解凱東,彭珺,袁東亞,強(qiáng)瑞瑞,謝善鵬,周銳,夏強(qiáng)明,伍小萌,柯甫志,劉高平,GROSSER Jude W,郭文武
以本地早橘和槾橘為母本倍性雜交創(chuàng)制柑橘三倍體
解凱東1,彭珺1,袁東亞1,強(qiáng)瑞瑞1,謝善鵬1,周銳1,夏強(qiáng)明1,伍小萌1,柯甫志2,劉高平3,GROSSER Jude W4,郭文武1
(1華中農(nóng)業(yè)大學(xué)園藝林學(xué)學(xué)院/園藝植物生物學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,中國(guó)武漢 430070;2浙江省農(nóng)業(yè)科學(xué)院柑桔研究所,中國(guó)浙江臺(tái)州 318020;3浙江省臺(tái)州市黃巖區(qū)果樹(shù)技術(shù)推廣總站,中國(guó)浙江臺(tái)州 318020;4美國(guó)佛羅里達(dá)大學(xué)柑橘研究與教育中心,美國(guó)佛羅里達(dá) 33850)
【】基于二倍體與四倍體倍性雜交策略創(chuàng)制柑橘三倍體新種質(zhì)。以二倍體為母本,四倍體為父本進(jìn)行人工授粉,授粉后85 d采摘幼果并對(duì)未成熟種子實(shí)施幼胚離體挽救培養(yǎng);再生植株后,用流式細(xì)胞儀和根尖染色體計(jì)數(shù)法對(duì)再生植株進(jìn)行倍性鑒定;并用SSR標(biāo)記對(duì)三倍體后代進(jìn)行分子鑒定。以本地早橘和槾橘為母本,8個(gè)異源四倍體體細(xì)胞雜種和1個(gè)雙二倍體為父本,配置9個(gè)倍性雜交組合,共授粉2 749朵花,坐果489個(gè),平均坐果率17.8%;培養(yǎng)幼嫩種子2 239粒,經(jīng)幼胚離體挽救培養(yǎng),共再生植株260株;用流式細(xì)胞儀和根尖染色體計(jì)數(shù)檢測(cè)再生植株倍性,獲得三倍體141株;SSR分子鑒定表明從槾橘×NS組合隨機(jī)選取的50株三倍體后代全部為雙親的有性后代;三倍體后代在溫室生長(zhǎng)一年后,采用嫁接(枳砧)將這些三倍體定植于田間。這些三倍體新種質(zhì)為本地早橘和槾橘無(wú)核新品種培育奠定了寶貴的材料基礎(chǔ)。
柑橘;無(wú)核育種;三倍體;幼胚離體挽救培養(yǎng);流式細(xì)胞儀
【研究意義】柑橘是世界第一大水果,也是我國(guó)南方栽培面積最廣、經(jīng)濟(jì)地位最重要的果樹(shù),在鄉(xiāng)村振興和精準(zhǔn)扶貧方面發(fā)揮著重要作用[1]。我國(guó)柑橘主要供應(yīng)鮮果市場(chǎng),無(wú)核果實(shí)由于食用方便、品質(zhì)佳,愈發(fā)受消費(fèi)者青睞[2-3]。雖然我國(guó)柑橘地方品種繁多,但多數(shù)有核,難以滿(mǎn)足當(dāng)今市場(chǎng)對(duì)無(wú)核優(yōu)質(zhì)果實(shí)的消費(fèi)需求。因此,果實(shí)無(wú)核化是解決我國(guó)特色柑橘無(wú)核品種匱乏和提升地方品種商品價(jià)值的重要手段?!厩叭搜芯窟M(jìn)展】本地早橘和槾橘均原產(chǎn)我國(guó),本地早橘為早熟品種,味甜少酸,汁多化渣;槾橘是一個(gè)品質(zhì)較優(yōu)的晚熟鮮食品種。兩者在浙江均有百年以上栽培歷史,曾是當(dāng)?shù)卮罅Πl(fā)展的主栽品種。但由于其種子較多和長(zhǎng)期無(wú)性繁殖引起的種性衰退,兩者果實(shí)品質(zhì)嚴(yán)重下降。特別是國(guó)外一些無(wú)核品種的引進(jìn)和種植,對(duì)本地早橘和槾橘的沖擊較大,導(dǎo)致其栽培面積大范圍縮減[4]。三倍體雌雄配子敗育,是天然的不育類(lèi)型,且其不育性狀不受環(huán)境影響,是培育無(wú)核柑橘的重要手段[5]。柑橘中,二倍體為母本,與四倍體為父本的倍性雜交是培育三倍體最經(jīng)典的策略[6]?;谠摬呗?,美國(guó)、意大利、西班牙、日本和中國(guó)等國(guó)的科研工作者培育出了大量柑橘三倍體,并成功選育出一批表現(xiàn)優(yōu)良的無(wú)核新品種[2-3,7-12]?!颈狙芯壳腥朦c(diǎn)】近年來(lái),柑橘細(xì)胞工程育種技術(shù)(包括體細(xì)胞雜交和同源四倍體快速發(fā)掘技術(shù))飛速發(fā)展,新獲得了大批柑橘異源四倍體體細(xì)胞雜種和同源四倍體[7,13-15],為柑橘倍性雜交創(chuàng)制無(wú)核三倍體提供了優(yōu)良的育種親本。異源四倍體體細(xì)胞雜種包含兩個(gè)融合親本的全部遺傳物質(zhì),綜合了其雙親優(yōu)良性狀,如體細(xì)胞雜種‘Succari甜橙+Page橘柚’果實(shí)風(fēng)味佳,少核且早熟[16],以其為父本倍性雜交創(chuàng)制的三倍體后代可能兼具3個(gè)親本的優(yōu)良性狀,遺傳變異豐富,有利于篩選果實(shí)品質(zhì)性狀優(yōu)良且無(wú)核的柑橘新品種?!緮M解決的關(guān)鍵問(wèn)題】本研究以浙江黃巖地方品種本地早橘和槾橘為母本,與8個(gè)柑橘異源四倍體體細(xì)胞雜種和1個(gè)雙二倍體為父本倍性雜交,結(jié)合幼胚離體挽救培養(yǎng)和流式細(xì)胞儀倍性分析,創(chuàng)制一批具有豐富遺傳變異的三倍體植株,為我國(guó)柑橘無(wú)核新品種培育奠定寶貴的材料基礎(chǔ)。
2014—2018年,以柑橘單胚性品種—槾橘(Hort. ex Tan)和單、多胚混合型品種—本地早橘(Hort. ex Tanaka)為母本,異源四倍體體細(xì)胞雜種NS(Blanco ×Macf. +L. Osbeck)[7]、SP(L. Osbeck +Blanco ×Macf.)[7]、MD(Blanco ×L. Osbeck +Blanco)[16]、SM(L. Osbeck +Blanco ×L. Osbeck)[7]、PL(Blanco ×Macf. +Blanco)[16]、PM(Blanco ×Macf. +Blanco ×L. Osbeck)[16]、VP(L. Osbeck +Blanco ×Macf.)[17]、PCS(Blanco ×Macf. +Hort. ex Tanaka ×)[16]和Succari甜橙(L. Osbeck)雙二倍體(4x Suc)為父本,配置9個(gè)倍性雜交組合。所有四倍體花粉均采自華中農(nóng)業(yè)大學(xué)柑橘研究所種質(zhì)資源圃。本地早橘授粉地點(diǎn)為華中農(nóng)業(yè)大學(xué)柑橘研究所種質(zhì)資源圃;槾橘授粉地點(diǎn)為浙江省農(nóng)業(yè)科學(xué)院柑桔研究所試驗(yàn)基地。
柑橘初花期,采摘四倍體父本即將開(kāi)放的花帶回實(shí)驗(yàn)室,用鑷子將花藥剝下后鋪于有濾紙的培養(yǎng)皿,并將其置于烘箱28℃烘1—2 d,待花粉完全干燥后,將其收集至離心管后置于-20℃冰箱保存?zhèn)溆?。人工授粉在柑橘盛花期前進(jìn)行,選取生長(zhǎng)健壯、花量大的枝條進(jìn)行標(biāo)記,將已開(kāi)花和小花蕾全部去掉,枝條上僅保留待授粉的花;用鑷子人工去雄后,用小毛筆蘸取少量父本花粉均勻涂于待授粉花的柱頭上。若授粉后8 h內(nèi)下雨,需重新授粉一次。
幼胚離體挽救培養(yǎng)參考Xie等[12]的方法。采摘授粉后85 d的幼果帶回實(shí)驗(yàn)室,無(wú)菌條件下將幼果浸泡于75%酒精消毒15 min,之后再置于酒精燈上燃燒消毒,酒精燃燒完后將果實(shí)剖開(kāi)剝?nèi)〕鑫闯墒旆N子。為提高種子萌發(fā)率,將其種皮從合點(diǎn)端切開(kāi)并向珠孔端輕輕撕至幼胚暴露,再將處理后的種子接種至萌發(fā)培養(yǎng)基(MT培養(yǎng)基+1 mg?L-1GA3)。光照培養(yǎng)室培養(yǎng)1個(gè)月后,將形成的胚狀體置于生芽培養(yǎng)基(MT + 0.5 mg?L-1BA + 0.5 mg?L-1KT + 0.1 mg?L-1NAA)中增殖生芽;待其長(zhǎng)出2—3片葉后將莖切下,置于生根培養(yǎng)基(1/2 MT + 0.1 mg?L-1IBA + 0.5 mg?L-1NAA + 0.5 g?L-1活性炭)中誘導(dǎo)生根。培養(yǎng)條件:溫度:(25±1)℃;濕度:70%左右;光照強(qiáng)度:40 μmol?m-2?s-1;光照時(shí)間:16 h/天。
流式細(xì)胞儀(Sysmex,Japan)倍性分析參照解凱東等[2]的方法。以二倍體母本葉片為對(duì)照,取待測(cè)樣品0.5 cm2大小的葉片于塑料皿中,加入200 μL細(xì)胞裂解液(Precise-P,Sysmex),并用刀片將其充分切碎;加入800 μL DAPI染色液(Precise-P,Sysmex)后,用33 μm微孔濾膜將樣品過(guò)濾到2.5 mL試管并上機(jī)檢測(cè)。樣品倍性分析圖像由Flomax軟件(Sysmex,Japan)自動(dòng)生成。
根尖染色體計(jì)數(shù)參考LAN等[18]的方法。取1.5 mm左右生長(zhǎng)旺盛的根尖,用飽和對(duì)二氯苯20℃預(yù)處理2—4 h;0.075 mol?L-1KCl低滲處理30 min后,用新鮮的卡諾固定液(無(wú)水乙醇﹕冰乙酸 = 3﹕1)室溫下固定24 h,最后置于70%乙醇中4℃保存?zhèn)溆?。制片前,將根尖用磷酸緩沖液清洗干凈,并置于2%纖維素酶 + 2%果膠酶(1﹕1)混合酶液中,37℃下處理1 h左右;酶解結(jié)束后,吸取1—2個(gè)根尖于干凈的載玻片上,滴1滴1%卡寶品紅染液染色1 min后蓋上蓋玻片,用鉛筆均勻敲打蓋玻片直至材料分散均勻,最后用Olympus DP70顯微鏡鏡檢并拍照。
移栽前將植株置于試管中室溫下煉苗3—5 d,之后將其移入小塑料杯,待其成活后再移入大營(yíng)養(yǎng)缽并置于溫室。苗期需加強(qiáng)管理,保證幼苗的正常生長(zhǎng)。植株在溫室生長(zhǎng)1年后,次年8月下旬取其木質(zhì)化的枝條為接穗,以枳為砧木將其嫁接于田間(枳砧提前定植)。
基因組DNA提取參照CHENG等[19]的方法,DNA濃度和質(zhì)量用NanoDrop 1000紫外分光光度計(jì)(Thermo Scientific,USA)檢測(cè)。DNA原液用TE緩沖液稀釋至約50 ng?μL-1。SSR引物(表1)由上海生工生物工程股份有限公司合成。SSR分析方法具體如下:PCR體系為10 μL:2×PCR反應(yīng)mix(Vazyme)5 μL,正反向引物各0.1 μL,DNA模板1 μL,滅菌超純水3.8 μL。PCR反應(yīng)在ProFlex PCR儀(ABI,USA)上進(jìn)行,擴(kuò)增程序:94℃預(yù)變性5 min;94℃變性60 s,55℃退火30 s,72℃延伸60 s,32個(gè)循環(huán);72℃延伸7 min;最后12℃保存。擴(kuò)增完成后,PCR產(chǎn)物在恒定電壓95 V條件下,用2.5% Metaphor瓊脂糖凝膠(Lonza,USA)電泳約1 h后用凝膠成像系統(tǒng)(BIO-RAD,USA)拍照。
表1 3對(duì)SSR引物序列
以二倍體槾橘和本地早橘為母本,8個(gè)異源四倍體體細(xì)胞雜種和1個(gè)雙二倍體為父本,配置了9個(gè)倍性雜交組合(表2)。其中,以槾橘為母本,NS為父本配置了1個(gè)組合;以本地早橘為母本,7個(gè)異源四倍體(MD、SM、SP、PL、PM、VP、PCS)及雙二倍體4x Suc為父本,配置8個(gè)雜交組合。由表2可知,9個(gè)雜交組合共授粉2 749朵花,坐果489個(gè),平均坐果率17.8%。其中以本地早橘為母本的組合坐果率較低,介于10.3%—26.4%;而槾橘×NS坐果率較高,為42.9%。9個(gè)組合共離體培養(yǎng)未成熟種子2 239粒,其中以槾橘為母本培養(yǎng)種子267粒,以本地早橘為母本培養(yǎng)種子1 972粒。經(jīng)幼胚離體挽救培養(yǎng),9個(gè)組合共再生植株260株,平均植株再生率11.6%;其中,以本地早橘為母本的8個(gè)組合再生植株181株,植株再生率介于3.2%—37.1%;槾橘×NS組合再生植株79株,植株再生率29.6%。幼胚離體挽救培養(yǎng)、植株再生及田間嫁接過(guò)程見(jiàn)圖1。
表2 以本地早橘和槾橘為母本的倍性雜交組合及植株再生
a:授粉后85 d的種子(下)及對(duì)照種子(上);b:接種于萌發(fā)培養(yǎng)基的種子;c:種子萌發(fā)形成胚狀體;d:生芽培養(yǎng);e:生根培養(yǎng);f:植株煉苗;g:移入小塑料杯的三倍體;h:移入溫室的三倍體群體;i:嫁接至田間的三倍體植株(枳砧)
用流式細(xì)胞儀對(duì)所有再生植株進(jìn)行倍性分析(圖2),表明以單胚性槾橘為母本再生的79棵植株,經(jīng)檢測(cè)全部為三倍體(表2),三倍體獲得率100%。以單、多胚混合型本地早橘為母本的8個(gè)雜交組合再生的181棵植株,經(jīng)檢測(cè)三倍體有62株(表2),三倍體獲得率34.3%。此外,從‘槾橘×NS’組合隨機(jī)挑選3株三倍體用于根尖染色體計(jì)數(shù)分析,表明三倍體染色體均為27條,驗(yàn)證了流式細(xì)胞儀倍性檢測(cè)的準(zhǔn)確性。上述多倍體在溫室生長(zhǎng)一年后,已全部嫁接于田間。
用3對(duì)SSR引物對(duì)‘槾橘×NS’組合中隨機(jī)選取的50株三倍體后代進(jìn)行分子鑒定,顯示50株三倍體后代均含有父母本特異條帶,表明所有檢測(cè)的三倍體后代均為雙親的有性后代(圖3)。
a:流式細(xì)胞儀倍性鑒定(PK1=50,二倍體;PK2=75,三倍體);b、c:根尖染色體計(jì)數(shù)(b:二倍體,2n=2x=18;c:三倍體,2n=3x=27),標(biāo)尺=5 μm
引物Mest88的擴(kuò)增譜圖;M:槾橘;F:NS;1—50:三倍體后代 SSR profile of primer Mest88; M: Man tangerine; F: NS; 1-50: The triploid progenies
柑橘是我國(guó)南方果樹(shù)主導(dǎo)產(chǎn)業(yè)之一,栽培歷史悠久,資源豐富,地方良種多;但我國(guó)目前規(guī)模化栽培的80余個(gè)柑橘品種,約一半引自國(guó)外[21]。特別是一些優(yōu)質(zhì)的無(wú)核品種,如溫州蜜柑、紐荷爾臍橙、倫晚臍橙、紅美人等,在我國(guó)柑橘產(chǎn)區(qū)大面積引種栽培,導(dǎo)致一些地方特色品種,如本地早橘和槾橘的栽培面積逐年縮減。果實(shí)有核和品質(zhì)衰退可能是導(dǎo)致這些品種在市場(chǎng)上面臨淘汰的根本原因。柑橘長(zhǎng)期無(wú)性繁殖容易感染并積累病毒,導(dǎo)致果實(shí)品質(zhì)降低[22],難以滿(mǎn)足消費(fèi)者對(duì)品質(zhì)提升的需求。與有核果實(shí)相比,無(wú)核果實(shí)食用方便,倍受消費(fèi)者青睞。因此,采用合理的育種手段,實(shí)現(xiàn)果實(shí)無(wú)核和其他品質(zhì)性狀的綜合改良(或提純復(fù)壯)是有效提升這些地方品種市場(chǎng)競(jìng)爭(zhēng)力的重要保障。
與二倍體果樹(shù)相比,三倍體由于細(xì)胞核內(nèi)染色體增加了一套,其形態(tài)和生理往往會(huì)有一些新的變化,通常表現(xiàn)為器官巨大、育性降低、新陳代謝旺盛和對(duì)環(huán)境適應(yīng)性增強(qiáng)等。如三倍體梨新品種‘華幸’[23]、‘華香酥’[24]均表現(xiàn)為果大、品質(zhì)優(yōu)和抗黑心病等特點(diǎn);三倍體枇杷‘華玉無(wú)核1號(hào)’果實(shí)無(wú)核,可溶性固形物含量高,豐產(chǎn)性好[25]。而柑橘三倍體除表現(xiàn)果實(shí)無(wú)核外,部分三倍體優(yōu)系在抗逆性[26-27]、成熟期調(diào)控[28-29]和功能性成分代謝[30-31]及抗氧化活性[32]等方面也表現(xiàn)出優(yōu)異的應(yīng)用價(jià)值。就柑橘而言,由于多數(shù)品種單性結(jié)實(shí)能力強(qiáng),不用擔(dān)心由于三倍體育性降低而導(dǎo)致坐果難的問(wèn)題;而柑橘等果樹(shù)多數(shù)以無(wú)性繁殖為主,通過(guò)培育三倍體實(shí)現(xiàn)無(wú)核和其他優(yōu)良性狀結(jié)合,一旦改良成功,即可長(zhǎng)期持續(xù)利用。如西班牙為解決柑橘果實(shí)有核和市場(chǎng)周年供應(yīng)等問(wèn)題,采用倍性雜交培育三倍體的策略,成功培育出‘Sofar’‘Garbí’‘Alborea’和‘Albir’等幾個(gè)成熟期不同的三倍體新品種且大面積栽培,填補(bǔ)了西班牙柑橘鮮果市場(chǎng)1—3月份的空白[28-29,33]。美國(guó)科學(xué)家針對(duì)柚和葡萄柚含有呋喃香豆素的問(wèn)題,以柚為母本,與葡萄柚同源四倍體(父本)倍性雜交,成功培育出一個(gè)呋喃香豆素含量很低,無(wú)核、果實(shí)風(fēng)味好且無(wú)苦味的三倍體葡萄柚新品種,在美國(guó)已商業(yè)化種植[34]。因此,培育三倍體在柑橘遺傳改良中具有巨大的應(yīng)用潛力。
本研究基于2x×4x倍性雜交策略,以本地早橘和槾橘為母本培育三倍體,是實(shí)現(xiàn)這兩個(gè)品種無(wú)核遺傳改良的有效方法。近20年來(lái),雖然國(guó)內(nèi)外在柑橘三倍體無(wú)核育種方面取得了一定進(jìn)展,但針對(duì)本地早橘和槾橘有核性狀創(chuàng)制三倍體的報(bào)道較少;除美國(guó)外,國(guó)外多數(shù)國(guó)家倍性雜交主要以同源四倍體為父本[8-10]。本研究選用的四倍體父本大多數(shù)為2個(gè)優(yōu)良二倍體品種經(jīng)原生質(zhì)體融合再生創(chuàng)制的異源四倍體體細(xì)胞雜種,與同源四倍體相比,異源四倍體體細(xì)胞雜種綜合了雙親的遺傳物質(zhì),以其為父本與本地早橘和槾橘倍性雜交獲得的三倍體后代不僅果實(shí)無(wú)核,而且可能兼具3個(gè)優(yōu)良二倍體親本的遺傳物質(zhì),遺傳變異豐富,有利于培育無(wú)核且其他性狀(如高糖、極早熟、易剝皮等)優(yōu)良的柑橘新品種。
前期研究發(fā)現(xiàn),以本地早橘為母本倍性雜交,其坐果率和植株再生率均較低[3],但以其為母本創(chuàng)制的三倍體后代果實(shí)不僅無(wú)核,且部分株系果實(shí)表現(xiàn)出極易剝皮或與親本相比成熟期提前等優(yōu)點(diǎn)(武漢地區(qū)9月中旬果實(shí)已轉(zhuǎn)色,數(shù)據(jù)未發(fā)表),表明本地早橘在培育柑橘極早熟和易剝皮品種方面是一個(gè)優(yōu)良的二倍體育種親本。因此,為獲得一定數(shù)量的具有豐富遺傳變異的本地早橘三倍體后代,本研究以其為母本配置了8個(gè)雜交組合,這8個(gè)組合坐果率(10.3%—26.4%)、植株再生率(3.19%—37.14%)確實(shí)較低,與筆者前期結(jié)果一致,可能與本地早橘品種特性有關(guān)。與本地早橘相比,以槾橘為母本不僅坐果率高,且易再生三倍體;但槾橘在本研究中是第一次用作親本創(chuàng)制三倍體,其三倍體后代果實(shí)性狀表現(xiàn)如何正在評(píng)價(jià)中;若田間反饋信息表明其為較好的育種親本,未來(lái)將以其為親本配置更多倍性雜交組合,用于柑橘無(wú)核三倍體新品種的培育。
基于柑橘幼胚離體挽救培養(yǎng)和流式細(xì)胞儀快速倍性檢測(cè)技術(shù),從9個(gè)倍性雜交組合共再生三倍體141株,分子鑒定結(jié)果表明所有檢測(cè)的三倍體后代均為有性雜種,為本地早橘和槾橘無(wú)核遺傳改良奠定了寶貴的材料基礎(chǔ)。
[1] 郭文武, 葉俊麗, 鄧秀新. 新中國(guó)果樹(shù)科學(xué)研究70年-柑橘. 果樹(shù)學(xué)報(bào), 2019, 36(10): 1264-1272.
GUO W W, YE J L, DENG X X. Fruit scientific research in New China in the past 70 years: Citrus., 2019, 36(10): 1264-1272. (in Chinese)
[2] 解凱東, 王惠芹, 王曉培, 梁武軍, 謝宗周, 伊華林, 鄧秀新, Grosser J W, 郭文武. 單胚性二倍體為母本與異源四倍體雜交大規(guī)模創(chuàng)制柑橘三倍體. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(21): 4550-4557.
XIE K D, WANG H Q, WANG X P, LIANG W J, XIE Z Z, YI H L, DENG X X, GROSSER J W, GUO W W. Extensive citrus triploid breeding by crossing monoembryonic diploid females with allotetraploid male parents., 2013, 46(21): 4550-4557. (in Chinese)
[3] 解凱東, 王曉培, 王惠芹, 梁武軍, 謝宗周, 郭大勇, 伊華林, 鄧秀新, Grosser J W, 郭文武. 以柑橘多胚性二倍體母本倍性雜交培育三倍體. 園藝學(xué)報(bào), 2014, 41(4): 613-620.
XIE K D, WANG X P, WANG H Q, LIANG W J, XIE Z Z, GUO D Y, YI H L, DENG X X, GROSSER J W, GUO W W. High efficient and extensive production of triploid citrus plants by crossing polyembryonic diploids with tetraploids., 2014, 41(4): 613-620. (in Chinese)
[4] 柏德玟, 姚瑩, 童琦玨. 浙江省柑橘產(chǎn)業(yè)提升對(duì)策的探討. 浙江農(nóng)業(yè)科學(xué), 2019, 60(8): 1431-1434.
BAI D W, YAO Y, TONG Q J. Discussion of the countermeasures for citrus industrial promotion in Zhejiang province., 2019, 60(8): 1431-1434. (in Chinese)
[5] NAVARRO L, ALEZA P, CUENCA J, JUAREZ J, PINA J A, ORTEGA C, NAVARRO A, ORTEGA V. The mandarin triploid breeding program in Spain.. 2015, 1065: 389-395.
[6] OLLITRAULT P, DAMBIER D, LURO F, FROELICHER Y. Ploidy manipulation for breeding seedless triploid citrus., 2008, 30: 323-352.
[7] GROSSER J W, GMITTER F G. Protoplast fusion for production of tetraploids and triploids: Applications for scion and rootstock breeding in citrus., 2011, 104: 343-357.
[8] FATTA DEL BOSCO S, SIRAGUSA M, ABBATE L, LUCRETTI S, TUSA N. Production and characterization of new triploid seedless progenies for mandarin improvement., 2007, 114: 258-262.
[9] ALEZA P, JUAREZ J, CUENCA J, OLLITRAULT P, NAVARRO L. Extensive citrus triploid hybrid production by 2x × 4x sexual hybridizations and parent-effect on the length of the juvenile phase., 2012, 31: 1723-1735.
[10] RECUPERO G R, RUSSO G, RECUPERO S. New promising citrus triploid hybrids selected from crosses between monoembryonic diploid female and tetraploid male parents., 2005, 40: 516-520.
[11] NAKANO M, SHIMIZU T, SUGAWA S, KANEYOSHI J, FUJII H, KITA M, YOSHIOKA T, KITAJIMA A. Determining the parental combinations of the triploid acid citrus cultivars ‘Yellow Bell’ and ‘Tahiti lime’ using DNA marker analyses., 2019, 246: 893-897.
[12] XIE K D, YUAN D Y, WANG W, XIA Q M, WU X M, CHEN C W, CHEN C L, GROSSER J W, GUO W W. Citrus triploid recovery based on 2x × 4x crosses via an optimized embryo rescue approach., 2019, 252: 104-109.
[13] ALEZA P, FROELICHER Y, SCHWARZ S, AGUSTI M, HERNANDEZ M, JUAREZ J, LURO F, MORILLON R, NAVARRO L, OLLITRAULT P. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment., 2011, 108: 37-50.
[14] 梁武軍, 解凱東, 郭大勇, 謝宗周, 伊華林, 郭文武. 10個(gè)柑橘砧木類(lèi)型同源四倍體的發(fā)掘與SSR鑒定. 果樹(shù)學(xué)報(bào), 2014, 31(1): 1-6.
LIANG W J, XIE K D, GUO D Y, XIE Z Z, YI H L, GUO W W. Spontaneous generation and SSR molecular characterization of autotetraploids in ten citrus rootstocks., 2014, 31(1): 1-6. (in Chinese)
[15] 梁武軍, 解凱東, 郭大勇, 謝宗周, 徐強(qiáng), 伊華林, 郭文武. 柑橘10個(gè)品種實(shí)生后代多倍體的發(fā)掘及SSR鑒定. 園藝學(xué)報(bào), 2014, 41(3): 409-416.
LIANG W J, XIE K D, GUO D Y, XIE Z Z, XU Q, YI H L, GUO W W. Spontaneous generation and SSR characterization of polyploids from ten citrus cultivars., 2014, 41(3): 409-416. (in Chinese)
[16] GUO W W, PRASAD D, SERRANO P, GMITTER F G J R, GROSSER J W. Citrus somatic hybridization with potential for direct tetraploid scion cultivar development., 2004, 79(3): 400-405.
[17] GROSSER J W, OLLITRAULT P, OLIVARES-FUSTER O. Somatic hybridization in citrus: An effective tool to facilitate variety improvement., 2000, 36: 434-449.
[18] LAN H, CHEN C L, MIAO Y, YU C X, GUO W W, XU Q, DENG X X. Fragile sites of ‘Valencia’ sweet orange () chromosomes are related with active 45s rDNA., 2016, 11(3): e0151512.
[19] CHENG Y J, GUO W W, YI H L, PANG X M, DENG X X. An efficient protocol for genomic DNA extraction fromspecies., 2003, 21: 177.
[20] XU Q, CHEN L L, RUAN X A, CHEN D, ZHU A, CHEN C, BERTRAND D, JIAO W B, HAO B H, LYON M P, CHEN J, GAO S, XING F, LAN H, CHANG J W, GE X, LEI Y, HU Q, MIAO Y, WANG L, XIAO S, BISWAS M K, ZENG W, GUO F, YANG X, XU X W, CHENG Y J, XU J, LIU J H, LUO O J, TANG Z, GUO W W, KUANG H, ZHANG H Y, ROOSE M L, NAGARAJAN N, DENG X X, RUAN Y. The draft genome of sweet orange ()., 2013, 45: 59-66.
[21] 鄧秀新, 王力榮, 李紹華, 張紹鈴, 張志宏, 從佩華, 易干軍, 陳學(xué)森, 陳厚彬, 鐘彩虹. 果樹(shù)育種40年回顧與展望. 果樹(shù)學(xué)報(bào), 2019, 36(4): 514-520.
DENG X X, WANG L R, LI S H, ZHANG S L, ZHANG Z H, CONG P H, YI G J, CHEN X S, CHEN H B, ZHONG C H. Retrospection and prospect of fruit breeding for last four decades in China., 2019, 36(4): 514-520. (in Chinese)
[22] 劉科宏, 周彥, 李中安. 柑橘莖尖嫁接脫毒技術(shù)研究進(jìn)展. 園藝學(xué)報(bào), 2016, 43(9): 1665-1674.
LIU K H, ZHOU Y, LI Z A. Technical progress on shoot-tip grafting of citrus., 2016, 43(9): 1665-1674. (in Chinese)
[23] 王斐, 方成泉, 姜淑苓, 林盛華, 歐春青, 李連文, 馬力. 大果優(yōu)質(zhì)三倍體梨新品種‘華幸’. 園藝學(xué)報(bào), 2014, 41(11): 2355-2356.
WANG F, FANG C Q, JIANG S L, LIN S H, OU C Q, LI L W, MA L. A new triploid pear cultivar ‘Huaxing’., 2014, 41(11): 2355-2356. (in Chinese)
[24] 張瑩, 曹玉芬, 田路明, 董星光, 霍宏亮, 李樹(shù)玲, 黃禮森, 趙德英, 齊丹, 徐家玉, 閆帥, 王立東. 三倍體梨新品種‘華香酥’. 園藝學(xué)報(bào), 2020, 47(5): 1009-1010.
ZHANG Y, CAO Y F, TIAN L M, DONG X G, HUO H L, LI S L, HUANG L S, ZHAO D Y, QI D, XU J Y, YAN S, WANG L D. A new triploid pear cultivar ‘Huaxiangsu’., 2020, 47(5): 1009-1010. (in Chinese)
[25] 黨江波, 郭啟高, 向素瓊, 何橋, 孫海燕, 吳頔, 景丹龍, 王淑明, 夏燕, 李曉林, 梁國(guó)魯. 大果無(wú)核枇杷新品種‘華玉無(wú)核1號(hào)’. 園藝學(xué)報(bào), 2019, 46(S2): 2765-2766.
DANG J B, GUO Q G, XIANG S Q, HE Q, SUN H Y, WU D, JING D L, WANG S M, XIA Y, LI X L, LIANG G L. A new seedless loquat cultivar ‘Huayu Wuhe 1’ with large fruit., 2019, 46(S2): 2765-2766. (in Chinese)
[26] VILORIA Z, DROUILLARD D L, GRAHAM J H, GROSSER J W. Screening triploid hybrids of ‘Lakeland’ limequat for resistance to citrus canker., 2004, 88: 1056-1060.
[27] LOURKISTI R, FROELICHER Y, HERBETTE S, MORILLON R, TOMI F, GIBERNAU M, GIANNETTINI J, BERTI L, SANTINI J. Triploid citrus genotypes have a better tolerance to natural chilling conditions of photosynthetic capacities and specific leaf volatile organic compounds., 2020, 11. doi: 10.3389/fpls.2020.00330.
[28] ALEZA P, CUENCA J, JUAREZ J, PINA J A, NAVARRO L. ‘Garbí’ mandarin: A new late-maturing triploid hybrid., 2010, 45: 139-141.
[29] CUENCA J, ALEZA P, JUAREZ J, PINA J A, NAVARRO L. ‘Safor’ mandarin: A new citrus mid-late triploid hybrid., 2010, 45: 977-980.
[30] CHEN C X, CANCALON P, HAUN C, GMITTER F G. Characterization of furanocoumarin profile and inheritance toward selection of low furanocoumarin seedless grapefruit cultivars., 2011, 136: 358-363.
[31] AHMED D, EVRARD J C, OLLITRAULT P, FROELICHER Y. The effect of cross direction and ploidy level on phenotypic variation of reciprocal diploid and triploid mandarin hybrids., 2020, 16: 25.
[32] SDIRI S, CUENCA J. NAVARRO P, SALVADOR A, BERMEJO A. New triploids late-maturing mandarins as a rich source of antioxidant compounds., 2020, 246: 225-237.
[33] CUENCA J, ALEZA P, JUAREZ J, PINA J A, NAVARRO L. Two new IVIA triploid mandarin hybrids: ‘Alborea’ and ‘Albir’., 2015, 1065: 209-214.
[34] OLLOTRAULT P, GERMANA M A, FROELICHER Y, CUENCA J, ALEZA P, MORILLON R, GROSSER J W, GUO W W. Ploidy Manipulation for Citrus Breeding, Genetics, and Genomics//Gentile A, La Malfa S, Deng Z.. Switzerland: Springer Press, 2020: 75-105.
Production ofTriploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents
XIE KaiDong1, PENG Jun1, YUAN DongYa1, QIANG RuiRui1, XIE ShanPeng1, ZHOU Rui1, XIA QiangMing1, WU XiaoMeng1, KE FuZhi2, LIU GaoPing3, GROSSER Jude W4, GUO WenWu1
(1College of Horticulture & Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology (Ministry of Education), Wuhan 430070, China;2Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou 318020, Zhejiang, China;3Huangyan Fruit Tree Technology Promotion General Station, Taizhou 318020, Zhejiang, China;4Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred FL 33850, USA)
【】The aim of this study was to create the citrus triploids based on diploid and tetraploid ploidy cross strategy.【】The artificial pollination was conducted with diploid as female parent and tetraploid as male parent. Young fruits were sampled at 85 d after pollination (DAP) and immature seeds were extracted and subjected toembryo rescue. Following plantlet regeneration from the embryos, their ploidy level was determined by flow cytometry and root-tip chromosome counting, as well as the genetic origin determined using simple sequence repeat (SSR) markers. 【】A total of nine interploidy crosses were carried out by using Bendizao tangerine and Man tangerine as female parents and eight allotetraploid somatic hybrids and one doubled diploids as male parents. From all crosses, 2 749 flowers were pollinated and 489 fruits were set, with an average fruit setting rate of 17.8%. By conductingimmature embryo rescue, totally 260 plants were regenerated from 2 239 seeds cultured. By determining their ploidy level using flow cytometry and root-tip chromosome counting, 141 seedlings were proven to be triploids. SSR analysis showed that all of 50 randomly selected triploid plants from Man tangerine × NS were the hybrids of their both parents. After one year growing in greenhouse, all triploids were grafted ontoin the field to accelerate flowering. 【】These triploid citrus plants obtained herein provided elite materials for potential seedless variety selection.
; seedless breeding; polyploid; embryo rescue; flow cytometry
10.3864/j.issn.0578-1752.2020.23.020
2020-09-01;
2020-10-14
國(guó)家自然科學(xué)基金國(guó)際合作重點(diǎn)項(xiàng)目(31820103011)、湖北省科技支撐計(jì)劃(2020BBA036)、廣東省科技計(jì)劃(2018B020202009)、中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金(2662019QD048,2662018PY007)
解凱東,Tel:027-87287393;E-mail:xiekaidong@mail.hzau.edu.cn。通信作者郭文武,E-mail:guoww@mail.hzau.edu.cn
(責(zé)任編輯 趙伶俐)