国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

采用GA-ELM的寒地水稻缺氮量診斷方法

2020-11-30 14:32:58許童羽郭忠輝于豐華
關(guān)鍵詞:反射率氮素小波

許童羽,郭忠輝,于豐華,徐 博,馮 帥

采用GA-ELM的寒地水稻缺氮量診斷方法

許童羽1,2,郭忠輝1,于豐華1,2,徐 博1,馮 帥1

(1. 沈陽(yáng)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,沈陽(yáng) 110161;2.遼寧省農(nóng)業(yè)信息化工程技術(shù)中心,沈陽(yáng) 110161)

光譜分析;模型;高光譜;離散小波多尺度分解;遺傳優(yōu)化算法;極限學(xué)習(xí)機(jī)

0 引 言

在各種營(yíng)養(yǎng)元素中,氮素對(duì)水稻的生長(zhǎng)發(fā)育和產(chǎn)量影響最大[1-2]。氮素在維持和調(diào)節(jié)水稻生理功能上具有多方面的作用[3]。水稻缺氮會(huì)阻礙葉綠素和蛋白質(zhì)的合成,從而減弱光合作用,影響干物質(zhì)的產(chǎn)生,嚴(yán)重缺氮時(shí)細(xì)胞分化停止,分蘗能力下降、根系機(jī)能減弱[4-6]。當(dāng)水稻氮素過(guò)多時(shí),無(wú)效分蘗增加,群體容易過(guò)度繁茂,致使透光不良,結(jié)實(shí)率下降,成熟延遲,加重后期倒伏和病蟲(chóng)害的發(fā)生[7-9]。

近年來(lái),隨著高光譜技術(shù)的發(fā)展和應(yīng)用,農(nóng)業(yè)信息技術(shù)在農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)和估產(chǎn)方面得到了長(zhǎng)足的發(fā)展,顯著提高了作物生產(chǎn)的動(dòng)態(tài)檢測(cè)和管理決策的科學(xué)性。作物發(fā)育過(guò)程中,氮素營(yíng)養(yǎng)水平的變化會(huì)引起葉片顏色、葉綠素水平、水分含量等的變化,進(jìn)而引起高光譜的變化,這是利用高光譜進(jìn)行氮素估測(cè)的理論基礎(chǔ)[10]。很多學(xué)者在高光譜反演作物氮素方面做了大量的研究,并取得了一定的成果。陳青春等[11]經(jīng)研究發(fā)現(xiàn),采用兩波段構(gòu)建植被指數(shù)對(duì)水稻冠層葉片含氮量進(jìn)行估測(cè),估測(cè)效果較為準(zhǔn)確。

人工神經(jīng)網(wǎng)絡(luò)具有學(xué)習(xí)性、容錯(cuò)性以及實(shí)時(shí)性,對(duì)非線性問(wèn)題的擬合有著無(wú)可比擬的優(yōu)勢(shì),能夠?qū)υS多領(lǐng)域提供有效的技術(shù)與理論支持。目前人工神經(jīng)網(wǎng)絡(luò)在高光譜反演作物氮素方面的研究也逐漸增多[12]。Yu等[13]結(jié)合水稻冠層數(shù)據(jù)和環(huán)境數(shù)據(jù)建立了水稻葉片氮素含量反演模型。李旭青等[14]利用改進(jìn)的隨機(jī)森林算法進(jìn)行反演建模,估測(cè)精度較高,決定系數(shù)達(dá)到0.81以上。張瑤等[15]采用支持向量機(jī)建立了蘋果葉片氮素含量預(yù)測(cè)模型,其測(cè)定和驗(yàn)證決定系數(shù)達(dá)到0.74以上。準(zhǔn)確、實(shí)時(shí)和動(dòng)態(tài)檢測(cè)作物植株體內(nèi)的氮素狀態(tài),診斷作物體內(nèi)的氮素豐缺狀況,是氮肥處方?jīng)Q策和精準(zhǔn)變量作業(yè)的前提和基礎(chǔ)。宋曉宇等[16]利用掃描式成像光譜儀獲取冬小麥長(zhǎng)勢(shì)和小麥葉面積指數(shù),根據(jù)目標(biāo)產(chǎn)量的需氮量和測(cè)得的作物吸收氮素的差值,計(jì)算出氮肥的施用量。

很多學(xué)者在利用高光譜反演作物氮素含量方面做了大量的研究,但是氮素含量這一指標(biāo)并不能夠指導(dǎo)農(nóng)民進(jìn)行定量精準(zhǔn)施肥,所以該文利用高光譜反演水稻的缺氮量,采用缺氮量這一指標(biāo)來(lái)直觀地表示作物長(zhǎng)勢(shì),并為實(shí)施精準(zhǔn)施肥提供參考依據(jù)。

1 材料與方法

1.1 試驗(yàn)設(shè)計(jì)

試驗(yàn)于2018年6—9月在遼寧省沈陽(yáng)市沈北新區(qū)清水臺(tái)鎮(zhèn)柳條河村(123°63′E,42°01′N)進(jìn)行。供測(cè)試的水稻品種為秋光。試驗(yàn)田設(shè)有4個(gè)氮肥梯度處理,N2為當(dāng)?shù)貥?biāo)準(zhǔn)施氮量,在N2的基礎(chǔ)上分別增加和減少50%的施氮量,人為造成高低不同的氮肥梯度。4個(gè)不同的施氮量分別為N0(不含氮),N1(50 kg/hm2),N2(100 kg/hm2),N3(150 kg/hm2),每個(gè)處理4次重復(fù),共設(shè)置4×4=16個(gè)試驗(yàn)小區(qū)。試驗(yàn)田中0~0.5 m耕層土壤中全氮和速效氮質(zhì)量分?jǐn)?shù)分別為0.154 、104.032 mg/kg。其他按高產(chǎn)栽培管理。分別在水稻的返青期、分蘗期和抽穗期進(jìn)行數(shù)據(jù)采集,采集時(shí),在各氮肥梯度處理下選擇具有代表性的3穴水稻進(jìn)行葉片高光譜數(shù)據(jù)和葉片氮素含量數(shù)據(jù)的獲取,將試驗(yàn)中測(cè)得的144組氮素含量數(shù)據(jù),采用3倍標(biāo)準(zhǔn)差分別對(duì)各個(gè)關(guān)鍵生育期氮素含量進(jìn)行異常值剔除。同時(shí)采用蒙特卡洛算法將各關(guān)鍵生育期異常光譜數(shù)據(jù)剔除,最終得到113個(gè)樣本,其中訓(xùn)練集79個(gè),驗(yàn)證集34個(gè)。如表1所示。

表1 水稻葉片氮素質(zhì)量分?jǐn)?shù)統(tǒng)計(jì)

1.2 數(shù)據(jù)獲取

1.2.1 水稻葉片缺氮量測(cè)定以及產(chǎn)量測(cè)定

在每個(gè)小區(qū)中對(duì)水稻進(jìn)行破壞性取樣,帶回實(shí)驗(yàn)室,將該穴水稻所有新鮮葉片剪下置于烘箱中以105 ℃殺青30 min,再以65 ℃烘干至恒量。稱量后將其粉碎,把研磨好的粉末分別裝入2個(gè)做好標(biāo)記的自封袋中,一袋被用于檢測(cè)葉片的含氮量(N,mg/g),采用的方法是傳統(tǒng)的凱氏定氮法;另一袋被用于采集葉片的高光譜數(shù)據(jù)。

東北粳稻缺氮量反演建模的前提是構(gòu)建光譜反射率差值和氮含量差值數(shù)據(jù)庫(kù),而標(biāo)準(zhǔn)光譜反射率和標(biāo)準(zhǔn)氮含量的制定是構(gòu)建數(shù)據(jù)庫(kù)的關(guān)鍵。由于本文的目標(biāo)是反演出水稻的缺氮量之后,為精準(zhǔn)施肥提供參考依據(jù),達(dá)到減肥不減產(chǎn)的目的,本研究依據(jù)產(chǎn)量最高的原則來(lái)制定標(biāo)準(zhǔn)光譜反射率和標(biāo)準(zhǔn)氮含量,在水稻收獲時(shí)進(jìn)行測(cè)產(chǎn)試驗(yàn),將產(chǎn)量最高的小區(qū)定為標(biāo)準(zhǔn)小區(qū),標(biāo)準(zhǔn)小區(qū)的水稻各時(shí)期葉片平均光譜和氮含量定為標(biāo)準(zhǔn)光譜反射率和標(biāo)準(zhǔn)氮含量。

10月16日水稻收獲時(shí)將用pvc管做成的邊長(zhǎng)為1 m的正方形框隨機(jī)放入待測(cè)小區(qū),計(jì)算1 m2內(nèi)的總穴數(shù)、每穴有效穗數(shù)、平均每穗粒數(shù)以及千粒質(zhì)量。如表2所示,其中施氮量為N2的水稻田產(chǎn)量最高,達(dá)到387.15 kg/667m2。依據(jù)產(chǎn)量最高原則,將施氮量為N2的小區(qū)定義為標(biāo)準(zhǔn)田,在該小區(qū)采集的所有光譜的平均值定義為標(biāo)準(zhǔn)光譜,該小區(qū)氮素的平均值定義為標(biāo)準(zhǔn)氮含量。然后對(duì)非標(biāo)準(zhǔn)小區(qū)采集的水稻葉片氮含量與標(biāo)準(zhǔn)氮含量做差值,完成水稻葉片缺氮量的測(cè)定。

表2 水稻產(chǎn)量統(tǒng)計(jì)

回歸分析的前提條件是因變量需要滿足正態(tài)分布,所以該研究對(duì)水稻葉片的缺氮量進(jìn)行正態(tài)分布檢驗(yàn),結(jié)果如圖1和表3所示

圖1 缺氮量正態(tài)分布檢驗(yàn)

表3 缺氮量正態(tài)性檢驗(yàn)分析結(jié)果

由圖1可直觀地看出該研究中的缺氮量樣本基本呈現(xiàn)正態(tài)分布。由表3可知,峰度值和偏度值分別為0.012、0.141,峰度絕對(duì)值小于10并且偏度絕對(duì)值小于3,說(shuō)明數(shù)據(jù)雖然不是絕對(duì)正態(tài),但基本可接受為正態(tài)分布。大于0.05,意味著缺氮量均沒(méi)有呈現(xiàn)顯著性,說(shuō)明缺氮量均具備正態(tài)性特質(zhì)。

1.2.2 水稻葉片光譜反射率差值測(cè)定

考慮到水稻新鮮葉片水分含量、細(xì)胞結(jié)構(gòu)、葉片內(nèi)含葉綠素等化學(xué)組分使得光譜特征評(píng)價(jià)氮含量變得復(fù)雜,所以本研究采用經(jīng)殺青-烘干-研磨-定型之后純凈的片狀氮素樣品進(jìn)行光譜反射率的采集。

水稻葉片經(jīng)殺青-烘干-研磨之后,為了減少人為使用海洋光學(xué)積分球按壓水稻葉片氮素粉末力度不均勻?qū)е鹿庾V變化帶來(lái)的影響,本研究使用天光光學(xué)儀器有限公司生產(chǎn)的HY-12液壓型紅外壓片機(jī)將粉末狀水稻氮素在40 MPa壓力下制備成緊密、不透光、厚度一致(半徑為7 mm,厚度為3 mm)的片狀水稻葉片氮素。然后采用蔚海光學(xué)儀器(上海)有限公司生產(chǎn)的海洋光學(xué)HR2000+高分辨率光譜儀來(lái)測(cè)定試驗(yàn)樣本水稻葉片氮素的光譜反射率,光譜波段的探測(cè)范圍為190~1 100 nm,波段精度和光譜分辨率均調(diào)整至1 nm。由于190~450和1 000~1 100 nm之間存在著噪聲,所以本研究取450~1 000 nm之間的光譜反射率。每次測(cè)定葉片光譜反射率前,均要用漫反射參考板對(duì)HR2000+高分辨率光譜儀進(jìn)行校準(zhǔn)。

獲取水稻葉片光譜反射率之后,對(duì)非標(biāo)準(zhǔn)小區(qū)采集的水稻葉片光譜反射率與標(biāo)準(zhǔn)光譜反射率做差值,完成光譜反射率差值的測(cè)定。光譜反射率差值如圖2所示。

圖2 113個(gè)光譜反射率差值

1.3 光譜降維方法

全波段光譜中含有大量與各生理生化參數(shù)無(wú)關(guān)的冗余變量,在建模過(guò)程中會(huì)在一定程度上導(dǎo)致模型誤差增大[17-20]。所以,提取光譜數(shù)據(jù)中的有用信息是建立穩(wěn)健、準(zhǔn)確模型的前提。本研究分別采用離散小波多尺度分解、連續(xù)投影法(successive projections algorithm,SPA)和構(gòu)建植被指數(shù)的方法對(duì)光譜進(jìn)行降維處理。

1.3.1 離散小波多尺度分解

小波分析能夠在時(shí)域和頻域上對(duì)光譜信號(hào)進(jìn)行精確分解,對(duì)于葉片光譜信息,信號(hào)在時(shí)域上的變換就等同于光譜數(shù)據(jù)在光譜波段上的變換,因此小波基函數(shù)可以表達(dá)為

1.3.2 構(gòu)建植被指數(shù)

將400~1 000 nm波段的光譜反射率隨機(jī)兩兩組合,構(gòu)建與水稻葉片缺氮量相關(guān)性較高的比值植被指數(shù)RVI、歸一化光譜指數(shù)NDVI和差值植被指數(shù)DVI。分別制作RVI、NDVI、DVI與水稻葉片缺氮量的決定系數(shù)等勢(shì)圖,尋找較優(yōu)的3種光譜植被指數(shù)作為反演模型的輸入。RVI、NDVI、DVI分別定義如下

式中,為光譜各波段的反射率,%。

1.3.3 連續(xù)投影法

連續(xù)投影法(successive projections algorithm,SPA)是一種使矢量空間共線性最小化的前向變量選擇算法,現(xiàn)在已被廣泛應(yīng)用于生物醫(yī)學(xué)成像,計(jì)算機(jī)斷層掃描,信號(hào)處理,光譜計(jì)量學(xué)等領(lǐng)域。SPA算法分為以下3個(gè)階段[24]:

第一階段,篩選出共線性最小的若干組備選波長(zhǎng)變量子集。假設(shè)初始變量位置(0)及變量數(shù)目已經(jīng)給出,該階段具體步驟如下。

式中為投影算子。

步驟4:記下投影值范數(shù)最大的波長(zhǎng)的位置。

()=arg(max||PX||,∈) (8)

步驟5:令X=X,∈

步驟6:令=+1。如果<則返回步驟2

結(jié)束:得到個(gè)備選波長(zhǎng)的位置:{();=0,…,-1}。

選擇過(guò)程中進(jìn)行的投影操作次數(shù)為(-1)(-/2)。

第二階段,分別使用各子集中的變量建立多元線性回歸(multivariable linear regression,MLR)模型,選出均方根誤差(root mean square error,RMSE)最小的子集。

第三階段,對(duì)第二階段選出的子集進(jìn)行逐步回歸建模,在盡量不損失預(yù)測(cè)準(zhǔn)確度的條件下,得到一個(gè)變量數(shù)目較少的集合。該集合中的波長(zhǎng)變量即是所選有效波長(zhǎng)[25-29]。

1.4 反演建模方法

本研究選用偏最小二乘(partial least squares regression,PLSR)、極限學(xué)習(xí)機(jī)(extreme learning machine,ELM)和遺傳算法優(yōu)化極限學(xué)習(xí)機(jī)(genetic algorithm-extreme learning machine GA-ELM)3種方法進(jìn)行建模,依據(jù)檢驗(yàn)?zāi)P偷臎Q定系數(shù)R和均方根誤差來(lái)檢驗(yàn)?zāi)P偷木珳?zhǔn)度和可靠性,挑選最優(yōu)的水稻葉片缺氮量反演模型。

ELM以其學(xué)習(xí)速度快、訓(xùn)練誤差小等優(yōu)點(diǎn)在許多領(lǐng)域得到了廣泛的應(yīng)用。然而該算法隨機(jī)產(chǎn)生輸入層與隱含層間的連接權(quán)值及隱含層神經(jīng)元的閾值,且在訓(xùn)練過(guò)程中無(wú)需調(diào)整,導(dǎo)致該算法所建立的反演模型穩(wěn)定性和泛化能力較差。本研究采用一種基于進(jìn)化論優(yōu)勝劣汰、自然選擇、適者生存的物種遺傳思想的遺傳算法對(duì)ELM進(jìn)行優(yōu)化。

遺傳算法優(yōu)化訓(xùn)練的具體執(zhí)行步驟。

圖3 基于GA優(yōu)化ELM的流程圖

2 結(jié)果與分析

2.1 特征及特征波段的選擇

2.1.1 離散小波多尺度分解選取光譜特征

小波母函數(shù)和最佳分解尺度的確定是小波變換進(jìn)行特征提取的關(guān)鍵環(huán)節(jié)之一,對(duì)光譜信號(hào)進(jìn)行多尺度的離散小波變換,如果分解后的小波信息既能體現(xiàn)光譜的輪廓特性又能達(dá)到壓縮數(shù)據(jù)的目的,就可以認(rèn)為此時(shí)的小波母函數(shù)和分解尺度是最佳選擇。

圖4 不同小波母函數(shù)下的壓縮率和相關(guān)系數(shù)

由表4可知,在分解層數(shù)達(dá)到10層時(shí),近似系數(shù)的數(shù)目最終趨于穩(wěn)定。與其他兩類母函數(shù)相比,coif5的小波近似系數(shù)數(shù)目最多,數(shù)據(jù)壓縮能力最弱,其中sym8的小波母函數(shù)數(shù)據(jù)壓縮能力最強(qiáng)。由圖4可知,db10小波母函數(shù)在7~12層的分解中,相關(guān)系數(shù)變化規(guī)律與其他兩類小波母函數(shù)整體上一致,但是又有所差異。由表可知,在第7層分解后,sym8小波母函數(shù)的近似系數(shù)數(shù)目最少,且相關(guān)系數(shù)最高。所以綜合考慮數(shù)據(jù)壓縮和保留原光譜的能力,認(rèn)為sym8小波母函數(shù)在第7層分解時(shí)效果最佳。

表4 不同小波母函數(shù)下的分解個(gè)數(shù)

對(duì)于離散小波變換,低頻近似系數(shù)反映原始光譜明顯的吸收特征,決定整個(gè)光譜的形狀,所以將分解后的小波近似系數(shù)作為模型的輸入量。

2.1.2 SPA選取有效特征波段

利用連續(xù)投影算法對(duì)水稻葉片差值光譜進(jìn)行光譜特征波段的選擇,根據(jù)校正集的內(nèi)部交叉驗(yàn)證RMSECV值確定最佳的光譜波段數(shù)為7個(gè),結(jié)果如圖5a所示。

由圖5b可知,利用SPA從400~1 000nm的波段中挑選出7個(gè)特征波段,分別為459、460、475、671、723、874和996nm。將挑選出的特征波段處的反射率作為反演模型的輸入量。

2.1.3 植被指數(shù)與水稻缺氮量的相關(guān)性

2.2 遺傳算法優(yōu)化極限學(xué)習(xí)機(jī)反演模型

圖5 樣本模型最佳光譜變量個(gè)數(shù)和相應(yīng)的光譜波段

圖6 水稻植被指數(shù)與缺氮量的決定系數(shù)等勢(shì)圖

圖7 不同降維方法的GA-ELM水稻葉片缺氮量預(yù)測(cè)模型檢驗(yàn)結(jié)果

2.3 與其他反演模型的比較

將遺傳算法優(yōu)化的極限學(xué)習(xí)機(jī)(GA-ELM)與目前在高光譜反演種應(yīng)用較為廣泛的偏最小二乘回歸(PLSR)模型和極限學(xué)習(xí)機(jī)(ELM)模型進(jìn)行比較,建模結(jié)果如圖8和圖9所示。選取與建立GA-ELM模型相同的特征參數(shù)作為輸入量,且模型參數(shù)均調(diào)整至最佳狀態(tài)。

圖8 不同降維方法的PLSR水稻葉片缺氮量預(yù)測(cè)模型檢驗(yàn)結(jié)果

圖9 不同降維方法的ELM水稻葉片缺氮量預(yù)測(cè)模型檢驗(yàn)結(jié)果

3 討 論

本文以東北粳稻為研究對(duì)象,構(gòu)建了粳稻葉片缺氮量與葉片光譜反射率差值,初步確立了粳稻葉片缺氮量的預(yù)測(cè)模型??紤]到水稻新鮮葉片水分含量、細(xì)胞結(jié)構(gòu)、葉片內(nèi)含葉綠素等化學(xué)組分使得光譜特征評(píng)價(jià)氮含量變得復(fù)雜,所以本研究采用經(jīng)殺青-烘干-研磨-定型之后純凈的片狀氮素樣品進(jìn)行光譜反射率的采集,以保證光譜的變化均是由水稻氮素的變化引起的。在數(shù)據(jù)降維方面,本文采用離散小波多尺度分解、連續(xù)投影法和構(gòu)建植被指數(shù)的方法對(duì)光譜進(jìn)行降維處理,將這3種降維方法的結(jié)果作為ELM和GA-ELM的建模輸入時(shí),基于離散小波多尺度分解得到的小波近似系數(shù)建模精度最高。離散小波多尺度分解是將連續(xù)小波變換中的尺度及位移進(jìn)行離散化,并結(jié)合小波信號(hào)能量在各尺度上的分布,從而對(duì)光譜信號(hào)維數(shù)進(jìn)行壓縮,減少特征波段數(shù)目,突出光譜輪廓信息。將小波近似系數(shù)進(jìn)行信號(hào)重構(gòu),重構(gòu)光譜信號(hào)與原光譜信號(hào)的相關(guān)系數(shù)能夠達(dá)到0.982,最大程度上保留了原始光譜的信息。在建立模型時(shí),由于小波近似系數(shù)與葉片缺氮量的關(guān)系更適合用非線性的指數(shù)模型來(lái)擬合,采用PLSR進(jìn)行葉片氮含量的線性回歸時(shí),嚴(yán)重低估了葉片氮含量的高值,從而降低了模型整體預(yù)測(cè)精度,導(dǎo)致RMSE誤差較大。所以,采用ELM和GA-ELM方法建模時(shí),基于離散小波多尺度分解得到的小波近似系數(shù)建模精度最高,而采用PLSR方法建模時(shí),基于小波多尺度分解得到的小波近似系數(shù)建模精度最低,且ELM和GA-ELM的建模精度要優(yōu)于PLSR。GA-ELM模型要優(yōu)于PLSR和ELM模型,原因在于GA-ELM和ELM模型用非線性函數(shù)輸入輸出數(shù)據(jù)訓(xùn)練神經(jīng)網(wǎng)絡(luò),使訓(xùn)練后的網(wǎng)絡(luò)能夠預(yù)測(cè)非線性函數(shù)輸出,可以有效解釋非線性的問(wèn)題;而GA-ELM模型的反演精度優(yōu)于ELM模型,是因?yàn)镚A的優(yōu)化訓(xùn)練可以為ELM的初始權(quán)值進(jìn)行賦值,對(duì)ELM隨機(jī)產(chǎn)生權(quán)值的問(wèn)題進(jìn)行優(yōu)化,提高了模型精度、穩(wěn)定性和泛化性。

4 結(jié) 論

本文中,破壞采樣獲取返青期、分蘗期和抽穗期的粳稻葉片,在實(shí)驗(yàn)室經(jīng)殺青-烘干-研磨-定型之后,采集粳稻葉片的高光譜數(shù)據(jù)。

1)依據(jù)產(chǎn)量最高的原則確定標(biāo)準(zhǔn)光譜反射率和標(biāo)準(zhǔn)氮含量,在此基礎(chǔ)上構(gòu)建光譜反射率差值和氮含量差值數(shù)據(jù)庫(kù)。

2)對(duì)光譜反射率差值經(jīng)SPA(successive projections algorithm)、離散小波多尺度分解、構(gòu)建植被指數(shù)的方法進(jìn)行降維處理。

3)將3種方法的降維結(jié)果分別采用PLSR(partial least squares regression)、ELM(extreme learning machine)、GA-ELM(genetic algorithm-extreme learning machine)方法建立模型。結(jié)果表明:

[1] 趙春江. 農(nóng)業(yè)遙感研究與應(yīng)用進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(12):277-293. Zhao Chunjiang. Research and application progress of agricultural remote sensing[J].Transactions of The Chinese Society for Agricultural Machinery, 2014, 45(12): 277-293. (in Chinese with English abstract)

[2] 李粉玲,常慶瑞. 基于連續(xù)統(tǒng)去除法的冬小麥葉片全氮含量估算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017, 48(7):179-184. Li Fenling, Chang Qingrui. Estimation of total nitrogen content in winter wheat leaves based on continuous removal method[J]. Transactions of The Chinese Society for Agricultural Machinery, 2017,48(7): 179-184. (in Chinese with English abstract)

[3] Wu Y, Huang M, Warrington D N. Growth and transpiration of maize and winter wheat in response to water deficits in pots and plots[J]. Environmental & Experimental Botany, 2011, 71(1): 65-71.

[4] 王樹(shù)文,趙越,王麗鳳,等. 基于高光譜的寒地水稻葉片氮素含量預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):187-194. Wang Shuwen, Zhao Yue, Wang Lifeng, et al. Prediction of nitrogen content in rice leaves based on hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(20): 187-194. (in Chinese with English abstract)

[5] Moharana S, Dutta S. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122(3): 17-29.

[6] Dong L, Xue W, Hengbiao Z, et al. Estimation of area-and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis[J]. Plant Methods, 2018, 14(1): 76-89.

[7] 何勇,彭繼宇,劉飛,等. 基于光譜和成像技術(shù)的作物養(yǎng)分生理信息快速檢測(cè)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):174-189. He Yong, Peng Jiyu, Liu Fei, et al. Research progress in rapid detection of crop nutrient physiological information based on spectroscopy and imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(3): 174-189. (in Chinese with English abstract)

[8] 史舟,梁宗正,楊媛媛,等. 農(nóng)業(yè)遙感研究現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):247-260. Shi Zhou, Liang Zongzheng, Yang Yuanyuan, et al. Present situation and prospect of agricultural remote sensing research[J]. Transactions of The Chinese Society for Agricultural Machinery, 2015, 46 (2): 247-260. (in Chinese with English abstract)

[9] Lin D, Wei G, Jian Y. Application of spectral indices and reflectance spectrum on leaf nitrogen content analysis derived from hyperspectral LiDAR data[J]. Optics & Laser Technology, 2018, 107: 372-379.

[10] 秦占飛,常慶瑞,謝寶妮,等. 基于無(wú)人機(jī)高光譜影像的引黃灌區(qū)水稻葉片全氮含量估測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):77-85. Qin Zhanfei, Chang Qingrui, Xie Baoni, et al. Estimation of total nitrogen content of rice leaves in irrigation area of Yellow River Diversion based on UAV hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(23): 77-85. (in Chinese with English abstract)

[11] 陳青春,田永超,顧凱健,等. 基于多種光譜儀的水稻前期植株氮積累量監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):223-229. Chen Qingchun, Tian Yongchao, Gu Kaijian, et al. Monitoring of nitrogen accumulation in early rice based on multiple spectrometers[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(1): 223-229. (in Chinese with English abstract)

[12] 李媛媛,常慶瑞,劉秀英,等. 基于高光譜和BP神經(jīng)網(wǎng)絡(luò)的玉米葉片SPAD值遙感估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016, 32(16):135-142. Li Yuanyuan, Chang Qingrui, Liu Xiuying, et al. Remote sensing estimation of SPAD value of Maize Leaves Based on hyperspectral and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(16): 135-142. (in Chinese with English abstract)

[13] Yu F H, Xu T Y, Cao Y L, et al. Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China[J]. Int J Agric & Biol Eng, 2016, 9(5): 132-142.

[14] 李旭青,劉湘南,劉美玲,等. 水稻冠層氮素含量光譜反演的隨機(jī)森林算法及區(qū)域應(yīng)用[J]. 遙感學(xué)報(bào),2014,18(4):923-945. Li Xuqing, Liu Xiangnan, Liu Meiling, et al. Stochastic forest algorithm for spectral inversion of nitrogen content in rice canopy and its regional application[J]. Journal of Remote Sensing, 2014, 18(4): 923-945. (in Chinese with English abstract)

[15] 張瑤,鄭立華,李民贊,等. 基于光譜學(xué)原理與小波包分解技術(shù)預(yù)測(cè)蘋果樹(shù)葉片氮素含量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(25):101-108. Zhang Yao, Zheng Lihua, Li Minzan, et al. Prediction of nitrogen content in apple leaves based on spectroscopy and wavelet packet decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(25): 101-108. (in Chinese with English abstract)

[16] 宋曉宇,王紀(jì)華,薛緒掌,等. 利用航空成像光譜數(shù)據(jù)研究土壤供氮量及變量施肥對(duì)冬小麥長(zhǎng)勢(shì)影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004, 20(4):54-58. Song Xiaoyu, Wang Jihua, Xue Xuzhang, et al. Study on the effect of soil nitrogen supply and variable rate fertilization on the growth of winter wheat using air imaging spectral data[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2004, 20(4): 54-58. (in Chinese with English abstract)

[17] Hengbiao Z, Tao C, Dong L, et al. Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice[J]. Frontiers in Plant Science, 2018, 9(9): 936-952.

[18] 王樹(shù)文,牛羽新,馬昕宇,等. 基于高光譜的抽穗期寒地水稻葉片氮素預(yù)測(cè)模型[J]. 農(nóng)機(jī)化研究,2019,41(3):164-170. Wang Shuwen, Niu Yuxin, Ma Xinyu, et al. Hyperspectral prediction model of nitrogen in rice leaves at heading stage[J]. Journal of Agricultural Mechanization Research, 2019, 41(3): 164-170. (in Chinese with English abstract)

[19] 王洋,肖文,鄒煥成,等. 基于PROSPECT模型的植物葉片干物質(zhì)估測(cè)建模研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,9(1):121-127. Wang Yang, Xiao Wen, Zou Huancheng, et al. Modeling research on estimation of dry matter in plant leaves based on the prospect model[J]. Journal of Shenyang Agricultural University, 2018, 9(1): 121-127. (in Chinese with English abstract)

[20] 劉昌華,王哲,陳志超,等. 基于無(wú)人機(jī)遙感影像的冬小麥氮素監(jiān)測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(6):207-214. Liu Changhua, Wang Zhe, Chen Zhichao, et al. Nitrogen monitoring of winter wheat based on UAV remote sensing image[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(6): 207-214. (in Chinese with English abstract)

[21] 李粉玲. 關(guān)中地區(qū)冬小麥葉片氮素高光譜數(shù)據(jù)與衛(wèi)星影像定量估算研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Li Fenling. Study on Hyperspectral Data and Satellite Image Quantitative Estimation of Nitrogen in Winter Wheat Leaves in Guanzhong Area[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)

[22] Chu X, Guo Y J, He J Y, et al. Comparison of different hyperspectral vegetation indices for estimating canopy leaf nitrogen accumulation in rice[J]. Plant & Soil, 2013, 376(1-2): 193-209.

[23] Mário César Ugulino Araújo, Fragoso W D, et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm[J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92(1): 83-91.

[24] 謝亞平,陳豐農(nóng),張競(jìng)成,等. 基于高光譜技術(shù)的農(nóng)作物常見(jiàn)病害監(jiān)測(cè)研究[J]. 光譜學(xué)與光譜分析,2018. 38(7):247-254. Xie Yaping, Chen Fengnong, Zhang Jingcheng, et al. Monitoring of common diseases of crops based on hyperspectral technology[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 247-254. (in Chinese with English abstract)

[25] 劉明博,唐延林,李曉利,等. 水稻葉片氮含量光譜監(jiān)測(cè)中使用連續(xù)投影算法的可行性[J]. 紅外與激光工程,2014,43(4):1265-1271. Liu Mingbo, Tang Yanlin, Li Xiaoli, et al. The feasibility of using continuous projection algorithm in the spectral monitoring of nitrogen content in rice leaves[J]. Infrared and Laser Engineering, 2014, 43(4): 1265-1271. (in Chinese with English abstract)

[26] 賀志遠(yuǎn),朱艷,李艷大,等. 中國(guó)南方雙季稻氮營(yíng)養(yǎng)指數(shù)及產(chǎn)量估算模型研究[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2017. 24(1):11-19. He Zhiyuan, Zhu Yan, Li Yanda, et al. Study on nitrogen nutrition index and yield estimation model of double cropping rice in South China[J]. Journal of Nanjing Agricultural University, 2017. 24(1): 11-19. (in Chinese with English abstract)

[27] 譚昌偉,周清波,齊臘,等. 水稻氮素營(yíng)養(yǎng)高光譜遙感診斷模型[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(6):1261-1268. Tan Changwei, Zhou Qingbo, Qi La, et al. Hyperspectral remote sensing diagnosis model of rice nitrogen nutrition[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1261-1268. (in Chinese with English abstract)

[28] Inoue Y, Sakaiya E, Zhu Y, et al. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements[J]. Remote Sensing of Environment, 2012, 126(2): 210-221.

[29] Onoyama H, Ryu C, Suguri M, et al. Potential of hyperspectral imaging for constructing a year-invariant model to estimate the nitrogen content of rice plants at the panicle initiation stage[J]. Ifac Proceedings Volumes, 2013, 46(18): 219-224.

[30] 陳春玲,金彥,曹英麗,等. 基于GA-BP神經(jīng)網(wǎng)絡(luò)高光譜反演模型分析玉米葉片葉綠素含量[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào). 2018,18(5):626-632. Chen Chunling, Jin Yan, Cao Yingli, et al. Analysis of chlorophyll content in maize leaves based on GA-BP neural network hyperspectral inversion model[J]. Journal of Shenyang Agricultural University. 2018, 18(5): 626-632. (in Chinese with English abstract)

[31] 章曼,常慶瑞,張曉華,等. 不同施肥條件下水稻冠層光譜特征與葉綠素含量的相關(guān)性[J]. 西北農(nóng)業(yè)學(xué)報(bào),2015,24(11):53-60. Zhang man, Chang Qingrui, Zhang Xiaohua, et al. Correlation between canopy spectral characteristics and chlorophyll content of rice under different fertilization conditions[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(11): 53-60. (in Chinese with English abstract)

[32] Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. European Journal of Agronomy, 2006, 24(4): 349-356.

[33] 何勇,彭繼宇,劉飛,等. 基于光譜和成像技術(shù)的作物養(yǎng)分生理信息快速檢測(cè)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):174-189. He Yong, Peng Jiyu, Liu Fei, et al. Research progress in rapid detection of crop nutrient physiological information based on spectroscopy and imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(3): 174-189. (in Chinese with English abstract)

[34] Yu Fenghua, Xu Tongyu, Cao Yingli, et al. Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 132-141.

[35] 李嵐?jié)R驛,魏全全,等. 基于高光譜的冬油菜植株氮素積累量監(jiān)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,27(20):155-164. Li Lan tao, Ma Yi, Wei Quan quan et al. A monitoring model of nitrogen accumulation in winter rape plants based on hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 27(20): 155-164. (in Chinese with English abstract)

[36] 張國(guó)圣,許童羽,于豐華,等. 基于高光譜的水稻葉片氮素估測(cè)與反演模型[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2017,33(5):845-849. Zhang Guosheng, Xu Tongyu, Yu Fenghua, et al. Hyperspectral based nitrogen estimation and inversion model for rice leaves[J]. Acta Agriculturae Zhejiangensis, 2017, 33(5): 845-849. (in Chinese with English abstract)

Genetic algorithm combined with extreme learning machine to diagnose nitrogen deficiency in rice in cold region

Xu Tongyu1,2, Guo Zhonghui1, Yu Fenghua1,2, Xu Bo1, Feng Shuai1

(1.,,, 110161,; 2.,, 110161,)

Nitrogen is a key plant nutrient and its deficiency or surplus could inhibit plant growth and reduce crop yield. Over the past decade, remote sensing has been increasingly used to diagnosis nitrogen deficiency in crop. Taking rice grown in cold region in northeast China as an example, this paper studies the relationship between nitrogen content in japonica rice and the difference between spectral reflectance based on data measured from field. This relationship was used to inversely estimate nitrogen deficiency in the rice based on hyperspectral images. In our analysis, the nitrogen content producing the highest yield was defined as standard nitrogen content and its associated spectral reflectance was defied as standard spectral reflectance. The difference between real nitrogen content and the standard nitrogen content, as well as the difference between the real spectral reflectance the standard spectral reflectance, were calculated respectively. The difference in spectral reflectance was dimensionally reduced using the discrete wavelet multi-scale decomposition, continuous projection method (successive projections algorithm, SPA) and vegetation index construction. The characteristic bands screened by SPA were 459、460、475、671、723、874 and 996 nm. Analysis showed that when the discrete wavelet multi-scale decomposition was used to reduce the dimension, the Sym8 wavelet mother function worked best when it was decomposed at the seventh layer. Comparing DVI, NDVI and RVI vegetation index found that the determination coefficient of the DVI index and nitrogen deficiency was significantly higher than that of NDVI and RVI index. The three indexes were used as input to the partial least squares (PLSR), the extreme learning machine (ELM) and genetic algorithm optimization extreme learning machine (GA-ELM). The GA-ELM model was most accurate with the2being 0.7062 for the training set and 0.7594 for the verification set; their associated RMSE was 0.5099mg/g and 0.4276mg/g respectively. The GA-ELM model based on the optimal vegetation index was least accurate, with the2for the training set and the verifying set being 0.6615 and 0.6509 respectively; their associated RMSE was 0.4415mg/g and 0.5312mg/g. Overall, GA-ELM improved stability and predictability of the model compared with PLSR and ELM. It can thus be used as a new method to detect nitrogen content in rice leaf, and has important implication in precision fertilization.

spectrum analysis; models; hyperspectral; discrete wavelet multiscale decomposition; genetic optimization algorithm; extreme learning machine

許童羽,郭忠輝,于豐華,徐 博,馮 帥. 采用GA-ELM的寒地水稻缺氮量診斷方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):209-218. doi:10.11975/j.issn.1002-6819.2020.02.025 http://www.tcsae.org

Xu Tongyu, Guo Zhonghui, Yu Fenghua, Xu Bo, Feng Shuai. Genetic algorithm combined with extreme learning machine to diagnose nitrogen deficiency in rice in cold region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 209-218. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.025 http://www.tcsae.org

2019-08-29

2019-12-30

“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0200600);農(nóng)業(yè)部光譜檢測(cè)重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題基金

許童羽,教授,從事農(nóng)業(yè)信息化領(lǐng)域研究。Email:yatongmu@163.com

10.11975/j.issn.1002-6819.2020.02.025

O657.3; S511

A

1002-6819(2020)-02-0209-10

猜你喜歡
反射率氮素小波
影響Mini LED板油墨層反射率的因素
近岸水體異源遙感反射率產(chǎn)品的融合方法研究
具有顏色恒常性的光譜反射率重建
構(gòu)造Daubechies小波的一些注記
基于MATLAB的小波降噪研究
電子制作(2019年13期)2020-01-14 03:15:32
基于改進(jìn)的G-SVS LMS 與冗余提升小波的滾動(dòng)軸承故障診斷
化學(xué)腐蝕硅表面結(jié)構(gòu)反射率影響因素的研究*
電子器件(2017年2期)2017-04-25 08:58:37
基于FPGA小波變換核的設(shè)計(jì)
楸樹(shù)無(wú)性系苗期氮素分配和氮素效率差異
基于光譜分析的玉米氮素營(yíng)養(yǎng)診斷
榆社县| 屏东县| 临桂县| 紫云| 河池市| 西贡区| 鄂伦春自治旗| 通城县| 准格尔旗| 玛沁县| 富源县| 西昌市| 栾城县| 永顺县| 略阳县| 勃利县| 西充县| 吴桥县| 合江县| 屯昌县| 墨玉县| 平罗县| 开江县| 小金县| 个旧市| 绥德县| 祁连县| 龙陵县| 炎陵县| 通辽市| 吐鲁番市| 锦屏县| 龙南县| 台南市| 新密市| 页游| 兴文县| 太和县| 沂南县| 凯里市| 甘泉县|