王志 王夫美 沈伯雄 高洪培 姚燕 梁材
摘要 工業(yè)鍋爐普遍應(yīng)用于多種行業(yè)的生產(chǎn)實(shí)踐,其氮氧化物的排放是我國(guó)大氣氮氧化物污染的重要來(lái)源之一。隨著大氣污染排放標(biāo)準(zhǔn)的提高,Urea-SNCR技術(shù)成為工業(yè)鍋爐脫硝的主流技術(shù)之一。Urea-SNCR系統(tǒng)的脫硝效率,與煙道內(nèi)部構(gòu)件、噴氨系統(tǒng)、運(yùn)行參數(shù)、煙氣流動(dòng)條件及氨和煙氣的均質(zhì)混合等多種因素相關(guān)。本文針對(duì)某90 t/h層燃爐的二次燃燒室進(jìn)行SNCR數(shù)值模擬,研究噴射位置、噴槍數(shù)量、氨氮比(NSR)、噴射速度及還原劑顆粒粒徑等因素對(duì)SNCR脫硝效率的影響及其影響規(guī)律。結(jié)合響應(yīng)面法,進(jìn)行SNCR系統(tǒng)布置最優(yōu)設(shè)計(jì),得出在噴槍數(shù)為10個(gè)、還原劑噴射高度在3 m、NSR=2、噴射速度為82 m/s和顆粒粒徑為60 μm時(shí),脫硝效率最高為30%。研究成果有助于工業(yè)用層燃爐SNCR脫硝系統(tǒng)的改造和優(yōu)化。
關(guān) 鍵 詞 層燃爐;SNCR;數(shù)值模擬;氮氧化物;最優(yōu)設(shè)計(jì)
中圖分類號(hào) TK229.6;X701 ? ? 文獻(xiàn)標(biāo)志碼 A
Abstract Industrial boilers are widely used in various industries. The nitrogen oxides generated from industrial boilers is an important source of atmospheric nitrogen oxides pollution in China. With the improvement of air pollution emission standard, Urea-SNCR technology became one of the mainstream denitrification technologies for industrial boilers. However, the denitrification efficiency of SNCR system is driven by various factors, including its internals, ammonia injection system, operation parameters, flue gas flow conditions, and homogeneous mixing of ammonia and flue gas. In this paper, SNCR numerical simulation was carried out for the secondary combustion chamber of a 90 t/h layer burning burner. The influence and optimal design of SNCR system were carried out based on the factors affecting SNCR denitration efficiency, such as injection location, number of spray guns, ammonia nitrogen ratio, injection speed and reducing agent particle size. Based on the response surface method, the maximum denitration efficiency was 30% when the number of spray guns was 10, the height of reducing agent injection was 3 m, NSR=2, the injection speed was 82 m/s and the particle size was 60 μm. The research results are helpful to the transformation and optimization of SNCR denitration system for industrial layer burner.
Key words layer burner; SNCR; numerical simulation; nitrogen oxides; the optimal design
0 引言
工業(yè)鍋爐是我國(guó)重要的熱能動(dòng)力設(shè)備,目前全國(guó)在用工業(yè)鍋爐達(dá)52.52萬(wàn)臺(tái),其中層燃鍋爐占70%左右,年耗煤量占全國(guó)原煤產(chǎn)量的三分之一,是僅次于電站鍋爐的耗煤大戶[1-2]。工業(yè)鍋爐燃燒過(guò)程中排放出大量的污染物,是我國(guó)大氣污染的重要污染源之一。目前,工業(yè)鍋爐氮氧化物(NOx)排放控制多采用低氮燃燒技術(shù)[3],但是隨著我國(guó)對(duì)大氣污染物排放控制越來(lái)越嚴(yán)格,2019年9月30日生態(tài)環(huán)境部在工業(yè)鍋爐污染防治可行技術(shù)指南(征求意見(jiàn)稿)中明確提出對(duì)小型層燃鍋爐NOx污染物的排放進(jìn)行嚴(yán)格控制,因此,傳統(tǒng)的單一的低氮燃燒技術(shù)難以滿足達(dá)標(biāo)排放[4]。選擇性非催化還原(SNCR)技術(shù)由于其占地面積小、投資成本和運(yùn)行成本相對(duì)較小等優(yōu)點(diǎn)[5],在工業(yè)鍋爐中應(yīng)用廣泛。
計(jì)算流體動(dòng)力學(xué)(Computational Fluid Dynamics, CFD)可以模擬流體流動(dòng)、多相流和化學(xué)反應(yīng)等。應(yīng)用于SNCR脫硝系統(tǒng)中可以計(jì)算溫度分布、各組分濃度分布等,并在此基礎(chǔ)上確定反應(yīng)溫度窗口[6-9],優(yōu)化還原劑噴入位置和噴入量[10],使還原劑與煙氣中 NOx 在SNCR溫度窗口內(nèi)混合均勻,達(dá)到最優(yōu)的脫硝效率。越來(lái)越多的學(xué)者[11-12]利用數(shù)值模擬方法研究高溫?zé)煔庵械腟NCR脫硝過(guò)程,為改進(jìn)和優(yōu)化SNCR系統(tǒng)提供可靠的指導(dǎo)。Nguyen等[13]將SNCR過(guò)程的CFD模擬結(jié)果與試驗(yàn)結(jié)果對(duì)比,表明二者的脫硝過(guò)程,與溫度、氨氮比(NSR)的變化和氨泄漏的規(guī)律上具有一致性。Kang等[14]將優(yōu)化的SNCR反應(yīng)機(jī)理與CFD軟件結(jié)合,對(duì)超臨界循環(huán)流化床鍋爐的SNCR脫硝過(guò)程進(jìn)行模擬計(jì)算,確定了SNCR脫硝反應(yīng)的溫度窗口,并得出該鍋爐最優(yōu)氨氮比為1.5。Xia等[15]提出了移動(dòng)爐排垃圾焚燒爐床內(nèi)垃圾轉(zhuǎn)化、床外氣體燃燒和SNCR過(guò)程的綜合仿真模型,但只是對(duì)還原劑注射位置、注射速度及NSR單獨(dú)進(jìn)行比較,未考慮這些因素的相互作用。胥波等[16]對(duì)一臺(tái)工業(yè)用鏈條爐中加入CH4的SNCR過(guò)程進(jìn)行模擬,并與常規(guī)SNCR過(guò)程進(jìn)行對(duì)比分析,認(rèn)為加入適量CH4可提高脫硝效率。但由于其在爐拱處噴射還原劑,爐拱處煙氣流速過(guò)大導(dǎo)致常規(guī)SNCR脫硝效率不高。Modlinski等[17]采用兩種不同的SNCR反應(yīng)機(jī)理在一臺(tái)40 WM的鏈條爐對(duì)SNCR進(jìn)行模擬計(jì)算,并對(duì)兩種不同機(jī)理的預(yù)測(cè)精度進(jìn)行評(píng)價(jià),但文中只對(duì)特定SNCR脫硝過(guò)程進(jìn)行模擬計(jì)算,模擬參數(shù)較為單一。國(guó)內(nèi)外學(xué)者采用CFD模擬技術(shù)對(duì)SNCR過(guò)程已展開(kāi)了許多研究工作[18-20],但缺乏對(duì)工業(yè)鍋爐SNCR脫硝系統(tǒng)中多個(gè)影響因素的綜合對(duì)比討論,以及缺少最高脫硝效率的優(yōu)化參數(shù)。為此,本文針對(duì)小型工業(yè)層燃鍋爐中的脫硝過(guò)程進(jìn)行模擬計(jì)算,探究在小蒸發(fā)量、低煙氣流速的環(huán)境下,液滴粒徑、尿素噴射位置及噴射速度對(duì)SNCR過(guò)程的影響,同時(shí)采用響應(yīng)曲面法結(jié)合數(shù)值模擬結(jié)果為中小型工業(yè)鍋爐SNCR脫硝系統(tǒng)提出優(yōu)化措施。
3.2 基于響應(yīng)曲面法的SNCR脫硝參數(shù)優(yōu)化
為了進(jìn)一步研究各個(gè)因素對(duì)SNCR脫硝效果的影響,本文采用Box-Behnken實(shí)驗(yàn)設(shè)計(jì)和響應(yīng)面法(RSM) 進(jìn)行研究[32],主要包括NO脫除效率的氨氮比NSR、噴射速度和平均粒徑大小3個(gè)主要因素的優(yōu)化和交互作用研究。以脫除效率(Yt)為影響值,氨氮比(X1)、噴射速度(X2)、平均粒徑(X3)為參考因素,Box-Behnken試驗(yàn)因素水平見(jiàn)表3,共得到17組模擬試驗(yàn)方案。在原邊界條件和噴射位置的基礎(chǔ)條件下,按照各組選取的因素水平通過(guò)模擬計(jì)算完成各組試驗(yàn),得到結(jié)果如表4所示。
對(duì)表4中的模擬試驗(yàn)結(jié)果進(jìn)行擬合,得到二次多項(xiàng)式形式的經(jīng)驗(yàn)公式:
式(4)中一次項(xiàng)前面的系數(shù)都為正,說(shuō)明NSR、噴射速度、顆粒粒徑的提高與NO脫除效率存在一定的正相關(guān)性。對(duì)上述回歸方程進(jìn)行方差分析,結(jié)果見(jiàn)表5。模型F值為14.48,說(shuō)明該模型具有顯著性。在模型的一次項(xiàng)中氨氮比、噴射速度及顆粒粒徑顯著性水平較高,二次項(xiàng)中[X1]和[X2]的P值遠(yuǎn)遠(yuǎn)小于0.05,說(shuō)明氨氮比和噴槍噴射速度對(duì)脫硝效率的影響顯著;[X1X2]的P值小于0.05,反映出氨氮比與還原劑噴射速度具有較強(qiáng)的相互作用,即對(duì)脫硝效率影響更大。
采用響應(yīng)曲面法進(jìn)一步分析影響脫硝效率3個(gè)因素的相互作用及最優(yōu)水平。NSR、還原劑噴射速度及還原劑顆粒粒徑交互作用對(duì)脫硝效率的響應(yīng)曲面及相應(yīng)的等值線圖如圖11~圖13所示。結(jié)果表明,響應(yīng)曲面凸出,說(shuō)明最優(yōu)條件是確定的,氨氮比小于2時(shí)試驗(yàn)范圍內(nèi)存在一個(gè)最大的脫硝效率。圖11所示,NSR小于1.75時(shí)噴射速度在50~90 m·s-1的范圍內(nèi),噴槍噴射速度越大脫硝效率越高;NSR在1.75~2之間時(shí),脫硝效率隨著噴槍速度的增加呈先增大后減小的趨勢(shì)。這是由于在還原劑較少時(shí)噴射速度過(guò)小導(dǎo)致噴槍穿透力較小,從而使還原劑分布不均;還原劑較多時(shí),噴射速度過(guò)大會(huì)使還原劑在噴槍布置的另一側(cè)聚集,同樣造成還原劑分布不均。從圖12可知在氨氮比大于1.75的情況下顆粒粒徑在45~90 μm范圍內(nèi)呈先增后減的趨勢(shì)。這是由于顆粒粒徑過(guò)小,導(dǎo)致尿素顆粒穿透力小進(jìn)而導(dǎo)致還原劑分布不均;而尿素顆粒較大會(huì)在其未完全蒸發(fā)前已脫離SNCR反應(yīng)溫度窗口。雖然增大NSR能提高脫硝效率,但是為了控制氨逃逸,宜選擇將氨氮比控制在2以內(nèi)。圖13a)是一個(gè)完整凸面,說(shuō)明在噴射速度和顆粒粒徑范圍內(nèi)存在最優(yōu)值。圖13b)所示脫硝效率隨著噴射速度和顆粒粒徑在較低范圍內(nèi)的增加而有所提升,繼續(xù)增加脫硝效率反而下降。根據(jù)響應(yīng)曲面的分析,當(dāng)氨氮比為2,噴射速度為82 m·s-1,尿素粒徑為60 μm時(shí)脫硝效率預(yù)測(cè)量最大為29%。為了進(jìn)一步驗(yàn)證最優(yōu)預(yù)測(cè)值的準(zhǔn)確性,采用最優(yōu)參數(shù)進(jìn)行數(shù)值模擬驗(yàn)證,最后所得出口NO平均濃度為1.38×10-4,脫硝效率為30%,氨逃逸量為4.9×10-5,誤差在5%以內(nèi),驗(yàn)證了模型的可靠性,NO濃度分布如圖14所示。
4 結(jié)論
本文利用CFD模擬計(jì)算了工業(yè)層燃爐中SNCR過(guò)程的還原劑噴射位置、NSR、噴射速度、還原劑顆粒粒徑對(duì)脫硝效率的影響。通過(guò)分析鍋爐爐膛和煙道區(qū)域的溫度分布,確定了還原劑的噴射位置和噴槍數(shù)量,并根據(jù)還原劑尿素分解機(jī)制研究煙道中NH3分布的均勻性,進(jìn)一步優(yōu)化噴槍布置。在此基礎(chǔ)上通過(guò)響應(yīng)面法,確定了SNCR脫硝系統(tǒng)最優(yōu)設(shè)計(jì)參數(shù)。主要研究結(jié)論如下:
1)在SNCR系統(tǒng)中,前墻噴槍與側(cè)墻噴槍在SNCR溫度窗口內(nèi)布置位置存在一定高度差(500 mm)可使還原劑分布更均勻。
2)NSR小于1.75時(shí),增大還原劑噴射速度,增大還原劑粒徑可提高脫硝效率。當(dāng)NSR = 1.75時(shí),在50~80 m·s-1的范圍內(nèi)增大噴射速度,在45~60 μm內(nèi)增大還原劑顆粒粒徑,可提高脫硝效率。
3)通過(guò)響應(yīng)面法,確定了脫硝系統(tǒng)最優(yōu)設(shè)計(jì)參數(shù),最終得出在試驗(yàn)條件下氨氮比為2,噴射速度為82 m·s-1,尿素粒徑為60 μm時(shí),脫硝效率最大為30%,氨逃逸量為4.9×10-5。
參考文獻(xiàn):
[1] ? ?張浩,行業(yè)概況工業(yè)鍋爐[M]. 李衛(wèi)玲,主編. 北京:機(jī)械工業(yè)出版社,2017:13-16.
[2] ? ?常兵. 配風(fēng)方式對(duì)層燃爐燃燒特性影響的試驗(yàn)研究[D]. 上海:上海交通大學(xué),2007.
[3] ? ?程曉磊. 低氮燃燒技術(shù)在煤粉工業(yè)鍋爐上的應(yīng)用[J]. 潔凈煤技術(shù),2018,24(4):109-113.
[4] ? ?生態(tài)環(huán)境部辦公廳. 工業(yè)鍋爐污染防治可行技術(shù)指南(征求意見(jiàn)稿)[EB/OL]. [2019-9-6]. http://www.mee.gov.cn/
[5] ? ?劉俊卿. 燃煤鍋爐煙氣中脫硝技術(shù)的應(yīng)用研究[J]. 內(nèi)蒙古煤炭經(jīng)濟(jì),2018 (15):22-23.
[6] ? ?LIN P Y,JI J J,LUO Y H,et al. A non-isothermal integrated model of coal-fired traveling grate boilers[J]. Applied Thermal Engineering,2009,29(14/15):3224-3234.
[7] ? ?LOCCI C,VERVISCH L,F(xiàn)ARCY B,et al. Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions:a perspective from numerical modeling[J]. Flow,Turbulence and Combustion,2018,100(2):301-340.
[8] ? ?NGUYEN T D B,LIM Y I,EOM W H,et al. Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor[J]. Computers & Chemical Engineering,2010,34(10):1580-1589.
[9] ? ?YUAN Q. Simulation of SNCR denitrification in a cyclone separator of supercritical circulating fluidized bed[J]. Journal of Engineering for Thermal Energy and Power,2019,34(8):109-115.
[10] ?張仲飛,陳李荔,王岳軍. 不同噴槍在CFB鍋爐SNCR工程中的應(yīng)用[J]. 環(huán)境工程學(xué)報(bào),2015,9(10):4977-4981.
[11] ?BLEJCHAR T, JABLONSKA J, SZELIGA Z, et al. CFD model of SNCR with shifting effect of CO[J]. Rocznik Ochrona Srodowiska,2018,20:109-122.
[12] ?FINNERMAN O,RAZMJOO N,GUO N,et al. Reactor modelling assessment for urea-SNCR applications[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2017,27(7):1395-1411.
[13] ?NGUYEN T D B,LIM Y I,KIM S J,et al. Experiment and computational fluid dynamics (CFD) simulation of urea-based selective noncatalytic reduction (SNCR) in a pilot-scale flow reactor[J]. Energy & Fuels,2008,22(6):3864-3876.
[14] ?KANG Z Z,YUAN Q X,ZHAO L Z,et al. Study of the performance,simplification and characteristics of SNCR de-NOx in large-scale cyclone separator[J]. Applied Thermal Engineering,2017,123:635-645.
[15] ?XIA Z H,LI J,WU T T,et al. CFD simulation of MSW combustion and SNCR in a commercial incinerator[J]. Waste Management,2014,34(9):1609-1618.
[16] ?胥波,張彥文,蔡寧生. 鏈條爐SNCR脫除NOx數(shù)值模擬研究[J]. 熱力發(fā)電,2009,38(3):18-25.
[17] ?MODLI? SKI N. Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler[J]. Energy,2015,92:67-76.
[18] ?BALETA J,MIKUL?I? H,VUJANOVI? M,et al. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications[J]. Energy Conversion and Management,2016,125:59-69.
[19] ?MACHA? P,BARAJ E. A simplified simulation of the reaction mechanism of NOx formation and non-catalytic reduction[J]. Combustion Science and Technology,2018,190(6):967-982.
[20] ?張利平,李開(kāi)拓,王偉鋒. 鏈條爐SNCR煙氣脫硝系統(tǒng)數(shù)值模擬及優(yōu)化[J]. 熱力發(fā)電,2015,44(9):86-91.
[21] ?Fluent Inc. Fluent users guide[Z]. 2015.
[22] ?ZIOLKOWSKI P J, OCHRYMIUK T, EREMEYEV V A. Adaptation of the arbitrary Lagrange-Euler approach to fluid-solid interaction on an example of high velocity flow over thin platelet[J]. Continuum Mechanics and Thermodynamics,2009,DOI:10.1007/s00161-019-00850-7.
[23] ?沈伯雄,劉亭,韓永富. 選擇性非催化還原脫除氮氧化物的影響因素分析[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2008,23:53-59
[24] ?BI D G,ZHANG Z X,ZHU Z X,et al. Experimental study on influencing factors of NOx reduction by combining air staging and reagent injection[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2019:1-9.
[25] ?ROTA R,ANTOS D,ZANOELO ? F,et al. Experimental and modeling analysis of the NOxOUT process[J]. Chemical Engineering Science,2002,57(1):27-38.
[26] ?BROUWER J,HEAP M P. A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia,urea,and cyanuric acid with mixing limitations in the presence of co[J]. Symposium (International) on Combustion,1996,26(2):2117-2124.
[27] ?ZANOELO E F. A lumped model for thermal decomposition of urea. Uncertainties analysis and selective non-catalytic reduction of NO[J]. Chemical Engineering Science,2009,64(5):1075-1084.
[28] ?趙璐,劉勇,張祥,等. 基于遺傳算法的多分區(qū)結(jié)構(gòu)化網(wǎng)格自動(dòng)優(yōu)化分區(qū)的研究[J]. 計(jì)算機(jī)應(yīng)用與軟件,2018,35(10):267-273.
[29] ?NGUYEN T D B,KANG T H,LIM Y I,et al. Application of urea-based SNCR to a municipal incinerator:On-site test and CFD simulation[J]. Chemical Engineering Journal,2009,152(1):36-43.
[30] ?YOON S S,KIM H Y,HEWSON J C. Effect of initial conditions of modeled PDFs on droplet characteristics for coalescing and evaporating turbulent water spray used in fire suppression applications[J]. Fire Safety Journal,2007,42(5):393-406.
[31] ?WEE S K,YAP Y J. CFD study of sand erosion in pipeline[J]. Journal of Petroleum Science and Engineering,2019,176:269-278.
[32] ?GAO J,XU H,LI Q J,et al. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol[J]. Bioresource Technology,2010,101(18):7076-7082.
[責(zé)任編輯 ? ?田 ? ?豐]