胞菌科等菌群豐度,起到降低總膽固醇、低密度脂蛋白膽固醇的作用;另有研究[78]明確了澤瀉湯可通過(guò)改善高脂血癥大鼠腸道菌群失調(diào)情況進(jìn)而降低血脂水平。在臨床實(shí)踐中,研究[79]表明在2型糖尿病患者中,采用葛根芩連湯干預(yù)后患者腸道梭菌細(xì)菌、雙歧桿菌豐度均上調(diào),而大腸埃希菌豐度則下調(diào),并觀察到患者空腹血糖、餐后2 h血糖和糖化血紅蛋白均顯著下降;另外在KK-Ay糖尿病小鼠的一項(xiàng)實(shí)驗(yàn)[80]中,葛根芩連湯表現(xiàn)出能夠通過(guò)調(diào)控小鼠腸道菌群結(jié)構(gòu)組成與功能特性,從而下調(diào)了內(nèi)毒素、TNF-α、IL-6等炎性反應(yīng)因子水平,起到抗炎作用。
4?結(jié)語(yǔ)
腸道微生態(tài)中的動(dòng)態(tài)平衡與中醫(yī)理論“整體觀”“陰陽(yáng)學(xué)說(shuō)”與“藏象學(xué)說(shuō)”等中醫(yī)思維有相似之處,通過(guò)中醫(yī)理論思維有助于研究腸道微生態(tài)與疾病的相互作用,其中“心與小腸相表里”的中醫(yī)經(jīng)典理論得到了現(xiàn)代關(guān)于CVD與腸道微生態(tài)之間相互作用研究的驗(yàn)證,這不僅是對(duì)此中醫(yī)理論內(nèi)涵的深化,也體現(xiàn)了其現(xiàn)實(shí)意義與臨床價(jià)值。綜合以上現(xiàn)代研究,CVD與腸道微生態(tài)的關(guān)系如下:1)CVD患者伴有不同程度的腸道微生態(tài)失衡(包括腸道菌群結(jié)構(gòu)失衡、代謝產(chǎn)物異常、腸道屏障功能異常);2)腸道菌群的易位感染引起炎性反應(yīng)增加CVD風(fēng)險(xiǎn);3)腸道菌群的結(jié)構(gòu)、代謝功能失衡產(chǎn)生代謝產(chǎn)物影響CVD的發(fā)生發(fā)展;4)腸道屏障結(jié)構(gòu)、功能改變影響腸道代謝產(chǎn)物的吸收進(jìn)而影響CVD病程,在“心與小腸相表里”的理論指導(dǎo)下,相關(guān)研究也證實(shí)中醫(yī)藥可通過(guò)調(diào)節(jié)腸道微生態(tài)進(jìn)而調(diào)控CVD的發(fā)生發(fā)展,不但為進(jìn)一步開(kāi)展CVD的中醫(yī)藥研究奠定了良好的基礎(chǔ),同時(shí)也為治療CVD開(kāi)拓了新的藥物靶點(diǎn)。
參考文獻(xiàn)
[1]馬麗媛,吳亞哲,王文,等.《中國(guó)心血管病報(bào)告2017》要點(diǎn)解讀[J].中國(guó)心血管雜志,2018,23(1):3-6.
[2]王隴德,劉建民,楊弋,等.《中國(guó)腦卒中防治報(bào)告2017》概要[J].中國(guó)腦血管病雜志,2018,15(11):611-616,封3.
[3]Tang WH,Kitai T,Hazen SL.Gut microbiota in cardiovascular health and disease[J].Circ Res,2017,120(7):1183-1196.
[4]張曉梅,劉天浩,衛(wèi)娜,等.基于腸道微環(huán)境探討“心主神明”的內(nèi)涵與外延[J].中醫(yī)雜志,2017,58(19):1629-1632.
[5]Brown JM,Hazen SL.Microbial modulation of cardiovascular disease[J].Nat Rev Microbiol,2018,16(3):171-181.
[6]郭宗耀,劉蕓,高玉萍,等.“心與小腸相表里”理論的源流與發(fā)展[J].中醫(yī)雜志,2017,58(2):96-99.
[7]曲華,姜眾會(huì),楊巧寧,等.基于“心合小腸”論動(dòng)脈粥樣硬化與腸道微環(huán)境的關(guān)系[J].中醫(yī)雜志,2018,59(23):2009-2012.
[8]王正,劉蕊,張宏.“治未病”理論在冠心病防治中的應(yīng)用[J].中國(guó)醫(yī)藥導(dǎo)報(bào),2019,16(1):126-129.
[9]鄭彩慧,王保和.中西醫(yī)對(duì)冠心病發(fā)病機(jī)制認(rèn)識(shí)的相關(guān)性研究[J].山東中醫(yī)藥大學(xué)學(xué)報(bào),2015,39(3):218-219.
[10]杜珊,周月,陳斌.中醫(yī)藥與腸道微生態(tài)相關(guān)性研究進(jìn)展[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2019,25(18):182-188.
[11]Karlsson FH,F(xiàn)k F,Nookaew I,et al.Symptomatic atherosclerosis is associated with an altered gut metagenome[J].Nat Commun,2012,3:1245.
[12]Kholy KE,Genco RJ,VanDyke TE.Oral infections and cardiovascular disease[J].TrendsEndocrinol Metab,2015,26(6):315-321.
[13]Simone Filardo,Marisa Di Pietro,Alessio Farcomeni,et al.Chlamydia Pneumoniae-mediated Inflammation in Atherosclerosis:a Meta-Analysis[J].Mediators of Inflammation,2015,2015:378658.
[14]Jonsson AL,Bckhed F.Role of gut microbiota in atherosclerosis[J].Nat Rev Cardiol,2017,14(2):79-87.
[15]Skagen K,Trseid M,Ueland T,et al.The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis[J].Atherosclerosis,2016,247:64-69.
[16]Zhu W,Wang Z,Tang WH,et al.Gutmicrobe-generated TMA of romdietarycholineisprothromboticin subjects[J].Circulation,2017,135(17):1671-1673.
[17]Schiattarella Gabriele Giacomo,Sannino Anna,Toscano Evelina,et al.Gut microbe-generated metabolite trimethylamine-N-oxide and cardiovascular risk:a systematic review and meta-analysis of mortality outcome[J].Eur Heart J,2017,38(39):2948-2956.
[18]Anthony L,Komaroff.The Microbiome and Risk for Atherosclerosis[J].JAMA,2018,319(23):2381-2382.
[19]Yamashita T,Kasahara K,Emoto T,et al.Intestinal Immunity and Gut Microbiota as Therapeutic Targets for Preventing Atherosclerotic Cardiovascular Diseases[J].Circ J,2015,79(9):1882-1890.
[20]Canyelles M,Tondo M,Cedó L,et al.Trimethylamine N-Oxide:A Link among Diet,Gut Microbiota,Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function[J].Int J Mol Sci,2018,19(10):3228.
[21]Jia W,Xie G,Jia W.Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J].Nat Rev Gastroenterol Hepatol,2018,15(2):111-128.
[22]Wahlstrm Annika,Sayin SamaI,Marschall Hanns-Ulrich,et al.Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism[J].Cell Metab,2016,24(1):41-50.
[23]Joyce SA,Gahan CG.Bile Acid Modifications at the Microbe-Host Interface:Potential for Nutraceutical and Pharmaceutical Interventions in Host Health[J].Annu Rev Food Sci Technol,2016,7:313-333.
[24]Sagar NM,Cree IA,Covington JA,et al.The interplay of the gutMicrobiome,bileAcids,and volatile organic compounds[J].Gastroenterol Respract,2015,3(3):398-585.
[25]Ryan,Karen K.Tremaroli,Valentina Clemmensen,Christoffer Kovatcheva-Datchary,et al.FXRisamoleculartarget for the effect sofvertical sleevegastrectomy[J].Nature,2014,509(7499):183-188.
[26]Ding L,Chang M,Guo Y,et al.Trimethylamine-N-oxide(TMAO)-induced atherosclerosis is associated with bile acid metabolism [J].Lipidsin Healthand Disease,2018,17(1):286.
[27]Chen ML,YiLong,ZhangYong,et al.Resveratrol Attenuates Trimethylamine-N-Oxide(TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota[J].MBio,2016,7(2):e02210.
[28]Pols TW,Nomura M,Harach T,et al.TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading[J].Cell Metab,2011,14(6):747-757.
[29]Kamo T,Akazawa H,Suda W,et al.Dysbiosis and compositional alterations with aging in the gutmicrobiota of patients with heart failure[J].Plos One,2017,12(3):e0174099.
[30]Tang WHWilson,LiDaniel Y,HazenStanleyL.Dietarymetabolism,the gutmicrobiome,and heart failure[J].Nat Rev Cardiol,2019,16(3):137-154.
[31]Frangogiannis NG.The inflammatory responseinmyocardialinjury,repair,and remodelling[J].Nat Rev Caidiol,2014,11(5):255-265.
[32]Hedvig E Jakobsson,Ana M Rodríguez-Pieiro,André Schütte,et al.The composition of the gut microbiota shapes the colon mucus barrier [J].EMBO Rep,2015,16(2):164-177.
[33]Wenlong Yang,Shuning Zhang,Jianbing Zhu,et al.Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis[J].J Mol Cell Cardiol,2019,134:119-130.
[34]Nagatomo,Yuji,Tang,W.H.Wilson.Intersections Between Microbiome and Heart Failure:Revisiting the Gut Hypothesis [J].J Card Fail,2015,21(12):973-980.
[35]Filippos Triposkiadis,George Karayannis,Grigorios Giamouzis,et al.The sympathetic nervous system in heart failure physiology,pathophysiology,and clinical implications[J].J Am Coll Cardiol,2009,54(19):1747-1762.
[36]Sandek A,Bjarnason I,Volk HD,et al.Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure[J].Int J Cardiol,2012,157(1):80-85.
[37]Sandek,Anja,Swidsinski,Alexander,Schroedl,Wieland,et al.Intestinal Blood Flow in Patients With Chronic Heart Failure:A Link With Bacterial Growth,Gastrointestinal Symptoms,andCachexia[J].J Am Coll Cardiol,2014,64(11):1092-1102.
[38]Pasini E,Aquilani R,Testa C,et al.Pathogenic gut flora in patients with chronic heart failure[J].JACC Heart Fail,2016,4(3):220-227.
[39]Luedde M,Winkler T,Heinsen FA,et al.Heart failure is associated with depletion of core intestinal microbiota[J].ESC Heart Fail,2017,4(3):282-290.
[40]Xiao Cui,Lei Ye,Jing Li,et al.Metagenomic and metabolomic analyses unveil dysbiosis of gutmicrobiota in chronic heart failure patients[J].Sci Rep,2018,8(1):635.
[41]Kamo T,Akazawa H,Suda W,et al.Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure[J].PLoS One,2017,12(3):e0174099.
[42]Kummen M,Mayerhofer CCK,Vestad B,et al.Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts[J].J Am Coll Cardiol,2018,71(10):1184-1186.
[43]Chen K,Zheng X,F(xiàn)eng M,et al.Gutmicrobiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice[J].Front Physiol,2017,8:139.
[44]Tang WH,Wang Z,Shrestha K,et al.Intestinal microbiota-dependent phosphatidylcholine metabolites,diastolic dysfunction,and adverse clinical outcomes in chronic systolic heart failure[J].J Card Fail,2015,21(2):91-96.
[45]Schuett K,Kleber ME,Scharnagl H,et al.Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction[J].J Am Coll Cardiol,2017,70(25):3202-3204.
[46]Suzuki T,Heaney LM,Bhandari SS,et al.Trimethylamine N-oxide and prognosis in acute heart failure[J].Heart,2016,102(11):841-848.
[47]Goverse G,Molenaar R,Macia L,et al.Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells[J].J Immunol,2017,198(5):2172-2181.
[48]Marques FZ,Nelson E,Chu PY,et al.High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice[J].Circulation,2017,135(10):964-977.
[49]Pluznick J.A novel SCFA receptor,the microbiota,and blood pressure regulation[J].Gut Microbes,2014,5(2):202-220.
[50]Nevens F,Andreone P,Mazzella G,et al.A placebo-controlled trial of obeticholic acid in primary biliary cholangitis[J].N.Engl.J.Med,2016,375(7):631-643.
[51]Sayin SI,Wahlstr mA,F(xiàn)elin J,et al.Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-betamuricholic acid,a naturally occurring FXR antagonist[J].Cell Metab,2013,17(2):225-235.
[52]von HS,Schefold JC,Jankowska EA,et al.Ursodeoxycholic acid in patients with chronic heart failure:a double-blind,randomized,placebo-controlled,crossover trial[J].J Am Coll Cardiol,2012,59(6):585-592.
[53]Pu J,Yuan A,Shan P,et al.Cardiomyocyte-expressed farnesoid-Xreceptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury[J].Eur Heart J,2013,34(24):1834-1845.
[54]Richards EM,Pepine CJ,Raizada MK,et al.The gut,its microbiome,and hypertension[J].Curr Hypertens Rep,2017,19(4):36.
[55]Adnan S,Nelson JW,Ajami NJ,et al.Alterations in the gut microbiota can elicit hypertension in rats[J].Physiol Genomics,2017,49(2):96-104.
[56]Pluznick JL,Protzko RJ,Gecorgyan H,et al.Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J].Proc Natl Acad Sci USA,2013,110(11):4410-4415.
[57]Miyamoto J,Kasubuchi M,Nakajima A,et al.The role of short-chainfattyacidon blood pressurere gulation[J].Current Opinionin Nephrology and Hypertension,2016,25(5):379-383.
[58]Ufnal M,Jazwiec R,Dadlez M,et al.Trimethylamine-N-oxide:a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats[J].Can J Cardiol,2014,30(12):1700-1705.
[59]吳紅,解玉泉,張亞臣.腸道微生物代謝產(chǎn)物氧化三甲胺與心血管疾病研究進(jìn)展[J].臨床心血管病雜志,2016,32(1):86-90.
[60]Tomasova L,Dobrowolski L,Jurkowska H,et al.Intracolonic hydrogen sulfide lowers blood pressure in rats[J].Nitric Oxide,2016,60:50-58.
[61]Yang T,Richards EM,Pepine CJ.The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease[J].Nature Reviews Nephrology,2018,14(7):442-456.
[62]Erny D,de Angelis AL H,Jaitin D,et al.Host microbiota constantly control maturation and function of microglia in the CNS[J].Nat Neurosci,2015,18(7):965-977.
[63]Wilck N,Matus MG,Kearney SM,et al.Salt-responsive gut commensal modulates TH17 axis and disease[J].Nature,2017,551(7682):585-589.
[64]Wang Z,Roberts AB,Buffa JA,et al.Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis[J].Cell,2015,163(7):1585-1595.
[65]Feng W,Ao H,Peng C,et al.Gut microbiota,a new frontiertounderst and traditional Chinese medicines[J].Pharmacol Res,2019,142:176-191.
[66]Xu J,Chen H B,Li S L.Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota[J].Med Res Rev,2017,37(5):1-46.
[67]Zhang Y,Li X,Zou D,et al.Treatment of type2 diabete sanddy slipidemia with the natural plantalkaloidberberine[J].Journal of Clinical Endocrinology & Metabolism,2008,93(7):2559-2565.
[68]Xie W,Gu D,Li J,et al.Effects and action mechanisms of berberine and rhizoma coptidis on gut microbes and obesity in high fat diet ded C57bl/6j mice[J].PLoS One,2011,6(9):e24520.
[69]Zhang X,Zhao Y,Xu J,et al.Modulation of gutmicrobiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats[J].ScientificReports,2015,5(6):14405.
[70]賀凱.黃連生物堿調(diào)節(jié)高脂C57BL/6J小鼠膽汁酸信號(hào)通路和腸道微生物改善血脂異常研究[D].重慶:西南大學(xué),2017.
[71]鄒宗堯.黃連堿介導(dǎo)LPS/TLR-4通路降低飲食誘導(dǎo)肥胖性金黃地鼠體重的研究[D].重慶:西南大學(xué),2016.
[72]劉思詩(shī),趙穎.滋腎育胎丸對(duì)IVF-ET女性卵巢儲(chǔ)備功能影響的臨床研究[J].廣州中醫(yī)藥大學(xué)學(xué)報(bào),2016,33(4):469-472.
[73]Yin H,Liu Z,Li F,et al.Ginsenoside Rg1 enhances angiogenesis and ameliorates ventricular remodeling in a rat model of myocardial infarction[J].Journal of Molecular Medicine Jmm,2011,89(4):363.
[74]Xia R,Zhao B,Wu Y,et al.Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats[J].J Biomed Biotechnol,2011,2011:767930.
[75]馬嫚.黃連解毒湯對(duì)高脂血癥小鼠腸道微生態(tài)的影響[D].廣州:廣州中醫(yī)藥大學(xué),2013.
[76]宋夢(mèng)微.黃連解毒湯對(duì)高脂血癥小鼠腸道菌群及其炎癥狀態(tài)的影響[D].廣州:廣州中醫(yī)藥大學(xué),2014.
[77]李玉波,郝改梅,賈海驊,等.從腸道菌群多樣性探討越鞠丸對(duì)ApoE-/-小鼠血脂的影響[J].中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志,2017,23(11):1559-1563.
[78]徐小妹,林文津,張亞敏,等.澤瀉湯降脂作用與腸道微生態(tài)的相關(guān)性探討[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2017,23(3):116-121.
[79]Xu J,Lian F,Zhao L,et al.Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula[J].ISME J,2015,9(3):552-562.
[80]章常華,馬廣強(qiáng),鄧永兵,等.葛根芩連湯對(duì)KK-Ay糖尿病小鼠血漿中LPS、TNF-α、IL-6及腸道菌群的影響[J].中草藥,2017,48(8):1611-1616.
(2019-06-11收稿?責(zé)任編輯:芮莉莉)