陳名媛,黃介生,曾文治,敖 暢,劉 丹,劉 義
外包土工布暗管排鹽條件下水鹽運(yùn)移規(guī)律
陳名媛,黃介生※,曾文治,敖 暢,劉 丹,劉 義
(武漢大學(xué)水利水電學(xué)院,武漢 430072)
為揭示外包土工布暗管埋設(shè)在非飽和帶時(shí)淋洗后水分和鹽分的運(yùn)移規(guī)律,該文設(shè)計(jì)了模擬暗管排水的室內(nèi)試驗(yàn),研究2種土壤初始狀態(tài)下(非飽和狀態(tài)和田持狀態(tài)),排水初期暗管與地下水位的相對(duì)位置及其排水排鹽情況,從開始淋洗至暗管停止排水全過(guò)程中地下水埋深及含鹽量變化規(guī)律、暗管的排水排鹽效果及土壤剖面的水鹽動(dòng)態(tài)運(yùn)移規(guī)律。結(jié)果表明:在暗管周圍包裹土工布的情況下,土壤初始狀態(tài)無(wú)論是非飽和還是田持,當(dāng)暗管開始排水時(shí)地下水均已完全淹沒(méi)暗管,此時(shí)的排鹽量最大,流量呈先增大后減小的變化趨勢(shì),且地下水位先升高后降低,地下水含鹽量隨著淋洗水量的增加由累積轉(zhuǎn)變?yōu)槊擕}。對(duì)比淋洗非飽和土壤(試驗(yàn)1)和淋洗田持土壤(試驗(yàn)2)的試驗(yàn)結(jié)果,試驗(yàn)2中暗管的排水、排鹽效果優(yōu)于試驗(yàn)1,在試驗(yàn)1中淋洗非飽和土壤時(shí),土壤脫鹽率在垂直方向上隨土壤深度的增加逐漸降低,0~20 cm土層的脫鹽率(> 85%)最大,降至無(wú)鹽水平,暗管周圍土壤脫鹽率相對(duì)較?。? 60%),仍處于中度鹽漬化水平;水平方向上,0~20 cm土層的脫鹽率差異不大,20~40 cm土層中距暗管越遠(yuǎn)其脫鹽率越小。試驗(yàn)2在試驗(yàn)1基礎(chǔ)上進(jìn)行,淋洗田持土壤時(shí),0~20 cm土層鹽分不再變化,30~40 cm土層的脫鹽率增大(> 60%)。此外,試驗(yàn)1中淋洗脫鹽效果大于暗管排鹽效果,暗管主要排出暗管以上土壤鹽分;試驗(yàn)2中暗管排鹽效果增強(qiáng),暗管不僅排出暗管周圍土壤鹽分,而且排出暗管以下土層及地下水中鹽分,隨著淋洗水量的增加,土壤由脫鹽型轉(zhuǎn)變?yōu)榕披}型。研究結(jié)果表明外包土工布暗管的應(yīng)用效果受地下水與暗管相對(duì)位置的影響,合理提高淋洗水量可以增強(qiáng)暗管排水排鹽效果及土壤脫鹽效果,有效改善土壤鹽漬化。研究結(jié)果可為西北內(nèi)陸干旱地區(qū)不同地下水埋深條件下暗管排鹽技術(shù)的推廣和應(yīng)用提供理論支撐和科學(xué)指導(dǎo)。
暗管排水;鹽分;脫鹽率;排水率;排鹽率;地下水埋深
土壤鹽漬化是限制農(nóng)業(yè)發(fā)展的重要環(huán)境問(wèn)題[1-2],中國(guó)鹽漬化土壤面積約為3.6×107hm2,占全國(guó)可利用土地面積的4.88%,其中69.03%的鹽漬土分布在西北干旱地區(qū)。因此,開展鹽漬土的改良和治理方面的研究對(duì)于中國(guó)農(nóng)業(yè)可持續(xù)發(fā)展、糧食安全和社會(huì)經(jīng)濟(jì)發(fā)展都具有重要的現(xiàn)實(shí)意義[1,3-4]。
土壤鹽漬化改良主要有工程(暗管、明溝和豎井排水)、農(nóng)藝(耕作和施肥)、化學(xué)(各類改良劑)、生物(培育耐鹽作物)等方法[5],其中淡水淋洗結(jié)合暗管排鹽是改良土壤鹽漬化較為有效、快捷且應(yīng)用廣泛的方法之一[6-8]。暗管排鹽遵循“鹽隨水來(lái)、鹽隨水去”的水鹽運(yùn)移規(guī)律,土壤鹽分充分溶于淋洗水中,滲入到地下水并通過(guò)管道排走,從而降低土壤含鹽量,控制地下水位和改善土壤理化性質(zhì)[9-10]。南方濕潤(rùn)地區(qū)地下水埋深淺,降水充沛,暗管一般埋深在地下水位以下,排鹽效果較好,并且能有效控制地下水位,防止土壤次生鹽漬化[11-13]。而西北內(nèi)陸干旱地區(qū)蒸發(fā)量大,降水量小,地下水埋深往往較大,暗管一般埋設(shè)在土壤非飽和帶,排水排鹽效果相對(duì)較差[6,14]。但在灌溉淋洗期間,地下水埋深波動(dòng)較大,這不僅影響暗管排鹽的效果,也與土壤鹽分的動(dòng)態(tài)運(yùn)移及土壤次生鹽漬化風(fēng)險(xiǎn)密切相關(guān)[15-16]。以新疆一些地區(qū)為例,由于地勢(shì)相對(duì)較低,灌水季節(jié)有大量地勢(shì)高的漫灌農(nóng)田出現(xiàn)跑水和深層滲漏現(xiàn)象,造成地下水埋深年季和年內(nèi)變化較大,土壤鹽漬化嚴(yán)重[17]。然而,已有的研究大多單一考慮暗管對(duì)排水排鹽和土壤水鹽分布的影響,如衡通等[18]研究了滴灌條件下不同管徑和不同埋深的暗管對(duì)土壤含鹽量分布及脫鹽淋洗效果的影響;王振華等[19]研究得到暗管埋設(shè)間距越小,排水排鹽效果越好;以及雙層暗管排水系統(tǒng)比單層暗管排水系統(tǒng)更有效地排水[20]。鮮有關(guān)注新疆地區(qū)暗管排鹽條件下地下水的動(dòng)態(tài)變化與土壤水鹽運(yùn)移交互影響規(guī)律。此外,前人在設(shè)計(jì)試驗(yàn)時(shí)大多在暗管周圍布設(shè)砂礫石濾料[6,18-21],其具有保土性、透水性和防堵性的特點(diǎn),但也存在工序復(fù)雜、投資大的缺點(diǎn)[22]。目前,大量工程開始采用更易于機(jī)械化施工的合成材料,如土工布[23],其具有良好的過(guò)濾、排水和防護(hù)功能,在砂石材料緊缺地區(qū),選擇合成材料作為外包濾料可以大大降低工程費(fèi)用[24-25],而已有研究中對(duì)該條件下暗管的排水排鹽情況及土壤水鹽運(yùn)移規(guī)律尚不明確。因此,本文通過(guò)精心設(shè)計(jì)的暗管排水排鹽試驗(yàn),揭示外包土工布暗管埋設(shè)在非飽和帶時(shí)暗管排水與地下水位的關(guān)系及土壤全剖面的水鹽運(yùn)移規(guī)律,旨在為西北內(nèi)陸干旱地區(qū)不同地下水埋深條件下暗管排鹽技術(shù)的推廣和應(yīng)用提供理論支撐和科學(xué)指導(dǎo)。
取土點(diǎn)位于新疆南部阿克蘇農(nóng)一師二團(tuán)耕作地,地處40°34′N、79°52′E,氣候特征為溫帶大陸性干旱氣候,年均氣溫11.7 ℃,年均降水量43 mm,年蒸發(fā)量1 800~2 500 mm,非灌溉期地下水埋深大于2 m,灌溉期的地下水位埋深小于1.5 m。在取土點(diǎn)分層選取0~15,15~35、35~55和55~75 cm共4層土樣,對(duì)所取土樣烘干后測(cè)量含水率,并將相應(yīng)土樣稱取15 g,經(jīng)風(fēng)干過(guò)篩后放入三角瓶中,加入75 mL蒸餾水,振蕩10 min,并靜置15 min后過(guò)濾,得到土水質(zhì)量比為1:5的浸提液,使用DDSJ-305F型電導(dǎo)率儀測(cè)量浸提液電導(dǎo)率(EC1:5)[23],采用干燥殘?jiān)?biāo)定出含鹽量與電導(dǎo)率之間的關(guān)系:
式中TDS為土壤含鹽量,g/kg;EC1:5為土壤1:5浸提液的電導(dǎo)率,mS/cm。土壤飽和浸提液電導(dǎo)率(ECe)與含鹽量(TDS)之間的關(guān)系為TDS=0.749ECe-0.167。此外,原狀土壤容重采用環(huán)刀法測(cè)定;土壤粒徑分布采用LSI3320激光粒度分析儀測(cè)定;土壤飽和滲透系數(shù)采用變水頭滲透裝置測(cè)定。
由于取土點(diǎn)已進(jìn)行了5 a的暗管排鹽治理,土壤含鹽量較?。妼?dǎo)率<4 mS/cm),為了在室內(nèi)還原高鹽下暗管排水排鹽規(guī)律,采用人工加入氯化鈉(NaCl)來(lái)提高土壤鹽分。稱取4.286 kg的NaCl,將其溶于11.84 kg的水中(NaCl溶解度:25 ℃下每100 g水可溶解約36.2 g),再將NaCl溶液稀釋,分層拌入風(fēng)干、過(guò)篩的土樣中。拌鹽后,將土樣按照原容重分層填入淋洗槽中,土壤體積含水率為18.9%~21.8%,含鹽量為6.85~8.01 g/kg,屬于重度鹽漬土[26]。裝槽后,土壤類型及其理化特性如表1所示。
表1 采樣點(diǎn)土壤類型及物理參數(shù)
注:表中含水率均為體積含水率,下同。
Note: The water content in the table are volume water content, same below.
本文利用改造的鋼化水槽進(jìn)行暗管淋洗排水試驗(yàn)。水槽尺寸為1.5 m×0.5 m×0.95 m(長(zhǎng)×寬×高),鋼化板高0.8 m,有機(jī)玻璃板高0.15 m,距玻璃板頂部10 cm處設(shè)置溢流孔,避免淋洗水位過(guò)高,并在槽壁上設(shè)置探頭孔和抽水孔。在槽內(nèi)底部布設(shè)5 cm反濾層,易于排出暗管以下的水分;在槽外底部設(shè)置U型管聯(lián)通器,便于觀測(cè)地下水位。淋洗槽尺寸參考前人室內(nèi)試驗(yàn)裝置[27-29],易于觀測(cè)水分和鹽分的遷移運(yùn)動(dòng)。
試驗(yàn)的土壤總體積為1.5 m×0.5 m×0.8 m(長(zhǎng)×寬×高),暗管埋設(shè)深度距土壤表面0.5 m,長(zhǎng)度0.5 m,設(shè)計(jì)坡度小于2%。暗管采用外徑為5 cm的PVC波紋管,凹槽開縫長(zhǎng)3 mm、寬2 mm,開孔率約為3.44%。暗管周圍采用土工布包裹,作為過(guò)濾層避免暗管孔隙堵塞。在試驗(yàn)期間,室內(nèi)門窗關(guān)閉,忽略蒸發(fā)損失。
此外,設(shè)置2次淋洗試驗(yàn),均采用淹灌的淋洗方式,水源來(lái)自市政自來(lái)水(EC=0.35 mS/cm)。2018年11月4日早8:00開始第一次淋洗試驗(yàn)(試驗(yàn)1),土壤處于非飽和狀態(tài),土壤剖面的總鹽量為4.03 kg(各個(gè)土層的含鹽量積分求和),淋洗水量為192 mm(144 kg),土壤剖面初始含水率和含鹽量見(jiàn)表1;第二次淋洗試驗(yàn)(試驗(yàn)2)基于第一次試驗(yàn)進(jìn)行,土壤已淋洗至田持狀態(tài),通過(guò)打土鉆測(cè)量得到土壤剖面平均含鹽量分別為:0~15 cm土層為0.31 g/kg,15~35 cm為1.91 g/kg,35~55 cm為7.33 g/kg,55~75 cm為8.01 g/kg,土壤剖面的總鹽量為2.79 kg。共分兩次灌水,11月13日早8:00灌水92 mm(試驗(yàn)2-1),11月16日早7:30灌水110 mm(試驗(yàn)2-2),第二次試驗(yàn)的淋洗總量為202 mm(132 kg)。試驗(yàn)中排水裝置僅設(shè)置暗管。
土壤剖面體積含水率和飽和電導(dǎo)率的測(cè)定采用5TE探頭(美國(guó)METER公司),數(shù)據(jù)傳感器采用EM50,每個(gè)傳感器連接5個(gè)探頭,設(shè)置每10 min計(jì)數(shù)1次。探頭共埋設(shè)15個(gè),橫向間距20 cm,垂向間距10 cm,均布設(shè)在淋洗槽左側(cè),左1~3列布設(shè)4個(gè)探頭,探頭埋深為10、20、30、40 cm;暗管正上方布置3個(gè)探頭,探頭埋深為10、20、40 cm,暗管與探頭的水平間距為0、20、40和60 cm。試驗(yàn)假設(shè)淋洗過(guò)后左右兩側(cè)的土壤水鹽對(duì)稱分布。暗管排水量和排水流量采用翻斗式流量計(jì)測(cè)量,設(shè)定每200 ml計(jì)數(shù)1次;地下水埋深的觀測(cè)采用U型管聯(lián)通器,并在埋深60和70 cm抽水孔處采用注射器抽取地下水水樣,監(jiān)測(cè)地下水含鹽量變化,具體布設(shè)示意圖見(jiàn)圖1。試驗(yàn)期間,所有監(jiān)測(cè)于am 8:00-pm 22:00每2 h取1次水樣,am 0:00-am 8:00每4 h取1次水樣,并測(cè)量其電導(dǎo)率。待暗管停止排水時(shí)試驗(yàn)結(jié)束,打鉆測(cè)量土壤垂直剖面上的實(shí)際含水率和電導(dǎo)率,校核探頭位置和測(cè)量數(shù)據(jù)。
圖1 暗管排水室內(nèi)試驗(yàn)平面圖(單位:cm)
本研究中涉及的計(jì)算指標(biāo)包括暗管排水速率、地下水上升速率、土壤淋洗脫鹽率、暗管排水率、暗管排鹽率和暗管排脫比。其中,暗管排水率、暗管排鹽率和暗管排脫比是評(píng)價(jià)暗管排水排鹽效果的指標(biāo)。
暗管排水速率(cm/h)=某一時(shí)長(zhǎng)內(nèi)的暗管排水量(cm3)/排水時(shí)長(zhǎng)(h)/淋洗槽橫截面積(cm2)
地下水位變化速率(cm/h)=(飽和體積含水率—田間體積持水率)×地下水位變化高度(cm)/變化時(shí)長(zhǎng)(h)
土壤淋洗脫鹽率[30](%)=(土壤鹽分初始值(g/kg)-土壤鹽分終值(g/kg))/土壤鹽分初始值(g/kg)×100%
暗管排水率(%)=暗管排水總量(kg)/淋洗水總量(kg)×100%
暗管排鹽率(%)=暗管排鹽總量(kg)/(暗管上層土壤初始總鹽量(kg)+淋洗水含鹽量(kg))×100%
暗管排脫比=暗管排鹽率(%)/土壤脫鹽率(%)≈暗管排鹽總量(kg)/(暗管上層土壤初始總鹽量(kg)-暗管上層土壤最終總鹽量(kg))
其中,試驗(yàn)1中暗管上層土壤初始總鹽量為2.54 kg(各個(gè)土層含鹽量積分求和),試驗(yàn)2中暗管上層土壤初始總鹽量為1.32 kg。淋洗水含鹽量較少,可忽略不計(jì)。
試驗(yàn)1的初始排水時(shí)間為2018年11月4日早11:57,試驗(yàn)2-1的初始排水時(shí)間為11月13日早9:38,試驗(yàn)2-2為11月16日早8:00,第二次淋洗試驗(yàn)的開始排水時(shí)刻比第一次淋洗試驗(yàn)早。2次淋洗試驗(yàn)過(guò)程中,暗管開始排水時(shí)(圖2a,“0”時(shí)刻指的是暗管開始出水的時(shí)間),地下水均已完全沒(méi)過(guò)暗管,此時(shí)試驗(yàn)1、試驗(yàn)2-1和試驗(yàn)2-2的地下水埋深分別為45、41 和34.6 cm。而地下水沒(méi)過(guò)暗管后,水位仍繼續(xù)上升,并在開始排水后0~5 h內(nèi)達(dá)到最高水位附近,最小地下水埋深分別為37.5、34.3和23.4 cm,隨后地下水位逐漸下降,至暗管底部位置停止排水。在第一次淋洗試驗(yàn)中,地下水含鹽量在短時(shí)間內(nèi)迅速增大(圖2b),并隨時(shí)間呈波動(dòng)變化,最終地下水含鹽量從中度鹽漬化水平(4.02 g/kg)上升至重度鹽漬化水平(11.86 g/kg)。而第二次淋洗試驗(yàn)中(包含兩次灌水),地下水含鹽量隨時(shí)間逐漸下降,試驗(yàn)結(jié)束后從重度鹽漬化水平(10.44 g/kg)降至無(wú)鹽水平(2 g/kg)。
圖2 地下水埋深和含鹽量的動(dòng)態(tài)變化特征
根據(jù)暗管排水速率和地下水埋深變化速率的計(jì)算結(jié)果(圖3),試驗(yàn)1的暗管排水速率呈逐漸減小的趨勢(shì),試驗(yàn)2-1和2-2的排水速率均在短時(shí)間內(nèi)迅速增大,然后逐漸減小。2次淋洗試驗(yàn)在排水前期時(shí)暗管的排水速率均小于地下水位的上升速率,隨著地下水上升速率的減小,2種速率變化曲線存在交叉點(diǎn),即為暗管排水速率等于地下水上升速率;5 h后,暗管的排水速率大于地下水的下降速率。
圖3 暗管排水速率和地下水埋深變化速率
2次淋洗試驗(yàn)的暗管排水排鹽效果存在差異。其中試驗(yàn)1的暗管排水總歷時(shí)為76 h,排水總量為68 kg,排鹽總量1.21 kg;試驗(yàn)2的暗管排水總歷時(shí)118 h(包括試驗(yàn)2-1和2-2),排水總量134.9 kg,排鹽總量0.81 kg。根據(jù)暗管排水率、排鹽率和排脫比3種指標(biāo)的計(jì)算結(jié)果(表2),試驗(yàn)1的暗管排水率為47.2%,排鹽率為47.6%,排脫比為0.74%/%;試驗(yàn)2的排水率為89%,排鹽率為61.4%,排脫比為0.85%/%。對(duì)比2次淋洗試驗(yàn)結(jié)果,試驗(yàn)2的暗管排水、排鹽效果均優(yōu)于試驗(yàn)1。
表2 暗管排水排鹽效果
通過(guò)對(duì)暗管整個(gè)排水過(guò)程的觀測(cè)發(fā)現(xiàn),淋洗試驗(yàn)1中暗管排水流量呈逐漸減小的變化趨勢(shì),而淋洗試驗(yàn)2(包括2-1和2-2)中排水流量在短時(shí)間內(nèi)快速增大,隨后逐漸減小,暗管的最大排水速率為試驗(yàn)1>試驗(yàn)2-1>試驗(yàn)2-2(圖4a)。此外,2次淋洗試驗(yàn)中暗管排鹽量隨排水量逐漸減小(圖4b),開始排水時(shí)的排鹽量最大,并且暗管排鹽變化量呈試驗(yàn)1>試驗(yàn)2-1>大于試驗(yàn)2-2,最終暗管排鹽量降至3.2 g/kg,接近于最終地下水含鹽量(2 g/kg)。
圖5為2次淋洗試驗(yàn)暗管排水全過(guò)程中0~40 cm土壤剖面水分動(dòng)態(tài)分布狀況(探頭實(shí)測(cè)值)。第一次淋洗試驗(yàn)前,土壤剖面的初始含水率未達(dá)到田間持水率。開始淋洗工作后,垂直方向上土壤剖面自上而下逐漸飽和,0~20 cm土層含水率較快穩(wěn)定至田間持水率(30.1 m3/m3);20~40 cm土層至飽和狀態(tài)持續(xù)時(shí)間較長(zhǎng),較慢穩(wěn)定于田間持水率(33.1 m3/m3);且同一土層含水率在水平方向上無(wú)明顯差異。第二次淋洗試驗(yàn)中土壤剖面的初始含水率為田間持水率,開始淋洗至暗管排水的整個(gè)過(guò)程中土壤剖面含水率變化較小,30~40 cm土層的含水率大于0~30 cm土層。另外,圖中最大體積含水率達(dá)1.011 m3/m3,可能是探頭與水直接接觸而造成儀器測(cè)量誤差。
圖4 暗管排水流量與排鹽量的動(dòng)態(tài)變化
圖5 0~40 cm 土層的水分動(dòng)態(tài)變化特征(探頭實(shí)測(cè)值)
土壤鹽分受淋洗水分運(yùn)移的影響在空間分布上有所差異(表3和圖6)。在第一次淋洗試驗(yàn)中,10和20 cm土壤脫鹽率較大,平均脫鹽率達(dá)85%以上,其平均含鹽量從重度鹽漬化水平脫至無(wú)鹽水平,實(shí)際剩余平均含鹽量為0.4 g/kg;30 cm土壤脫鹽率在65%~80%之間,含鹽量降至輕度鹽漬化水平(2.02 g/kg);40 cm土壤脫鹽率小于60%,含鹽量降至中度鹽漬化水平(4.3 g/kg)。在垂直方向上,隨著土壤埋深的增大,土壤脫鹽率逐漸減小,且0~30 cm土層脫鹽率顯著大于40 cm土層(<0.05)。而在水平方向上,土壤埋深在10 和20 cm剖面處水平方向的脫鹽效果差別不大;當(dāng)埋深大于20 cm時(shí),距暗管越遠(yuǎn),土壤脫鹽率越小。在第二次淋洗試驗(yàn)中,0~20 cm土層穩(wěn)定在無(wú)鹽水平,含鹽量變化較小,土壤脫鹽現(xiàn)象明顯發(fā)生在30~40 cm土層中,脫鹽率大于60%,且從輕鹽和中鹽水平降至無(wú)鹽水平(<1.5 g/kg)。同時(shí),土壤脫鹽狀況在不同排水時(shí)間間隔內(nèi)存在差異,在淋洗作用下土壤鹽分向下移動(dòng)。由圖6所示,淋洗試驗(yàn)1中10和20 cm土層較快完成脫鹽,后期土壤鹽分變化量較??;30 和40 cm土層在結(jié)束排水時(shí)土壤含鹽量仍較大,脫鹽率小于上層土壤。而淋洗試驗(yàn)2中20 cm以上土層鹽分不再變化,30~40 cm土層短時(shí)間內(nèi)脫鹽效果明顯,后期穩(wěn)定在無(wú)鹽水平。
表3 不同水平距離的垂直方向土壤脫鹽率和最終含鹽量
注:**表示在0.01水平上差異顯著;*表示在0.05水平上差異顯著。
Note: ** means significant difference at 0.01 level, * means significant difference at 0.05 level.
圖6 土壤鹽分空間動(dòng)態(tài)變化
2次淋洗試驗(yàn)結(jié)果表明了無(wú)論土壤處于非飽和狀態(tài)還是田持狀態(tài),地下水需完全淹沒(méi)暗管后才發(fā)生排水,這一研究結(jié)果與前人研究存在差異。李顯微等[31-34]觀察到暗管發(fā)生排水時(shí)地下水位位于暗管以下,整個(gè)排水過(guò)程中地下水未淹沒(méi)暗管,并指出暗管排鹽效果與淋洗水量、砂礫石濾料的布設(shè)形式等因素有關(guān)。這種差異的主要原因可能在于前人的試驗(yàn)中在暗管周圍布設(shè)了砂礫石濾料,合理布設(shè)砂礫石濾料可以有效增加暗管集水面積,淋洗水進(jìn)入砂礫石濾層將其充滿,水分即刻向暗管中入滲[27,33]。而本試驗(yàn)中采用土工布代替砂礫石,暗管排水只能依靠土壤水的重力作用和壓力勢(shì),待暗管周圍土壤全部至飽和時(shí)土壤水才能流入暗管中[31]。同時(shí),地下水位在淹沒(méi)暗管后呈先升高后下降的變化趨勢(shì),這與暗管排水速率和地下水位變化速率密切相關(guān),當(dāng)?shù)叵滤蛔兓俾蚀笥诎倒芘潘俾蕰r(shí),地下水位上升;當(dāng)暗管排水速率大于地下水位變化速率時(shí),地下水位下降。暗管的排水速率受多種因素的影響,如開孔大小、外包材料透水性和暗管周圍土壤密實(shí)度等[35-37],地下水埋深的變化速率主要受土壤質(zhì)地的影響,包括土壤飽和含水率和田間持水率,由于2次淋洗試驗(yàn)中土壤逐漸密實(shí),試驗(yàn)2較試驗(yàn)1的最大地下水埋深小,試驗(yàn)1較試驗(yàn)2的最大暗管排水速率大。綜上所述,采用土工布包裹的暗管排水排鹽效果受到地下水和暗管相對(duì)位置的影響,但在不同土壤質(zhì)地下確定暗管與地下水相對(duì)位置還有待進(jìn)一步研究。試驗(yàn)結(jié)果顯示,暗管排水初期試驗(yàn)2的暗管排水流量均呈先增大后減小的變化趨勢(shì),而試驗(yàn)1的暗管排水流量不斷減小,依據(jù)已有研究結(jié)果[32],暗管排水流量應(yīng)是先增大后減小,試驗(yàn)1可能由于暗管排水流量增大過(guò)程速度較快,人為測(cè)量出現(xiàn)誤差,未能觀測(cè)到前期的增大過(guò)程。同時(shí),2次淋洗試驗(yàn)中排水初期的暗管排鹽量均為最大值,后期隨排水量的增大排鹽量逐漸減小,這符合溶質(zhì)質(zhì)量守恒的規(guī)律。此外,由結(jié)果分析可知,當(dāng)淋洗水量一定時(shí)(試驗(yàn)1),暗管排淋比小于1(0.74),0~30 cm土壤脫鹽效果較明顯,淋洗脫鹽效果大于暗管排鹽效果,暗管主要排出暗管以上土壤中的鹽分;而當(dāng)淋洗水量不斷增大時(shí)(試驗(yàn)2-1和2-2),暗管排鹽效果也增大,其排淋比大于試驗(yàn)1(0.85),0~30 cm土壤鹽分變化量較小,暗管周圍及地下水脫鹽效果增強(qiáng),則暗管不僅排出暗管周圍土壤中的鹽分,而且排出暗管以下土壤及地下水中鹽分。因此,隨著淋洗水量的增大,土壤從脫鹽型轉(zhuǎn)變?yōu)榕披}型,王海江等人[17]研究表明土壤含鹽量與灌水量之間呈極顯著負(fù)相關(guān);于淑會(huì)等[11,38]指出降雨量對(duì)土壤淋洗脫鹽效果具有顯著影響;劉玉國(guó)等[7]也表明隨著灌溉次數(shù)的增大導(dǎo)致土壤鹽分剖面由表聚型向脫鹽型變化,鮮有研究定量分析淋洗水量對(duì)土壤脫鹽和暗管排鹽效果的作用。此外,土壤初始含水率的大小影響土壤脫鹽和暗管排鹽效果,初始含水率越小,淋洗水利用率越小,因此在土壤含水率較小地區(qū),應(yīng)適當(dāng)增加淋洗水量以滿足土壤剖面的脫鹽要求;初始含水率越大,淋洗水利用率越大,相同淋洗水量下脫鹽和排鹽效果更佳,胡望斌等[39-40]也證實(shí)了此結(jié)論(“四水”轉(zhuǎn)化)。但在不同土壤初始含水率下,不同暗管排鹽和土壤脫鹽需求的最小淋洗定額量還需更多試驗(yàn)和模擬研究確定。在土壤剖面水分和鹽分的動(dòng)態(tài)變化方面,淋洗非飽和土壤且淋洗水量一定時(shí),暗管周圍土壤含水率至飽和狀態(tài)持續(xù)時(shí)間較長(zhǎng),同一土層在水平方向上含水率差異不大,土壤脫鹽率自上而下逐漸減小,距暗管越遠(yuǎn)的土壤脫鹽率越小,這與前人研究結(jié)果一致[6,21]。當(dāng)繼續(xù)淋洗田持狀態(tài)的土壤時(shí),土壤含水率穩(wěn)定在田間持水率左右,暗管周圍土壤脫鹽率增大,且暗管以下土壤和地下水含鹽量明顯減小,這一研究結(jié)果驗(yàn)證了淋洗水量的增加對(duì)土壤剖面脫鹽效果的影響。
因此,外包土工布暗管的適用條件,暗管與地下水的相對(duì)位置對(duì)排水排鹽效果的具體影響,以及不同土壤初始含水率下確定合理淋洗水量都是值得進(jìn)一步研究的問(wèn)題。
1)外包土工布暗管埋設(shè)在土壤非飽和帶時(shí),在2種不同初始含水率條件下,均在地下水完全沒(méi)過(guò)暗管時(shí),暗管才開始排水,而且地下水位呈先升高后降低的變化趨勢(shì),至暗管最底部位置時(shí)停止排水。試驗(yàn)中的最小地下水埋深與暗管的排水速率和地下水位的變化速率密切相關(guān)。同時(shí),地下水含鹽量隨著淋洗水量的增大由累積轉(zhuǎn)變?yōu)槊擕},最后降至2.02 g/kg。
2)暗管排水初期,暗管排鹽量最大,其排水流量呈先增大后減小的變化趨勢(shì)。在淋洗非飽和土壤時(shí),大部分淋洗水補(bǔ)給土壤水,暗管排水率(47.2%)、排鹽率(47.6%)和排脫比(0.74%/%)偏??;在淋洗田持土壤時(shí),暗管排水率(89%)、排鹽率(61.4%)和排脫比均增大(0.85%/%),因此,隨著淋洗水量的增加,暗管排水排鹽效果增強(qiáng)。此外,2次淋洗試驗(yàn)中排水含鹽量隨著暗管排水量的增加而逐漸減小。
3)淋洗非飽和土壤時(shí),土壤自上而下逐漸增大至飽和,暗管周圍土壤飽和狀態(tài)時(shí)間較長(zhǎng),同一土層含水率水平方向上差異不大。繼續(xù)淋洗田持土壤時(shí),土壤剖面含水率基本無(wú)變化。
4)淋洗非飽和土壤時(shí),垂直方向上隨著土壤深度的增大,平均脫鹽率逐漸降低(94.5%~46.4%),0~20 cm的土壤脫鹽率最大;水平方向上,0~20 cm土層脫鹽率差異較小,20~40 cm土層距暗管越近,土壤脫鹽率越大。當(dāng)淋洗田持土壤時(shí),土壤脫鹽現(xiàn)象明顯發(fā)生在30~40 cm土層中(脫鹽率>60%),0~20 cm土層鹽分變化不大。此外,從排水時(shí)間上看,0~20 cm土層在短時(shí)間內(nèi)脫鹽效果明顯,后期穩(wěn)定;30~40 cm土層脫鹽效果在排水前期較小,但隨著淋洗水量的增大,后期排水過(guò)程中脫鹽量增大。
[1] 楊勁松. 中國(guó)鹽漬土研究的發(fā)展歷程與展望[J]. 土壤學(xué)報(bào),2008,45(5):837-845. Yang Jingsong. Development and prospect of the researchon salt-affected soils in china[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845. (in Chinese with English abstract)
[2] Yang Yujian, Yang Jingsong, Liu Guangming, et al. Space-time variability and prognosis of soil salinization in Yucheng city, China[J]. Pedosphere, 2005, 15(6): 797-804.
[3] 朱宏偉,夏軍,曹國(guó)棟,等. 鹽漬化棄耕地土壤鹽分動(dòng)態(tài)及其影響因素[J]. 土壤,2013,45(2):339-345. Zhu Hongwei, Xia Jun, Cao Guodong, et al. Dynamic change of soil salinity in salinization abandoned farmland and affecting factors[J]. Soil, 2013, 45(2): 339-345. (in Chinese with English abstract)
[4] 潘旭東,楊樂(lè),張鳳華,等. 瑪納斯河流域次生鹽漬化棄耕地全面生態(tài)重建的新理念[J]. 新疆農(nóng)業(yè)科學(xué),2004,41(6),431-434. Pan Xudong, Yang Le, Zhang Fenghua, et al. New conception on the overall ecosystem reconstruction of secondary salinization wasteland in manas river valley[J]. Xinjiang Agricultural Sciences, 2004, 41(6): 431-434. (in Chinese with English abstract)
[5] Sakadevan Karuppan, Nguyen Minh Long. Chapter two-extent, impact, and response to soil and water salinity in arid and semiarid regions[J]. Advances in Agronomy, 2010, 109(109): 55-74.
[6] 李顯溦,左強(qiáng),石建初,等. 新疆膜下滴灌棉田暗管排鹽的數(shù)值模擬與分析Ⅰ:模型與參數(shù)驗(yàn)證[J]. 水利學(xué)報(bào),2016,47(4):537-544. Li Xianwei, Zuo Qiang, Shi Jianchu, et al. Evaluation of salt discharge by subsurface pipes in the cotton field with film mulched drip irrigation in Xinjiang, China Ⅰ: Calibration to models and parameters[J]. Journal of Hydraulic Engineering, 2016, 47(4): 537-544. (in Chinese with English abstract)
[7] 劉玉國(guó),楊海昌,王開勇,等. 新疆淺層暗管排水降低土壤鹽分提高棉花產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):84-90. Liu Yuguo, Yang Haichang, Wang Kaiyong, et al. Shallow subsurface pipe drainage in Xinjiang lowers soil salinity and improves cotton seed yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 84-90. (in Chinese with English abstract)
[8] 張金龍,劉明,錢紅,等. 漫灌淋洗暗管排水協(xié)同改良濱海鹽土水鹽時(shí)空變化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):98-103. Zhang Jinlong, Liu Ming, Qian Hong, et al. Spatial-temporal variation characteristics of water-salt movement in coastal saline soil by flooding under subsurface drainage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 98-103. (in Chinese with English abstract)
[9] 袁念念,黃介生,謝華,等. 棉田暗管控制排水和氮素流失研究[J]. 灌溉排水學(xué)報(bào),2011,30(1):103-105. Yuan Niannian, Huang Jiesheng, Xie Hua, et al. Drainage and nitrogen loss from controlled pipe drainage cotton field[J]. Journal of Irrigation and Drainage, 2011, 30(1): 103-105. (in Chinese with English abstract)
[10] 韓立樸,馬鳳嬌,于淑會(huì). 基于暗管埋設(shè)的農(nóng)田生態(tài)工程對(duì)運(yùn)東濱海鹽堿地的改良原理與實(shí)踐[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012,20(12):1680-1686. Han Lipo, Ma Fengjiao, Yu Shuhui. Principle and practice of saline-alkali soil improvement via subsurface pipe enigeering in coastal areas of east Hebei province[J]. Chinese Journal of Eco-Agriculture, 2012, 20(12): 1680-1686. (in Chinese with English abstract)
[11] 于淑會(huì). 暗管排鹽技術(shù)適宜性評(píng)價(jià)及其對(duì)生態(tài)功能影響研究:以環(huán)渤海河北省近濱海鹽堿區(qū)為例[D]. 北京:中國(guó)科學(xué)院,2011. Yu Shuhui. Study on Suitability Evaluation of Salt Discharge Technology with Concealed Tube and Its Impact on Ecological Function: A Case Study of Coastal Saline-Alkali Area in Bohai Rim Hebei Province[D]. Beijing: Chinese Academy of Sciences, 2011. (in Chinese with English abstract)
[12] 于淑會(huì),劉金銅,劉慧濤,等. 暗管控制排水技術(shù)在近濱海鹽堿地治理中的應(yīng)用研究[J]. 灌溉排水學(xué)報(bào),2014,33(3):42-46. Yu Shuhui, Liu Jintong, Liu Huitao, et al. Application research on the control drainage technology with concealed pipe in the treatment of coastal saline-alkali land[J]. Journal of Irrigation and Drainage, 2014, 33(3): 42-46. (in Chinese with English abstract)
[13] 邵孝侯,劉才良,俞雙恩,等. 暗管排水對(duì)濱海新墾區(qū)土壤鹽分動(dòng)態(tài)的影響及脫鹽效果[J]. 河海大學(xué)學(xué)報(bào),1995(2):88-93. Shao Xiaohou, Liu Cailiang, Yu Shuang'en, et al. Effects of subsurface drainage on soil dynamics and desalting effect in new coastal reclamation zone[J]. Journal of Hohai University Philosophy and Social Sciences, 1995(2): 88-93. (in Chinese with English abstract)
[14] 李顯溦,左強(qiáng),石建初,等. 新疆膜下滴灌棉田暗管排鹽的數(shù)值模擬與分析Ⅱ:模型應(yīng)用[J]. 水利學(xué)報(bào),2016,47(5):616-625. Li Xianwei, Zuo Qiang, Shi Jianchu, et al. Evaluation of salt discharge by subsurface pipes in the cotton field with film mulched drip irrigation in Xinjiang, China Ⅱ: Application of the calibrated models and parameters[J]. Journal of Hydraulic Engineering, 2016, 47(5): 616-625. (in Chinese with English abstract)
[15] 賈瑞亮,周金龍,周殷竹. 干旱區(qū)高鹽度潛水蒸發(fā)條件下土壤積鹽規(guī)律分析[J]. 水利學(xué)報(bào),2016,47(2):150-157. Jia Ruiliang, Zhou Jinlong, Zhou Yinzhu. Analysis on law of soil salt accumulation under condition of high salinity phreatic water evaporation in arid area[J]. Journal of Hydraulic Engineering, 2016, 47(2): 150-157. (in Chinese with English abstract)
[16] Yin Lihe, Zhou Yangxiao, Huang Jinting, et al. Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees[J]. Journal of Hydrology, 2015, 528: 435-448.
[17] 王海江,石建初,張花玲,等. 不同改良措施下新疆重度鹽漬土壤鹽分變化與脫鹽效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22):102-111. Wang Haijiang, Shi Jianchu, Zhang Hualing, et al. Evaporation regularity and its relationship with soil salt[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 102-111. (in Chinese with English abstract)
[18] 衡通,王振華,李文昊,等. 滴灌條件下排水暗管埋深及管徑對(duì)土壤鹽分的影響[J]. 土壤學(xué)報(bào),2018,55(1):111-121. Heng Tong, Wang Zhenhua, Li Wenhao, et al. Impacts of diameter and depth of drainage pipes in fields under drip irrigation on soil salt[J]. Acta Pedologica Sinica, 2018, 55(1): 111-121. (in Chinese with English abstract)
[19] 王振華,衡通,李文昊,等. 滴灌條件下排水暗管間距對(duì)土壤鹽分淋洗的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):253-261. Wang Zhenhua, Heng Tong, Li Wenhao, et al. Effects of drainage pipe drainage on soil salinity leaching under drip irrigation condition, Transactions of the Chinese Society for Agricultural[J], 2017, 48(8): 253-261. (in Chinese with English abstract)
[20] Hornbuckle J W, Christen E W, Faulkner R D. Evaluating a multi-level subsurface drainage system for improved drainage water quality[J]. Agricultural Water Management, 2007, 89(3): 208-216.
[21] 石培君,劉洪光,何新林,等. 膜下滴灌暗管排水規(guī)律及土壤脫鹽效果研究[J]. 排灌機(jī)械工程學(xué)報(bào),2019,37(6):1-8. Shi Peijun, Liu Hongguang, He Xinlin, et al. Study on drainage law and soil desalination effect under mulch film and subsurface pipe drainage[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(6): 1-8. (in Chinese with English abstract)
[22] 張亦冰,高宗昌. 鹽堿地治理中排水暗管間距和外包濾料應(yīng)用分析[J]. 中國(guó)水土保持,2018(9):27-29,66. Zhang Yibing, Gao Zongchang. Application analysis of subsurface pipe spacing and external filter material in saline-alkali soil treatment[J]. Soil and Water Conservation in China, 2018(9): 27-29, 66. (in Chinese with English abstract)
[23] Hassanoghli A, Pedram S H. Assessment of water salinity effect on physical clogging of synthetic drainage envelopes by permeability tests[J]. Irrigation and Drainage, 2015, 64: 105-114.
[24] Cho Sen Wu, Yung Shan Hong, Yun Wei Yan, et al. Soil-nonwoven geotextile filtration behavior under contact with drainage materials[J]. Geotextiles and Geomembranes, 2006, 24(1): 1-10.
[25] 劉文龍,羅紈,賈忠華,等. 黃河三角洲暗管排水土工布外包濾料的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):109-116. Liu Wenlong, Luo Zhi, Jia Zhonghua, et al. Experimental study on geotextile envelope for subsurface drainage in Yellow River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 109-116. (in Chinese with English abstract)
[26] 張明炷,黎慶淮,石秀蘭. 土壤學(xué)與農(nóng)作學(xué)[M]. 北京:中國(guó)水利水電出版社,2009.
[27] 秦文豹,李明思,李玉芳,等. 滴灌條件下暗管濾層結(jié)構(gòu)對(duì)排水、排鹽效果的影響[J]. 灌溉排水學(xué)報(bào),2017,36(7):80-85. Qin Wenbao, Li Mingsi, Li Yufang, et al. Effect of biogas slurry on photosynthesis, yield and quality of lettuce grown in hydroponic culture[J]. Journal of Irrigation and Drainage, 2017, 36(7): 80-85. (in Chinese with English abstract)
[28] 張亞年,李靜. 暗管排水條件下土壤水鹽運(yùn)移特征試驗(yàn)研究[J]. 人民長(zhǎng)江,2011,42(22):70-72,88. Zhang Yanian, Li Jing. Experimental study of movement law of water and salt in soil under condition of discharge by covered conduits[J]. Yangtze River, 2011, 42(22): 70-72, 88. (in Chinese with English abstract)
[29] 萬(wàn)長(zhǎng)宇,張展羽,馮根祥,等. 暗管排水條件下微咸水灌溉對(duì)土壤水鹽運(yùn)移特征的影響[J]. 灌溉排水學(xué)報(bào), 2016,35(3):37-41. Wan Zhangyu, Zhang Zhanyu, Feng Genxiang, et al. Transport feature of soil water-salt by saline water irrigation under subsurface pipe drainage[J]. Journal of Irrigation and Drainage, 2016, 35(3): 37-41. (in Chinese with English abstract)
[30] 李寶富,熊黑鋼,張建兵,等. 干旱區(qū)農(nóng)田灌溉前后土壤水鹽時(shí)空變異性研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2011, 19(3):491-499. Li Baofu, Xiong Heigang, Zhang Jianbing, et al. Spatial and temporal variations in soil water and salt in arid areas before and after irrigation[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 491-499. (in Chinese with English abstract)
[31] 李顯溦. 新疆鹽堿棉田暗管排鹽方案研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2017. Li Xianwei, Study on the Scheme of Salt Discharge by Hidden Tube in Xinjiang Saline-Alkali Cotton Field[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[32] 衡通. 暗管排水對(duì)滴灌農(nóng)田水鹽分布的影響研究[D]. 石河子:石河子大學(xué),2018. Heng Tong. Study on the Effect of Hidden Pipe Drainage on the Distribution of Water and Salt in Drip Irrigation Farmland[D]. Shihezi: Shihezi University, 2018. (in Chinese with English abstract)
[33] 秦文豹. 滴灌農(nóng)田暗管排水效果及關(guān)鍵參數(shù)研究[D]. 石河子:石河子大學(xué),2017. Qin Wenbao. Study on Drainage Effect and Key Parameters of Hidden Pipes in Drip Irrigation Field[D]. Shihezi: Shihezi University, 2017. (in Chinese with English abstract)
[34] Heng Tong, Liao Renkuan, Wang Zhenhua, et al. Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China[J]. Journal of Arid Land, 2018, 10(6): 932-945.
[35] 朱建強(qiáng),歐光華. PVC雙壁波紋排水暗管開孔率試驗(yàn)研究[J]. 湖北農(nóng)學(xué)院學(xué)報(bào),1999(2):168-170. Zhu Jianqiang, Ou Guanghua. A study on cavity rate of buried PVC pipe with double partitions and wave veins for drainage in soils of cropland[J]. Journal of Hubei Agricultural, 1999(2): 168-170. (in Chinese with English abstract)
[36] 鮑子云,仝炳偉,張占明. 寧夏引黃灌區(qū)暗管排水工程外包料應(yīng)用效果分析[J]. 灌溉排水學(xué)報(bào), 2007,26(5):47-50. Bao Ziyun, Tong Bingwei, Zhang Zhanming. Application effects of wrapped materials outside drainage pipe in Ningxia irrigation area of Yellow River[J]. Journal of Irrigation and Drainage, 2007, 26(5): 47-50. (in Chinese with English abstract)
[37] 丁昆侖,董逢. 寧夏銀北排水項(xiàng)目暗管排水外包濾料試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2000,19(3):8-11. Ding Kunlun, Dong Feng. An experimental study on geotextiles used as sub-drain pipe filters in Yinbei drainage project in Ningxia[J]. Journal of Irrigation and Drainage, 2000, 19(3): 8-11. (in Chinese with English abstract)
[38] 馬鳳嬌,譚莉梅,劉慧濤,等. 河北濱海鹽堿區(qū)暗管改堿技術(shù)的降雨有效性評(píng)價(jià)[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(2):409-414. Ma Fengjiao, Tan Limei, Liu Huitao, et al. Evaluation of the rainfall effectiveness for reclaim of saline soil by subsurface pipe drainage system in coastal saline regions of Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 409-414. (in Chinese with English abstract)
[39] 胡望斌. 江漢平原四湖地區(qū)地下水動(dòng)態(tài)監(jiān)測(cè)與四水轉(zhuǎn)化關(guān)系研究[D]. 北京:中國(guó)科學(xué)院,2003. Hu Wangbin. Study on Dynamic Monitoring of Groundwater Changes and Four-Water Transfer in Suhe Area of Jianghan Plain[D]. Beijing: Chinese Academy of Science. 2003. (in Chinese with English abstract)
[40] 王政友. 地下水埋深與“四水”轉(zhuǎn)化參數(shù)關(guān)系探討[J]. 地下水,2009,31(1):57-60. Wang Zhengyou. Discussion on the relationship between groundwater depth and transformation parameters of “four-water”[J]. Groundwater, 2009, 31(1): 57-60. (in Chinese with English abstract)
Characteristics of water and salt transport in subsurface pipes with geotextiles under salt dischargeconditions
Chen Mingyuan, Huang Jiesheng※, Zeng Wenzhi, Ao Chang, Liu Dan, Liu Yi
(,,430072)
Soil salinization is an important environmental problem restricting agricultural development. Fresh water leaching combined with subsurface drainage is one of the most effective, fast and widely used methods for salt removal. However, some existing researches only considered the influence of subsurface pipes on drainage, salt discharge and water-salt distribution, there were few studies about the dynamic change of groundwater and the transport of soil water-salt under subsurface pipes drainage in Xinjiang. Moreover, many existing studies adopted sand gravels as filtering layer of subsurface pipes, there was obviously insufficient research on subsurface pipe technology using geotextile envelope as filter layer. This study designed an indoor drainage experiment of subsurface pipe with geotextile envelope, studied the relative position of subsurface pipe depth and groundwater depth at initial stage of drainage and the condition of water-salt discharge, the water-salt discharge effect of subsurface pipe and the dynamic transport law of water and salt in the soil profile during the whole process from the beginning of leaching to the end of drainage. The results showed that whether the initial state of soil is unsaturated or field-holding, the subsurface pipe would not begin to drain until the groundwater completely submerge subsurface pipe, at this time, the salt discharge was the largest, after that the drainage flow increased first and then decreased, the groundwater level also rose first and declined then, and the salt content of groundwater changed from accumulation to desalination with the increase of leaching water. Meanwhile, comparing the results of two leaching tests, the water-salt discharge effects of subsurface pipes in test 2 were better than those in test 1. When unsaturated soil was leached, the soil desalination rate gradually decreased with the increase of soil depth, the desalination rate of 0-20 cm soil (> 85%) was the largest, and decreased to the non-saline level. the soil desalination rate around subsurface pipe was relatively small (< 60%), and still at moderate saline level. In the horizontal direction, the soil desalinization rate the around subsurface pipe was relatively large, and the desalinization rate of 0-20 cm soil layer had little difference. The further away the 20-40 cm soil layer was from subsurface pipe, the smaller the soil desalinization rate was. Test 2 was carried out on the basis of test 1, the salinity change of 0-20 cm soil was small, and the desalinization rate of 20-40 cm soil layer increased (> 60%). In addition, the desalinization effect of test 1 was greater than that of salt drainage by subsurface pipe, which mainly discharged soil salt above subsurface pipe. For test 2, the salt discharge effect of the subsurface pipe was increased, not only removed salt from soil around subsurface pipe, but also removed salt from the soil and groundwater below subsurface pipe. With the increase of leaching water, the soil changed from desalting type to salt discharging type. Finally, this study showed that the application of subsurface pipe with geotextile envelope is affected by the relative position of groundwater depth and subsurface pipe depth, and affected by initial soil water content. Reasonable increase of leaching water volume can increase the water-salt discharge effect and soil desalination effect, effectively improve soil salinization. In addition, the specific applicable conditions of subsurface pipe with geotextile envelope, the influence of the relative position of subsurface pipe and groundwater on water-salt discharge effect, and the determination of reasonable leaching water amount under different initial soil water contents are all issues worthy of further research. This research results can provide theoretical support and scientific guidance for the popularization and application of subsurface pipe salt discharge technology under different groundwater depths in arid areas of northwest China.
subsurface drainage; salts; desalination rate; water drainage rate; salt discharge rate; groundwater depth
陳名媛,黃介生,曾文治,敖 暢,劉 丹,劉 義. 外包土工布暗管排鹽條件下水鹽運(yùn)移規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):130-139.doi:10.11975/j.issn.1002-6819.2020.02.016 http://www.tcsae.org
Chen Mingyuan, Huang Jiesheng, Zeng Wenzhi, Ao Chang, Liu Dan, Liu Yi. Characteristics of water and salt transport in subsurface pipes with geotextiles under salt dischargeconditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 130-139. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.016 http://www.tcsae.org
2019-04-13
2019-12-15
國(guó)家自然科學(xué)基金(51790533)
陳名媛,研究方向:新疆鹽漬土地區(qū)暗管排鹽技術(shù)研究。Email:mingyuan1995@whu.edu.cn
黃介生,教授,博士生導(dǎo)師,主要從事水土資源高效利用研究。Email:sdjshuang@whu.edu.cn
10.11975/j.issn.1002-6819.2020.02.016
S273.4
A
1002-6819(2020)-02-0130-10