国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水導(dǎo)激光加工對316L不銹鋼微觀形貌的影響規(guī)律

2020-12-11 00:41于永飛喬紅超曹治赫趙吉賓張旖諾吳嘉俊
光電工程 2020年11期
關(guān)鍵詞:水導(dǎo)沉積層水射流

于永飛,喬紅超,曹治赫,趙吉賓,張旖諾,4,吳嘉俊,4

水導(dǎo)激光加工對316L不銹鋼微觀形貌的影響規(guī)律

于永飛1,2,3,喬紅超1,3*,曹治赫1,3,趙吉賓1,3*,張旖諾1,3,4,吳嘉俊1,3,4

1中國科學(xué)院沈陽自動化研究所,遼寧 沈陽 110016;2東北大學(xué)機(jī)械工程與自動化學(xué)院,遼寧 沈陽 110819;3中國科學(xué)院機(jī)器人與智能制造創(chuàng)新研究院,遼寧 沈陽 110169;4中國科學(xué)院大學(xué),北京 100049

水導(dǎo)激光加工是一項(xiàng)利用水光纖將激光引導(dǎo)到材料加工表面的新穎加工技術(shù),具有幾乎無微裂紋、熱影響區(qū)小、無污染、重熔層少、加工精度高和光束平行等優(yōu)點(diǎn)。為研究不同水導(dǎo)激光加工工藝參數(shù)對微觀形貌的影響,探索水導(dǎo)激光與物質(zhì)的相互作用機(jī)理。本文采用自主研發(fā)的水導(dǎo)激光加工系統(tǒng)對316L不銹鋼薄片試件進(jìn)行切槽和打孔實(shí)驗(yàn);使用Zeiss Vert.A1金相顯微鏡觀察加工試件的二維形貌;使用Leica DVM6超景深顯微鏡和Bruke Contour Elite I白光干涉儀觀察試件的三維微觀形貌。實(shí)驗(yàn)結(jié)果表明:無論是對試件進(jìn)行切槽還是打孔實(shí)驗(yàn),均會在加工區(qū)域產(chǎn)生一定寬度的沉積層,且沉積層的大小不隨加工時(shí)間和加工次數(shù)變化,其寬度約為13.5 μm;通過觀察試件加工區(qū)域的二維形貌,發(fā)現(xiàn)打孔試件的r和切槽試件的l也不隨加工試件和加工次數(shù)變化;通過觀察切槽試件加工區(qū)域的三維形貌,其截面呈倒梯形。

水導(dǎo)激光加工;316L不銹鋼;切槽;打孔;微觀形貌

1 引 言

隨著航空發(fā)動機(jī)推力和推重比的增加,飛機(jī)渦輪發(fā)動機(jī)熱端的工作溫度已經(jīng)達(dá)到1400 K以上,為使葉片在超高溫度下能正常工作,目前采用的方法主要是在葉片上噴熱障涂層和設(shè)計(jì)氣膜孔結(jié)構(gòu)[1]。合金類高溫葉片的材料從外到里,包括環(huán)境保護(hù)涂層、熱障涂層、結(jié)合層和高溫合金層。葉片上具有3D曲面和中空內(nèi)腔,打孔的斜度在30°到15°,使得飛機(jī)發(fā)動機(jī)的氣膜冷卻孔加工面臨重大挑戰(zhàn)。傳統(tǒng)的氣膜孔加工方法有電火花加工和激光加工。電火花依靠電極放電過程去除材料[2-3],無法對非導(dǎo)電的陶瓷涂層渦輪葉片進(jìn)行加工。激光加工依靠高功率密度激光束照射工件使材料迅速熔化、汽化、燒灼或達(dá)到燃點(diǎn)[4],因此產(chǎn)生熱影響區(qū)和沉積層等熱缺陷[5],即使是激光-水射流混合加工,也會使加工材料表面產(chǎn)生一定程度的氧化和相變[6]。水導(dǎo)激光加工(Water-jet guided laser,WJGL)是一種新型的精密特種加工方法,具有加工精度高,熱影響區(qū)小,重熔層少,幾乎無微裂紋,加工距離長,光束平行,切縫邊緣光滑無毛刺等優(yōu)點(diǎn)[7],能夠很好地解決傳統(tǒng)氣膜孔加工存在的問題。

自水導(dǎo)激光加工技術(shù)誕生以來,國內(nèi)外許多學(xué)者開展了相關(guān)研究。Li等[8-9]研究了水導(dǎo)激光分別加工鎂合金和鈦合金實(shí)驗(yàn),并與傳統(tǒng)激光加工方法進(jìn)行了對比,發(fā)現(xiàn)水導(dǎo)激光加工在表面質(zhì)量和清潔度方面具有明顯優(yōu)勢;此外,在激光束與材料相互作用區(qū)域,高壓水射流有助于去除熔融金屬,并在表面材料上提供強(qiáng)大的冷卻效果,影響材料表面的微觀結(jié)構(gòu),減小熱影響區(qū)(HAZ層)的厚度[10]。孫冬等[11]發(fā)現(xiàn)相比水輔助激光加工,水導(dǎo)激光加工的槽道表面干凈熔渣少,無毛刺,熱影響區(qū)較小,適用于晶圓的高精劃片切割加工。Reshed等[12]用SHFM測量對比了電火花加工和水導(dǎo)激光加工噴油嘴孔的內(nèi)表面形貌和粗糙度,發(fā)現(xiàn)水導(dǎo)激光加工更能獲得光滑的內(nèi)表面。以上研究表明:與傳統(tǒng)加工方法相比,水導(dǎo)激光加工技術(shù)具有明顯優(yōu)勢;然而他們并沒有系統(tǒng)地研究加工時(shí)間和加工次數(shù)等工藝參數(shù)對試件加工效果的影響。

本文以316L不銹鋼薄片為實(shí)驗(yàn)試件,通過改變工藝參數(shù)對實(shí)驗(yàn)試件進(jìn)行了切槽和打孔實(shí)驗(yàn)。所得實(shí)驗(yàn)結(jié)果能夠給水導(dǎo)激光加工工藝參數(shù)的優(yōu)化提供理論指導(dǎo),對促進(jìn)水導(dǎo)激光加工技術(shù)的發(fā)展具有重要意義。

2 實(shí) 驗(yàn)

2.1 實(shí)驗(yàn)材料

實(shí)驗(yàn)采用軋制而成的316L不銹鋼薄片,通過線切割加工成20 mm×10 mm×3 mm規(guī)格的實(shí)驗(yàn)試件。該材料的化學(xué)成分及室溫下的熱物理性能參數(shù)詳見表1和表2。實(shí)驗(yàn)前需要對試件表面進(jìn)行研磨拋光處理至表面無劃痕,再用無水乙醇清洗吹干留作備用[13-14]。

2.2 實(shí)驗(yàn)裝置

實(shí)驗(yàn)采用本實(shí)驗(yàn)室自主研發(fā)的水導(dǎo)激光加工系統(tǒng),該系統(tǒng)主要由激光器、水凈化系統(tǒng)、水-激光耦合系統(tǒng)、三維工作平臺、CCD相機(jī)、計(jì)算機(jī)等組成。其中,所采用的激光器為Nd:YAG固體激光器,其主要參數(shù)為:激光功率21 W,脈寬10 ns,波長532 nm,重復(fù)頻率32.7 kHz,電流5.5 A;采用的三維工作平臺的最高輸出頻率可達(dá)4 MHz,該平臺可以保證在笛卡爾坐標(biāo)系下進(jìn)行0.01 mm級的精確運(yùn)動。水導(dǎo)激光加工系統(tǒng)示意圖如圖1所示。

表1 316L不銹鋼主要化學(xué)成分

表2 316L不銹鋼的熱物理性能參數(shù)

2.3 實(shí)驗(yàn)參數(shù)

水導(dǎo)激光加工技術(shù)原理如圖2所示[15],通過調(diào)整聚焦透鏡將激光聚焦到噴嘴孔上表面中心,進(jìn)入水柱中。當(dāng)激光入射角大于全反射的臨界角時(shí),激光在水-空氣界面發(fā)生全發(fā)射。在水的導(dǎo)引下,保持恒定的激光能量密度對試件進(jìn)行加工。此外,水還可以起到冷卻工件和沖洗熔融物的作用。

研究不同加工次數(shù)對實(shí)驗(yàn)試件切槽效果的影響,加工次數(shù)依次為:10、20、40、50、60、80次,切縫長度為10 mm,切槽的間距為5 mm,掃描速度均為1 mm/s。研究不同加工時(shí)間對實(shí)驗(yàn)試件打孔效果的影響,時(shí)間設(shè)置在0.5 s到30 s之間,打孔間距均為5 mm。本次實(shí)驗(yàn)所采用的水導(dǎo)激光加工系統(tǒng)的技術(shù)參數(shù)如表3所示。水導(dǎo)激光加工實(shí)驗(yàn)結(jié)束后,利用Zeiss Vert.A1金相顯微鏡測量試件加工區(qū)域的二維形貌;利用Leica DVM6超景深顯微鏡和Bruke Contour Elite I白光干涉儀測量試件加工區(qū)域的三維形貌。

3 實(shí)驗(yàn)結(jié)果與分析

3.1 二維形貌

用金相顯微鏡將加工后的試件放大500倍,如圖3所示,觀察其槽和孔的二維形貌。內(nèi)圈材料完全被去除的直徑設(shè)為1,顏色加深的材料未被去除的外圈直徑設(shè)為2。分別測量12個(gè)孔的1和2的大小。加工的槽外側(cè)有帶狀的黑邊,內(nèi)側(cè)黑色區(qū)域?yàn)椴牧媳蝗コ膮^(qū)域,寬度用1表示,顏色變深的外側(cè)區(qū)域材料未被去除而用2寬度表示。用r表示1與2的比值,l表示2與1的比值,如式(1)和式(2)所示:

。 (2)

圖2 水導(dǎo)激光加工技術(shù)原理[15]

表3 水導(dǎo)激光加工系統(tǒng)的技術(shù)參數(shù)

圖3 顯微鏡測量二維形貌。(a) 切槽的二維形貌;(b) 孔的二維形貌

3.2 三維形貌

圖4是用超景深顯微鏡觀察加工次數(shù)為80次的槽的二維形貌。圖5(a)是用白光干涉儀測得的三維形貌,可以看出,在槽兩側(cè)的最邊緣位置,呈亮紅色,證明其高于未加工平面,這是因?yàn)榧庸r(shí)的熔渣在水流的沖刷下未完全排出,而最終堆積在邊緣上,形成沉積層。圖5(b)是利用測量數(shù)據(jù)繪制的切槽截面的二維輪廓,其形狀呈倒梯形,是因?yàn)樗淞靼す猓虚g位置的激光能量密度最大,材料更容易融化,而水射流外側(cè)的激光能量密度小,不易達(dá)到材料的融化溫度。還可以看出,切槽的側(cè)壁上,垂直于進(jìn)給方向有彩色的長條紋,分析原因?yàn)樗竭_(dá)底部后向斜上方噴出,沖刷熔融物,形成一個(gè)個(gè)帶狀條紋。

圖4 切槽二維形貌

3.3 沉積層

圖6(a)是1和2隨加工時(shí)間變化的曲線圖,可以看出,內(nèi)圓的直徑1在105 μm上下波動,2在132 μm上下波動,忽略測量誤差的影響,波動幅度均較小,可以認(rèn)為直徑1和2不隨加工時(shí)間的長短而改變。通過對測量結(jié)果的分析,認(rèn)為切縫和孔邊緣的深色區(qū)域?yàn)槿廴谖飦聿患皼_走而又迅速冷卻附著在加工材料表面上的沉積層。圖6(b)和6(c)中可以看出,隨著加工時(shí)間和加工次數(shù)的增加,r不變,l不變。綜合圖6可得: 沉積層的大小不隨加工時(shí)間和加工次數(shù)變化。

沉積層寬度可用式(3)表示:

代入數(shù)據(jù)得沉積層寬度為d=13.5 μm。

圖6 沉積層測量。(a) d1和d2隨時(shí)間變化曲線;(b) dr隨時(shí)間變化曲線;(c) wl隨加工次數(shù)變化曲線

3.4 討 論

水導(dǎo)激光加工次數(shù)對槽深的影響如圖7所示,從圖中可知:隨著加工次數(shù)增多,槽的深度增加,且趨勢近似為線性。切割過程大致為:激光在水射流的包裹下到達(dá)加工試件表面,高能量的激光使光斑覆蓋區(qū)域的金屬熔化,水射流迅速將熔融物質(zhì)沖走。三維平臺始終保持勻速向前移動,激光能量進(jìn)一步熔融材料,最終在試件上形成一個(gè)切槽。孔的加工過程與槽的加工類似,唯一不同的是加工孔時(shí)工件坐標(biāo)保持不動。

水導(dǎo)激光加工時(shí)間對孔深的影響如圖8所示,從圖中可知:孔深隨時(shí)間的增加而變大。由于射流在進(jìn)入噴嘴時(shí),噴嘴入口的拐角越尖銳,流動越容易分離,從而越容易發(fā)生縮流現(xiàn)象。理論上靠近水噴嘴處的水柱的直徑約為噴嘴孔徑的83%[16],本實(shí)驗(yàn)所用的水噴嘴直徑為100 μm,因此噴嘴孔處水柱的理論直徑約為83 μm。而經(jīng)水導(dǎo)激光加工實(shí)驗(yàn)后,孔徑1平均值為107 μm,槽寬1平均值為94 μm;與噴嘴孔處水柱的理論直徑83 μm相比,加工后的孔徑和槽寬均增加且增加值恒定。

316L不銹鋼試件中熱的傳播主要以熱傳導(dǎo)為主,試件中的不平衡的溫度場使得熱量從高溫區(qū)向低溫區(qū)傳播,其導(dǎo)熱過程為三維非穩(wěn)態(tài)導(dǎo)熱,使得切縫邊緣的溫度值也達(dá)到了材料的熔點(diǎn),切縫邊緣材料融化被水射流沖走。因此,槽寬和孔徑均比噴嘴孔處水柱的理論直徑要大。

此外,由于高速水射流在空氣中噴出會受到空氣剪切力的影響,使得層流水射流受到擾動,擾動的振幅變大最終會導(dǎo)致水射流破碎成水滴,因而光束在傳播過程中的全反射會受到干擾,使得輻照在試件表面的激光光斑直徑大于噴嘴孔處水柱的理論直徑。

根據(jù)Rayleigh所研究的水射流破碎理論,引入表征水射流穩(wěn)定性的無量綱數(shù)[17]。

值表征水射流的穩(wěn)定性,其值與雷諾數(shù)Rel和韋伯?dāng)?shù)Wel有關(guān)。

圖8 加工時(shí)間對孔深的影響

式中:1為水的流速,2為空氣速度,為水的密度,為水的表面張力系數(shù),為動力黏性系數(shù),d噴嘴出口的射流直徑。

本次實(shí)驗(yàn)中水壓為定值,故水射流的流速也為定值,且其他與雷諾數(shù)和韋伯?dāng)?shù)相關(guān)的量均為常量,因此值恒定。所以水射流的穩(wěn)定性不會變化,激光落在材料表面的光斑直徑也就恒定不變,因此槽寬和孔徑均為恒定值。

另外,從實(shí)驗(yàn)數(shù)據(jù)中可以看出,1的平均值(107 μm)大于1的平均值(94 μm)。相比于孔的加工,加工槽時(shí)水更易于注入和排出,因而加工區(qū)域的冷卻效果更好,熔融直徑更小,從而使得槽寬小于噴嘴孔徑。

4 結(jié) 論

本文以316L不銹鋼薄片為實(shí)驗(yàn)試件,通過改變加工次數(shù)和加工時(shí)間兩個(gè)工藝參數(shù)對實(shí)驗(yàn)試件進(jìn)行了切槽和打孔實(shí)驗(yàn),重點(diǎn)分析了各工藝參數(shù)對試件二維形貌、三維形貌和沉積層的影響,并對其形成機(jī)理進(jìn)行了討論,所得實(shí)驗(yàn)結(jié)論可為水導(dǎo)激光加工工藝參數(shù)的優(yōu)化提供理論指導(dǎo)。

1) 無論是對試件進(jìn)行切槽還是打孔實(shí)驗(yàn),均會在加工區(qū)域產(chǎn)生一定寬度的沉積層,且沉積層的大小不隨加工時(shí)間和加工次數(shù)變化。

2) 通過觀察試件加工區(qū)域的二維形貌,打孔試件的r和切槽試件的l也不隨加工時(shí)間和加工次數(shù)變化。

3) 由于受激光束能量分布的影響,通過觀察切槽試件加工區(qū)域的三維形貌,其截面呈倒梯形。

[1] Wang Z, Yang Z N, Zhang ZProgress in film hole processing method for single crystal turbine blades of aeroengine[J]., 2019, 39(8): 838–842.

王禎, 楊澤南, 張朕, 等. 單晶渦輪葉片氣膜孔加工技術(shù)及其發(fā)展[J]. 特種鑄造及有色合金, 2019, 39(8): 838–842.

[2] Jiao Y, He B, Li P. Development of micro-holes machining with high-aspect ratio[J].2018, 29(3): 1–7.

焦悅, 賀斌, 李朋, 等. 大深徑比微孔加工技術(shù)及其發(fā)展[J]. 航空科學(xué)技術(shù), 2018, 29(3): 1–7.

[3] Lian F, Zhang H C. Technology and development of Ti alloy machined by EDM[J]., 2012(2): 18–23.

連峰, 張會臣. 鈦合金的電火花加工技術(shù)及最新研究進(jìn)展[J]. 現(xiàn)代制造工程, 2012(2): 18–23.

[4] Sheng P, Chryssolouris G. Investigation of acoustic sensing for laser machining processes Part 2: laser grooving and cutting[J]., 1994, 43(2–4): 145–163.

[5] Chen C, Gao M, Gu Y ZStudy on fiber laser cutting of aluminum alloy sheet[J]., 2014, 41(6): 0603004.

陳聰, 高明, 顧云澤, 等. 光纖激光切割鋁合金薄板工藝特性研究[J]. 中國激光, 2014, 41(6): 0603004.

[6] Weiss L, Aillerie M, Tazibt A,. Surface oxidation and phase transformation of the stainless steel by hybrid laser-waterjet impact[J]., 2014, 1(3): 036501.

[7] Sun B Y, Qiao H C, Zhao J B,Current status of water-jet guided laser cutting technology[J]., 2017, 44(11): 1039?1044.

孫博宇, 喬紅超, 趙吉賓, 等. 水導(dǎo)激光切割技術(shù)研究現(xiàn)狀[J]. 光電工程, 2017, 44(11): 1039–1044.

[8] Li C Q, Yang L J, Wang Y. A research on surface morphology of cutting of titanium sheet with water-jet guided laser and conventional laser[J]., 2011, 120: 366–370.

[9] Li C Q, Yang L J, Wang Y. Experimental study on water-jet guided laser machining magnesium alloy[J]., 2012, 723: 476–480.

[10] Li L, Wang Y, Yang L J,. Experimental research on water-jet guided laser processing[J]., 2007, 6595: 659525.

[11] Sun D, Wang J H, Han F Z. Contrastive study of water jet guided laser and water jet assisted laser cutting of monocrystalline silicon[J]., 2016, 36(6): 723–727.

孫冬, 王軍華, 韓福柱. 單晶硅水導(dǎo)/水輔助激光切割加工對比研究[J]. 應(yīng)用激光, 2016, 36(6): 723–727.

[12] Rashed C A A, Romoli L, Tantussi F,. Water jet guided laser as an alternative to EDM for micro-drilling of fuel injector nozzles: a comparison of machined surfaces[J]., 2013, 15(4): 524–532.

[13] Zou Y, Sang Z K, Li D L,. Multi-objective optimal design of enhancing technology for 304 stainless steel by water jet peening[J]., 2018, 47(2): 25–29.

鄒云, 桑振寬, 李大磊, 等. 304不銹鋼水射流強(qiáng)化工藝的多目標(biāo)優(yōu)化設(shè)計(jì)[J]. 表面技術(shù), 2018, 47(2): 25–29.

[14] Jiang K J, Wang L, Zhang Q L,. Laser annealing and softening process of 316L stainless steel[J], 2019, 48(2): 10–16.

蔣可靜, 王梁, 張群莉, 等. 316L不銹鋼激光瞬時(shí)退火軟化工藝研究[J]. 表面技術(shù), 2019, 48(2): 10–16.

[15] Perrottet D, Housh R, Richerzhagen BHeat damage-free laser-microjet cutting achieves highest die fracture strength[J]., 2005, 5713: 285–292.

[16] Porter J A, Louhisalmi Y A, Karjalainen J A,. Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence[J]., 2007, 33(9–10): 961–967.

[17] Wei M R. Investigation on the stability of capillary waterjet influenced by cavitation[D]. Wuhan: Huazhong University of Science and Technology, 2018: 3–4.

魏美容. 空化對毛細(xì)管水射流穩(wěn)定性的影響研究[D]. 武漢: 華中科技大學(xué), 2018: 3–4.

Effect of water-guided laser machining technology on micro-morphology of 316L stainless steel

Yu Yongfei1,2,3, Qiao Hongchao1,3*, Cao Zhihe1,3, Zhao Jibin1,3*, Zhang Yinuo1,3,4, Wu Jiajun1,3,4

1Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China;2School of Mechanical Engineering & Automation, Northeastern University, Shenyang, Liaoning 110819, China;3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China;4University of Chinese Academy of Sciences, Beijing 100049, China

Schematic diagram of water guide laser

Overview:With the increasing of the thrust & thrust weight ratio of aircraft engines, the operating temperature of aero-engine hot components can be reached above 1400 K. In order to ensure the normal working of blades at an extremely high temperature environment, the ceramic/metal gradient thermal barrier coatings and design of gas film cooling holes are selected in general. However, the process for gas film cooling holes of aero-engines has encountered a major challenge due to its complex material structures. Laser machining (LM) and electrical discharge machining (EDM) are usually used for machining gas film cooling holes. The LM technology utilizes the laser thermal effect, so this method has disadvantages of thick molten layer, micro-cracks, laser ablation, etc. Thus, the EDM is selected because it can reduce the thickness of the molten layer. However, EDM cannot guarantee the processing accuracy and the recrystallization would be occurred during the processing, which will affect the serve life of aircraft engines. In addition, the EDM is only applicable to metallic materials. In recent years, ceramic materials have been widely used in the aerospace field. The above two methods are unable to meet processing requirements gradually. Water-guided laser machining (WGLM) is a novel method by using water beam fibers to guide the laser to machine the work-piece surface, which can solve these problems. It has been widely applied in the precise machining field of aerospace, bio-medical, micro-electromechanical, and so on, due to advantages of almost no micro-cracks, small heat-affected zone, pollution-free, less recast layer, high processing accuracy, parallel cuffing, etc. This work aims to investigate the effect of different WGLM parameters on the micro-morphology of materials and the mechanism between lasers and materials. The experiments for slotting and grooving 316L stainless steel thin samples were used by the WGLM system developed by our research group. The 2D micro-topography after experiments were tested by the Zeiss Vert. A1 metalloscope, and the 3D micro-topography of samples after experiments were tested by the Leica DVM6 optical microscope with the large depth of field & Bruke Contour Elite I white-light interferometer. Experimental results show that a certain width deposition layer can be occurred in the machining region, and the width of deposition layer does not change with the parameter of the machining time and the number of machining times. From the 2D micro-topography of the machining region of samples, it can be found that the ‘rof slotting samples and the ‘l’ of grooving samples also do not change with the machining parameters. From the 3D micro-topography of the machining region of grooving samples, it can be found that the cross-section shape is inverted trapezoid.

Citation: Yu Y F, Qiao H C, Cao Z H,. Effect of water-guided laser machining technology on micro-morphology of 316L stainless steel[J]., 2020,47(11): 190654

Effect of water-guided laser machining technology on micro-morphology of 316L stainless steel

Yu Yongfei1,2,3, Qiao Hongchao1,3*, Cao Zhihe1,3, Zhao Jibin1,3*, Zhang Yinuo1,3,4, Wu Jiajun1,3,4

1Shenyang Institute of Automation, Chinese Academy of SciencesShenyang, Liaoning 110016, China;2School of Mechanical Engineering & Automation, Northeastern University, Shenyang, Liaoning 110819, China;3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China;4University of Chinese Academy of Sciences, Beijing 100049, China

Water-jet guided laser (WJGL) machining is a novel processing technology using water beam fibers to guide the laser to machine the work-piece surface. This processing technology has the advantage of almost no micro-cracks, small heat-affected zone, pollution-free, less recast layer, high processing accuracy, parallel cuffing, etc. This work aims to investigate the effect of different WGLM parameters on the micro-morphology of materials and the mechanism between lasers and materials. The experiments for slotting and grooving 316L stainless steel thin samples were used by the WGLM system developed by our research group in this work. The 2D micro-topography after experiments were tested by the Zeiss Vert.A1 metalloscope, and the 3D micro-topography of samples after experiments were tested by the Leica DVM6 optical microscope with the large depth of field & Bruke Contour Elite I white-light interferometer. Experimental results show that a certain width deposition layer can be occurred in the machining region, and the width of deposition layers does not change with the parameter of the machining time and the number of machining times. From the 2D micro-topography of samples, it can be found that the ‘r’ of slotting samples and the ‘l’of grooving samples also do not change with the machining parameters. From the 3D micro-topography of grooving samples, it can be found that the cross-section shape is inverted trapezoid.

water-jet guided laser machining; 316L stainless steel; grooving; slotting; micro-morphology

TN249;TG485

A

于永飛,喬紅超,曹治赫,等. 水導(dǎo)激光加工對316L不銹鋼微觀形貌的影響規(guī)律[J]. 光電工程,2020,47(11): 190654

10.12086/oee.2020.190654

: Yu Y F, Qiao H C, Cao Z H,Effect of water-guided laser machining technology on micro-morphology of 316L stainless steel[J]., 2020, 47(11): 190654

2019-11-02;

2019-12-25

國家基金委-遼寧省聯(lián)合基金資助項(xiàng)目(U1608259);國家自然科學(xué)基金資助項(xiàng)目(51875558)

于永飛(1996-),女,碩士研究生,主要從事激光加工工程的研究。E-mail:yuyongfei@sia.cn

喬紅超(1982-),男,研究員,主要從事激光加工工程的研究。E-mail:hcqiao@sia.cn

趙吉賓(1970-),男,研究員,主要從事激光加工工程的研究。E-mail:jbzhao@sia.cn

Supported by NSFC-Liaoning Province United Foundation (U1608259) and National Natural Science Foundation of China (51875558)

* E-mail: hcqiao@sia.cn; jbzhao@sia.cn

猜你喜歡
水導(dǎo)沉積層水射流
高溫合金表面鋅鎳沉積層的電化學(xué)制備及結(jié)構(gòu)性能分析
冷噴涂沉積層中的孔隙及其控制措施
一種水電機(jī)組水導(dǎo)瓦溫高處理方法
某燈泡貫流式機(jī)組水導(dǎo)軸承安全性評價(jià)研究
某電站機(jī)組水導(dǎo)油位波動過大分析處理
基于超高壓水射流的壓縮機(jī)智能拆解設(shè)備設(shè)計(jì)
淺水中氣泡運(yùn)動及水射流行為實(shí)驗(yàn)研究
高壓水射流切割混凝土試驗(yàn)研究
濟(jì)陽陸相斷陷湖盆泥頁巖細(xì)粒沉積層序初探
磨料水射流作用下混凝土損傷場的數(shù)值模擬