沈艷微 邵俊倩 孫威 耿艷秋
摘 ?要: 針對(duì)傳統(tǒng)電磁場(chǎng)數(shù)值計(jì)算系統(tǒng)的計(jì)算結(jié)果與理論值的均方誤差較大的問(wèn)題,設(shè)計(jì)基于留數(shù)定理的時(shí)域電磁場(chǎng)數(shù)值積分計(jì)算系統(tǒng)。在傳統(tǒng)計(jì)算系統(tǒng)硬件的基礎(chǔ)上,設(shè)計(jì)以FPGA為核心的積分計(jì)算系統(tǒng)硬件。以設(shè)計(jì)的系統(tǒng)硬件部分為基礎(chǔ),設(shè)計(jì)系統(tǒng)的軟件部分。使用傅里葉變換將頻域電磁場(chǎng)信號(hào)轉(zhuǎn)換為時(shí)域信號(hào),根據(jù)留數(shù)定理,編寫(xiě)程序?qū)r(shí)域內(nèi)的電磁信號(hào)函數(shù)積分求解,完成對(duì)計(jì)算系統(tǒng)的設(shè)計(jì)。通過(guò)與傳統(tǒng)的電磁場(chǎng)數(shù)值計(jì)算系統(tǒng)的對(duì)比實(shí)驗(yàn),證明了設(shè)計(jì)的基于留數(shù)定理的時(shí)域電磁場(chǎng)數(shù)值積分計(jì)算系統(tǒng)的均方誤差更小,更具有優(yōu)越性。
關(guān)鍵詞: 時(shí)域; 電磁場(chǎng)數(shù)值; 積分計(jì)算; 系統(tǒng)設(shè)計(jì); 留數(shù)定理; 傅里葉變換
中圖分類(lèi)號(hào): TN712+.1?34 ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ? 文章編號(hào): 1004?373X(2020)24?0042?03
Design of residue theorem based numerical integral calculation system for electromagnetic field in time domain
SHEN Yanwei, SHAO Junqian, SUN Wei, GENG Yanqiu
(College of Information Engineering, Suihua University, Suihua 152061, China)
Abstract: In allusion to the problem that the mean square error between the calculated results and the theoretical values of the traditional electromagnetic field numerical calculation system is large, a residue theorem based numerical integral calculation system for electromagnetic field in time domain is designed, from which the hardware of the traditional calculation system is reserved, and the hardware of the integral calculation system with FPGA as the core is designed. Based on the designed hardware part of the system, the software part of the system is designed. The Fourier transform is used to convert electromagnetic field signals in the frequency domain into signals in the time domain. A program is written according to the residue theorem to solve the electromagnetic signal function integral in time domain, and complete the design of the calculation system. The experimental results prove that, in comparison with the traditional electromagnetic field numerical calculation system, the designed residue theorem based numerical integral system for electromagnetic field in time domain has smaller mean square error and more advantages.
Keywords: time domain; electromagnetic field value; integral calculation; system design; residue theorem; Fourier transform
0 ?引 ?言
奧斯特發(fā)現(xiàn)通電磁體周?chē)嬖诖艌?chǎng),建立了電磁場(chǎng)理論。電磁場(chǎng)是一種由帶電物體上的電荷運(yùn)動(dòng)產(chǎn)生的磁場(chǎng),是電場(chǎng)和磁場(chǎng)相互依存、不斷聯(lián)系的統(tǒng)一體。在電磁場(chǎng)中,能量以電磁波的形式存在。電磁場(chǎng)廣泛應(yīng)用在機(jī)電能量轉(zhuǎn)換、電力系統(tǒng)、通信、生物電磁學(xué)、電磁兼容以及信息存儲(chǔ)等工程領(lǐng)域。隨著近代科學(xué)的不斷發(fā)展,麥克斯韋建立的電磁場(chǎng)理論不斷被完善,求解電磁場(chǎng)數(shù)值的方法不斷發(fā)展,有限差分法、時(shí)域有限差分法、有限元法和矩量法是電磁場(chǎng)數(shù)值方法中比較重要的幾種方法[1?2]。計(jì)算機(jī)科學(xué)的快速發(fā)展使這些電磁場(chǎng)數(shù)值計(jì)算方法被大量的應(yīng)用。傳統(tǒng)的差分電磁場(chǎng)計(jì)算系統(tǒng)在對(duì)電磁場(chǎng)數(shù)值積分計(jì)算時(shí)受自身局限性影響,不能對(duì)開(kāi)區(qū)域電磁場(chǎng)的連續(xù)分布分量進(jìn)行求解。
留數(shù)定理是根據(jù)柯西定理在復(fù)分析中用來(lái)計(jì)算積分或曲線(xiàn)路徑。留數(shù)定理通過(guò)在函數(shù)孤立奇點(diǎn)的鄰域內(nèi)展開(kāi)洛朗級(jí)數(shù),經(jīng)過(guò)逐項(xiàng)積分得到近似解[3]。留數(shù)定理能夠提高積分計(jì)算精度,簡(jiǎn)化計(jì)算過(guò)程。因此,本文設(shè)計(jì)基于留數(shù)定理的時(shí)域電磁場(chǎng)數(shù)值計(jì)算系統(tǒng)。
4 ?結(jié) ?語(yǔ)
本文基于留數(shù)定理設(shè)計(jì)時(shí)域電磁場(chǎng)數(shù)值積分計(jì)算系統(tǒng)。系統(tǒng)以FPGA為核心進(jìn)行積分計(jì)算,使用傅里葉變換轉(zhuǎn)換時(shí)域信號(hào),再根據(jù)留數(shù)定理,完成時(shí)域電磁場(chǎng)數(shù)值積分計(jì)算系統(tǒng)。通過(guò)與傳統(tǒng)計(jì)算系統(tǒng)的對(duì)比實(shí)驗(yàn),證明了本文設(shè)計(jì)的系統(tǒng)計(jì)算結(jié)果更精確,更具有優(yōu)越性。
參考文獻(xiàn)
[1] 田換換,朱曉燕.慣性導(dǎo)航系統(tǒng)中浮點(diǎn)計(jì)算加速單元設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2019,45(8):79?82.
[2] 杜子韋華,謝彥召.架空及埋地多導(dǎo)體線(xiàn)纜對(duì)HEMP輻照的瞬態(tài)響應(yīng)[J].強(qiáng)激光與粒子束,2019,31(7):21?29.
[3] 冉然,秦太驗(yàn).三維動(dòng)態(tài)裂紋問(wèn)題的超奇異積分方程法[J].計(jì)算力學(xué)學(xué)報(bào),2019,36(3):358?363.
[4] 李維,程文杰,肖玲,等.基于Monte Carlo法和積分法的被動(dòng)永磁軸承磁力計(jì)算[J].軸承,2019(7):5?10.
[5] 劉亞軍,胡祥云,彭榮華,等.回線(xiàn)源瞬變電磁法有限體積三維任意各向異性正演及分析[J].地球物理學(xué)報(bào),2019,62(5):1954?1968.
[6] 范崢,李宏,劉向文,等.基于局地集合變換卡爾曼濾波的全球海洋資料同化系統(tǒng)設(shè)計(jì)及算法加速[J].地球科學(xué)進(jìn)展,2019,34(5):531?539.
[7] 孫攀旭,楊紅,趙雯桐,等.基于復(fù)阻尼模型的時(shí)域數(shù)值計(jì)算方法[J].地震工程與工程振動(dòng),2019,39(2):203?212.
[8] 郝敬堂,蘇志剛.基于高斯積分的航空器沖突概率計(jì)算方法[J].中國(guó)安全科學(xué)學(xué)報(bào),2018,28(8):123?128.
[9] 張瑞雪,李驥,徐偉,等.間歇運(yùn)行供暖系統(tǒng)設(shè)計(jì)日逐時(shí)熱負(fù)荷附加計(jì)算[J].暖通空調(diào),2018,48(7):17?21.
[10] 李志富,任慧龍,石玉云,等.時(shí)域自由面格林函數(shù)改進(jìn)精細(xì)積分算法研究[J].船舶力學(xué),2018,22(7):818?826.
[11] 李振華,胡蔚中,閆蘇紅.基于Gauss算法的高精度數(shù)字積分器[J].高電壓技術(shù),2018,44(6):1782?1790.
[12] 田雪,張毅.時(shí)間尺度上Herglotz變分原理及其N(xiāo)oether定理[J].力學(xué)季刊,2018,39(2):237?248.
[13] 劉辰,徐永華,姚永明.帶變量核的分?jǐn)?shù)次積分算子在Herz型Hardy空間上的有界性[J].高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào),2018,40(2):136?145.
[14] 李光耀,何建平,董云橋,等.基于球面細(xì)分法的高效高精度近奇異積分計(jì)算[J].固體力學(xué)學(xué)報(bào),2018,39(5):453?461.
[15] 賀慧.一種新的復(fù)變函數(shù)中高階極點(diǎn)留數(shù)計(jì)算方法[J].科技通報(bào),2018,34(4):34?37.
作者簡(jiǎn)介:沈艷微(1982—),女,滿(mǎn)族,黑龍江哈爾濱人,碩士,講師,研究方向?yàn)榛ヂ?lián)網(wǎng)教育、應(yīng)用數(shù)學(xué)。