姚誠(chéng)誠(chéng) 杜立嘯 李云河
摘要 :當(dāng)遭受植食性昆蟲(chóng)取食時(shí),植物會(huì)釋放復(fù)雜和多樣的揮發(fā)性有機(jī)化合物。蟲(chóng)害誘導(dǎo)的揮發(fā)物在調(diào)控植物與不同營(yíng)養(yǎng)層昆蟲(chóng)群落相互關(guān)系中發(fā)揮重要作用。同時(shí),鄰近植物也能感知這種蟲(chóng)害誘導(dǎo)揮發(fā)物,對(duì)可能即將到來(lái)的蟲(chóng)害威脅做出防御準(zhǔn)備。獲得防御準(zhǔn)備的植物在受到蟲(chóng)害損傷時(shí),會(huì)立即啟動(dòng)相應(yīng)的防御反應(yīng)。為了應(yīng)對(duì)植物的這種害蟲(chóng)防御策略,某些昆蟲(chóng)可通過(guò)調(diào)控植物揮發(fā)物信號(hào)來(lái)傳遞“假信息”,從而抑制相鄰植物的防御反應(yīng)。這種信息交流既可發(fā)生在同種植物之間,也可發(fā)生在不同科屬的植物之間。近年,植物間的信息交流現(xiàn)象已得到廣泛研究,但相關(guān)的生化和分子機(jī)制及生態(tài)學(xué)意義尚不清楚。本文主要探討了蟲(chóng)害誘導(dǎo)信息化合物介導(dǎo)的植物間交流類型、機(jī)制和生態(tài)學(xué)意義,以及影響植物間交流的生物或非生物因子,分析了利用植物間信息交流開(kāi)展害蟲(chóng)綠色防控的前景。
關(guān)鍵詞 :蟲(chóng)害誘導(dǎo)的植物揮發(fā)物; 植物與植物交流; 植物與昆蟲(chóng)互作
中圖分類號(hào):
Q948.1, S433
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.16688/j.zwbh.2020427
Plant-to-plant communications medicated by herbivore-induced plant volatiles and the mechanisms
YAO Chengcheng, DU Lixiao*, LI Yunhe*
(State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection,
Chinese Academy of Agricultural Sciences, Beijing 100193, China)
Abstract
Plants, when being attacked by herbivores, will constitutively emit a wide variety of volatile organic compounds, called herbivore-induced plant volatiles (HIPVs), which plays a key role in mediating the interactions between plants and diverse trophic levels of insects.In addition, neighboring plants can perceive these distress signals from herbivore-attacked plants and prepare well for incoming threats.Plants that have primed their defenses can immediately activate corresponding defensive responses once they were damaged by herbivorous insects.Conversely, some insects may manipulate their host plants to emit volatiles that disseminate the deceptive information to neighboring plants, which will suppress their defenses.The phenomenon of HIPVs-medicated plant-plant communication occurs among the plants of the same or different families and genera.Although the concept of this communication has been widely accepted, its biochemical and molecular mechanisms and ecological significances remain largely obscure.In this overview, we reviewed the types, mechanisms and significances of plant-plant communications mediated by HIPVs, and we focused on both ecological factors affecting plant-plant communications and the prospects for using volatiles to control pests based on plant-plant communications.
Key words
herbivore-induced plant volatiles; plant-plant communication; plant-insect interaction
當(dāng)遭受植食性昆蟲(chóng)取食時(shí),植物會(huì)產(chǎn)生一系列防御反應(yīng)。一方面,植物會(huì)產(chǎn)生有毒化合物、抗?fàn)I養(yǎng)酶類和抗消化酶類等物質(zhì)直接毒殺或抑制植食性昆蟲(chóng)生長(zhǎng)發(fā)育;另一方面,植物會(huì)釋放揮發(fā)性化合物吸引捕食性或寄生性天敵來(lái)防御害蟲(chóng)[12]。此外,相鄰植株也能感知這種蟲(chóng)害誘導(dǎo)植物揮發(fā)物(herbivore-induced plant volatiles, HIPVs),相鄰植株接收HIPVs后做出的反應(yīng)主要有兩類:一類是直接激活自身的防御反應(yīng)[35];另一類是不啟動(dòng)防御反應(yīng),而是“武裝”自己,在受到植食性昆蟲(chóng)為害時(shí),可啟動(dòng)更強(qiáng)或更快的防御反應(yīng)[2, 58]。
蟲(chóng)害誘導(dǎo)植物揮發(fā)物介導(dǎo)的植物間交流現(xiàn)象最早發(fā)現(xiàn)于柳樹(shù)中[9]。天幕毛蟲(chóng)Malacosoma californicum為害的柳樹(shù)Salix sitchensis誘使其鄰近的健康柳樹(shù)植株對(duì)天幕毛蟲(chóng)的抗性增強(qiáng)。這一報(bào)道引起了研究者對(duì)植物間交流現(xiàn)象的廣泛關(guān)注,相關(guān)報(bào)道日益增多[1014]。此外,也有研究發(fā)現(xiàn),某些植食性昆蟲(chóng)會(huì)利用蟲(chóng)害誘導(dǎo)植物揮發(fā)物抑制相鄰植物的防御反應(yīng),從而為種內(nèi)其他昆蟲(chóng)創(chuàng)造更加有利的生存環(huán)境[1516]。本文通過(guò)探討蟲(chóng)害誘導(dǎo)植物揮發(fā)物介導(dǎo)的植物間交流類型、機(jī)制和生態(tài)學(xué)意義,以及影響植物間交流的生物和非生物因子,分析利用植物間信息交流現(xiàn)象開(kāi)展害蟲(chóng)綠色防控的前景,以期為該領(lǐng)域的研究者提供一定的啟發(fā)和參考。
1 HIPVs介導(dǎo)的植物間交流
在自然界中,植物間交流的現(xiàn)象普遍存在[7, 1721]。當(dāng)遭到植食性昆蟲(chóng)為害時(shí),植物會(huì)釋放HIPVs吸引害蟲(chóng)天敵或驅(qū)避成蟲(chóng)產(chǎn)卵,減輕危害;同時(shí),鄰近同種或異種植物能夠感知這種HIPVs,對(duì)可能即將到來(lái)的蟲(chóng)害威脅進(jìn)行預(yù)判,做出防御準(zhǔn)備,提高對(duì)害蟲(chóng)的防御能力。然而,某些昆蟲(chóng)會(huì)利用植物的這種特性,調(diào)控植物向鄰近植物傳遞“假信息”,抑制鄰近植物的防御反應(yīng)(圖1)。下文對(duì)HIPVs調(diào)控鄰近植物防御反應(yīng)的兩種類型分別進(jìn)行闡述。
1.1 HIPVs誘導(dǎo)植物的防御反應(yīng)
1.1.1 HIPVs誘導(dǎo)同種植物間的防御反應(yīng)
目前,關(guān)于HIPVs誘導(dǎo)植物間防御反應(yīng)的研究主要集中在同種植物之間[19]。研究發(fā)現(xiàn),二斑葉螨Tetranychus urticae為害的棉花Gossypium hirsutum釋放的植物揮發(fā)物會(huì)降低鄰近棉花上二斑葉螨的落卵量[22];大菜粉蝶Pieris brassicae為害的甘藍(lán)Brassica oleracea var.capitata釋放的植物揮發(fā)物增強(qiáng)了鄰近甘藍(lán)對(duì)大菜粉蝶的抗性,同時(shí)還吸引菜粉蝶寄生蜂粉蝶盤(pán)絨繭蜂Cotesia glomerata[10];黏蟲(chóng)Mythimna separata為害的玉米Zea mays L.cv.Royal Dent釋放的植物揮發(fā)物會(huì)導(dǎo)致鄰近玉米上的黏蟲(chóng)生長(zhǎng)發(fā)育受阻[11]。由于相同的遺傳背景,同種植物在應(yīng)對(duì)蟲(chóng)害時(shí)的防御反應(yīng)一致,識(shí)別危險(xiǎn)信號(hào)分子上也存在保守性,因此,在同種植物間利用HIPVs進(jìn)行交流的效率更高[45, 23]。被植食性昆蟲(chóng)為害的植物釋放HIPVs來(lái)調(diào)整鄰近植物的狀態(tài),一方面干擾害蟲(chóng)的行為選擇,來(lái)減輕對(duì)自身的為害;另一方面利用植物群體防御來(lái)提高物種自身的穩(wěn)定性[45]。但是同種物種之間也存在著激烈的生存競(jìng)爭(zhēng),植物受到蟲(chóng)害后,釋放HIPVs有自身防御的需要,但這種信號(hào)被鄰近植物收到,是有意為之,還是鄰近植物“竊聽(tīng)”的結(jié)果,目前尚無(wú)定論。
1.1.2 HIPVs誘導(dǎo)異種植物間的防御反應(yīng)
與同種植物間的交流相比,HIPVs誘導(dǎo)異種植物防御反應(yīng)的研究很少。研究顯示,?;页嵋苟闟podoptera littoralis為害的棉花釋放的植物揮發(fā)物可提高鄰近紫苜蓿Medicago sativa的防御水平,導(dǎo)致?;页嵋苟暝谲俎I系漠a(chǎn)卵量下降[24]。這種跨越物種的交流現(xiàn)象,究竟是不同物種抵御相同害蟲(chóng)的需要還是自然進(jìn)化過(guò)程中群體選擇的需要,目前還存在爭(zhēng)議[5]。
1.2 HIPVs抑制植物的防御反應(yīng)
雖然多數(shù)研究表明,HIPVs可誘導(dǎo)鄰近植物對(duì)植食性昆蟲(chóng)產(chǎn)生抗性,但最近的研究發(fā)現(xiàn),昆蟲(chóng)也可通過(guò)調(diào)控植物揮發(fā)物,誘使鄰近植物更適合昆蟲(chóng)的發(fā)育。譬如,煙粉虱Bemisia tabaci為害的番茄Lycopersicon esculentum cv.Moneymaker釋放的植物揮發(fā)物不但沒(méi)有誘導(dǎo)鄰近番茄對(duì)煙粉虱的抗性,反而使其更適合煙粉虱取食[16]。小菜蛾P(guān)lutella xylostella為害的甘藍(lán)釋放的植物揮發(fā)物同樣未能增強(qiáng)鄰近甘藍(lán)的抗蟲(chóng)性,反而增加了小菜蛾在鄰近甘藍(lán)上的落卵量[15]。
我們推測(cè)在長(zhǎng)期的進(jìn)化過(guò)程中,昆蟲(chóng)適應(yīng)了寄主植物的防御反應(yīng),利用植物間交流的“漏洞”,通過(guò)調(diào)控受害植物的HIPVs向鄰近植物傳遞“假”信號(hào)抑制鄰近植物的防御反應(yīng),為其后代提供更有利的生存環(huán)境。有關(guān)HIPVs抑制鄰近植物防御反應(yīng)的現(xiàn)象還知之甚少,而HIPVs是否會(huì)抑制鄰近異種植物防御反應(yīng)目前也未見(jiàn)報(bào)道。
2 HIPVs調(diào)控植物防御反應(yīng)的機(jī)制
研究者通過(guò)對(duì)“發(fā)出者(emitting plants)”釋放的揮發(fā)物進(jìn)行實(shí)時(shí)檢測(cè),以及對(duì)“接收者(receiving plants)”接收到化學(xué)信號(hào)后所做出的反應(yīng)進(jìn)行了研究,發(fā)現(xiàn)蟲(chóng)害誘導(dǎo)植物揮發(fā)物在植物間交流中發(fā)揮著媒介作用(表1),因此,這種蟲(chóng)害誘導(dǎo)揮發(fā)物常常被稱為“植物語(yǔ)言(plant language)”[2530]。
2.1 HIPVs誘導(dǎo)鄰近植物或同一植物不同組織防御反應(yīng)的機(jī)制
HIPVs誘導(dǎo)鄰近植物的防御反應(yīng)包括直接防御和間接防御。直接防御是鄰近植物接收到HIPVs信號(hào)后,通過(guò)誘導(dǎo)防御基因表達(dá),調(diào)控植物激素和產(chǎn)生防御相關(guān)次生代謝物質(zhì)等一系列過(guò)程,使植物對(duì)植食性昆蟲(chóng)產(chǎn)生直接的生理抗性[34, 3133];間接防御是被HIPVs誘導(dǎo)的鄰近植物通過(guò)分泌花外蜜露(extrafloral nectars, EFNs)或釋放揮發(fā)性化合物吸引捕食性或寄生性天敵昆蟲(chóng),間接地降低植食性昆蟲(chóng)的危害[3438]。
2.1.1 HIPVs誘導(dǎo)鄰近植物的直接防御機(jī)制
甘薯Ipomoea batatas遭到?;页嵋苟耆∈澈笱杆籴尫懦觯‥)-4,8-dimethyl-1,3,7-nonatriene (DMNT),DMNT誘導(dǎo)鄰近甘薯中蛋白酶抑制劑(sporamin protease inhibitor, SPI)基因的表達(dá)上調(diào),使葉片中胰蛋白酶抑制劑的含量提高,進(jìn)而增強(qiáng)了鄰近甘薯對(duì)?;页嵋苟甑目剐訹33]。歐洲榿木Alnus glutinosa受到藍(lán)毛臀螢葉甲Agelastica alni為害后釋放的DMNT、β-ocimene等會(huì)誘導(dǎo)鄰近榿木蛋白酶抑制劑和酚類物質(zhì)的活性提高[39];β-羅勒烯(β-ocimene)能夠誘導(dǎo)鄰近健康大白菜Brassica rapa var.glabra水楊酸和茉莉酸相關(guān)防御基因上調(diào)表達(dá),提高芥子油苷的含量,從而抑制桃蚜Myzus persicae的生長(zhǎng)發(fā)育,改變其取食行為[40]。這說(shuō)明HIPVs作為植物間交流的信號(hào)分子可以激活植物防御反應(yīng),提高植物抗蟲(chóng)性。此外,鄰近植物還可以直接利用HIPVs合成具有防御功能的化合物,抑制植食性昆蟲(chóng)生長(zhǎng)發(fā)育。例如,番茄被斜紋夜蛾Spodoptera litura為害后釋放出大量的(Z)-3-己烯醇[(Z)-3-hexenol],鄰近番茄吸收(Z)-3-hexenol后會(huì)將其轉(zhuǎn)化成(Z)-3-hexenylvicianoside,導(dǎo)致斜紋夜蛾生長(zhǎng)發(fā)育受阻,成活率下降[41]。
研究表明,HIPVs誘導(dǎo)鄰近植物防御反應(yīng)主要受植物激素的調(diào)控,其中茉莉酸(jasmonic acid, JA)、茉莉酸異亮氨酸(jasmonoyl-isoleucine, JA-Ile)、水楊酸(salicylic acid, SA)和脫落酸(abscisic acid, ABA)等被證實(shí)在植物防御過(guò)程中發(fā)揮著重要調(diào)控作用[42]。例如,吲哚(indole)能夠誘導(dǎo)鄰近水稻Oryza sativa中JA途徑相關(guān)防御基因的表達(dá),以及12-oxophytodienoic acid (OPDA)和JA的累積量增加,增強(qiáng)水稻對(duì)草地貪夜蛾Spodoptera frugiperda幼蟲(chóng)的抗性[32];同時(shí),吲哚還能夠誘導(dǎo)鄰近玉米中JA-Ile和ABA的累積量上升,進(jìn)而增加綠葉揮發(fā)物和萜烯類化合物的釋放量,增強(qiáng)玉米對(duì)?;页嵋苟暧紫x(chóng)的防御[12]。此外,無(wú)論是專食性害蟲(chóng)煙草天蛾Manduca sexta還是多食性害蟲(chóng)煙芽夜蛾Heliothis virescens為害本生煙Nicotiana benthamiana后植物釋放的HIPVs均能夠誘導(dǎo)鄰近植物的防御準(zhǔn)備;對(duì)鄰近植物采用機(jī)械的方式損傷并涂抹任意一種害蟲(chóng)的口腔分泌物均會(huì)顯著增加本生煙中JA含量,調(diào)控本生煙防御性揮發(fā)物的代謝過(guò)程,增加HIPVs的釋放[43]。但也有研究表明,HIPVs誘導(dǎo)鄰近植物的抗性反應(yīng)獨(dú)立于植物激素代謝通路。比如,?;页嵋苟暧紫x(chóng)為害的甘薯會(huì)誘導(dǎo)鄰近甘薯葉片中胰蛋白酶抑制劑含量升高,增強(qiáng)對(duì)海灰翅夜蛾幼蟲(chóng)的抗性,但并未引起鄰近葉片中JA的累積[33]。同時(shí)Sugimoto等[41]證實(shí)番茄吸收鄰近蟲(chóng)害植株釋放的(Z)-3-hexenol,將其轉(zhuǎn)化成對(duì)斜紋夜蛾生長(zhǎng)發(fā)育不利的(Z)-3-hexenylvicianoside,但植株中JA的含量并沒(méi)有顯著升高。
2.1.2 HIPVs誘導(dǎo)鄰近植物的間接防御機(jī)制
HIPVs除了誘導(dǎo)鄰近植物產(chǎn)生直接防御反應(yīng),也會(huì)誘導(dǎo)鄰近植物釋放揮發(fā)性有機(jī)化合物(volatile organic compounds,VOCs)吸引天敵而間接地防御植食性昆蟲(chóng)。番茄被?;页嵋苟隇楹筢尫诺闹参飺]發(fā)物誘導(dǎo)鄰近番茄釋放β-ocimene等物質(zhì)吸引阿爾蚜繭蜂Aphidius ervi,降低?;页嵋苟甑臑楹14]。玉米受到斑禾草螟Chilo partellus (Swinhoe)為害后釋放的植物揮發(fā)物會(huì)誘導(dǎo)鄰近玉米釋放DMNT吸引卵寄生蜂布氏赤眼蜂Trichogramma bournieri和幼蟲(chóng)寄生蜂大螟盤(pán)絨繭蜂Cotesia sesamiae [13]。海灰翅夜蛾為害的玉米釋放的植物揮發(fā)物能夠誘導(dǎo)鄰近玉米釋放芳香類和萜類化合物提高對(duì)緣腹絨繭蜂Cotesia marginiventris的引誘作用[44]。
此外,研究還發(fā)現(xiàn),HIPVs會(huì)促進(jìn)鄰近植物分泌花外蜜露吸引天敵。例如,蟲(chóng)害誘導(dǎo)利馬豆Phaseolus lunatus釋放的(3Z)-hex-3-enyl acetate能夠誘導(dǎo)鄰近利馬豆分泌花外蜜露吸引捕食性和寄生性天敵,降低甲蟲(chóng)和象甲等植食性昆蟲(chóng)的為害[35]。
2.1.3 HIPVs誘導(dǎo)同一植物鄰近健康組織的防御機(jī)制
HIPVs能夠誘導(dǎo)植物損傷部位的防御,同時(shí)還可以警告鄰近組織做好應(yīng)對(duì)蟲(chóng)害的準(zhǔn)備。當(dāng)遭到植食性昆蟲(chóng)取食時(shí),已經(jīng)接收到HIPVs的健康組織會(huì)立即啟動(dòng)防御反應(yīng)降低害蟲(chóng)為害[3, 4547]。例如,被蟲(chóng)侵害的歐美雜交楊Populus deltoides × nigra葉片釋放的萜烯化合物E-β-ocimene、DMNT、β-caryophyllene、germacrene D、α-farnesene均能夠顯著提高鄰近葉片中萜烯化合物含量,增強(qiáng)楊樹(shù)對(duì)舞毒蛾Lymantria dispar幼蟲(chóng)的抗性[48]。被蟲(chóng)侵害的玉米葉片釋放的吲哚可以顯著提高鄰近葉片中萜烯類化合物含量[12]。對(duì)于植物自身而言,當(dāng)某些部位不可避免要受到植食性昆蟲(chóng)為害時(shí),它們就可能會(huì)釋放HIPVs信號(hào),克服長(zhǎng)距離和維管束的限制,快速到達(dá)鄰近組織警告威脅的存在,以便快速啟動(dòng)全身的防御系統(tǒng);對(duì)于受害組織來(lái)說(shuō),釋放HIPVs也是誘導(dǎo)受害組織啟動(dòng)防御反應(yīng)抵御蟲(chóng)害的需要[45]。
2.2 HIPVs抑制鄰近植物防御反應(yīng)的機(jī)制
除了誘導(dǎo)鄰近植物對(duì)植食性昆蟲(chóng)的防御,某些HIPVs還會(huì)充當(dāng)植物防御抑制劑,抑制植物對(duì)害蟲(chóng)的防御反應(yīng)[42]。比如,煙粉虱為害番茄釋放的β-myrcene、ρ-cymene、β-caryophyllene能夠顯著提高鄰近番茄中SA含量,誘導(dǎo)抗性基因PR-1a和PR-1b的上調(diào)表達(dá),而抑制JA通路相關(guān)的抗性基因PⅠ-Ⅰ和PⅠ-Ⅱ的表達(dá),進(jìn)而使鄰近番茄更容易受到煙粉虱的侵害[16]。田間試驗(yàn)也發(fā)現(xiàn),田間釋放綠葉揮發(fā)物(green leaf volatiles; GLVs)、(Z)-3-hexenal、(Z)-3-hexenol、(E)-2-hexenal和(Z)-3-hexenyl acetate,盡管可以提高玉米植株萜烯類化合物的釋放,但并未降低植食性昆蟲(chóng)對(duì)玉米的為害,反而造成玉米受蟲(chóng)害加重[49]。
3 影響HIPVs介導(dǎo)植物間交流的因子
HIPVs介導(dǎo)的植物間交流受到各種生物或非生物因素的影響,例如植物間的距離、空氣流通程度、物種間親緣關(guān)系、物種特異性等都會(huì)影響它們之間交流的效率。
3.1 距離
植物間交流的效率會(huì)隨著植物間距離的增加而降低[51]。在同一濃度同一劑量下,野生煙草Nicotiana attenuata距離修剪的三齒蒿Artemisia tridentata 10 cm或15 cm之內(nèi)時(shí),受到害蟲(chóng)為害的程度會(huì)明顯減低,然而隨著距離增加,這種效應(yīng)會(huì)逐漸降低[5556]。同種三齒蒿植株之間也能進(jìn)行交流[57],這種交流能達(dá)到60 cm[58],利馬豆間能達(dá)到50 cm[47],然而超過(guò)該閾值,植物間交流的效率會(huì)逐漸降低直至消失。研究表明植物接收HIPVs信號(hào)分子與細(xì)胞膜去極化和細(xì)胞質(zhì)Ca2+濃度變化有關(guān)。而通過(guò)不同濃度的α-pinene 和β-caryophyllene處理番茄發(fā)現(xiàn),高濃度化合物處理下番茄細(xì)胞膜去極化程度更高,這說(shuō)明植物間交流存在濃度效應(yīng)[52]。因此,隨著植物間距離的增加,HIPVs由蟲(chóng)害植物傳遞到鄰近植物的量必然會(huì)大大降低,它們交流的效率也會(huì)下降甚至消失。
3.2 空氣流通
對(duì)于植物的地上部分來(lái)說(shuō),空氣流通是植物間信號(hào)交流的必要因素[55, 5860]。機(jī)械損傷玉米葉片并涂抹?;页嵋苟昕谇环置谖镆欢螘r(shí)間后,損傷鄰近葉片并收集揮發(fā)物發(fā)現(xiàn),萜烯類化合物含量顯著增加;而當(dāng)用聚四氟乙烯袋封閉蟲(chóng)害葉片,阻斷蟲(chóng)害葉片和鄰近葉片的空氣流通時(shí),同樣時(shí)間段內(nèi)在相同處理的鄰近葉片中未發(fā)現(xiàn)萜烯類化合物含量的改變[12]。
3.3 親緣關(guān)系
親緣關(guān)系近的植物在信息化合物交流中可能會(huì)有額外的優(yōu)勢(shì),這一優(yōu)勢(shì)被稱為親屬選擇假說(shuō)(Kin-Selection Hypothesis)[61]。Karban等[23]認(rèn)為來(lái)自親屬的揮發(fā)物信號(hào)可能更容易被同類所察覺(jué)。通過(guò)對(duì)兩種不同品系玉米的研究發(fā)現(xiàn),健康玉米暴露在同一品系玉米釋放的經(jīng)蟲(chóng)害誘導(dǎo)的揮發(fā)物中,對(duì)寄生蜂的吸引性更強(qiáng)[13]。這一現(xiàn)象在發(fā)草Deschampsia cespitosa[62]、擬南芥Arabidopsis thaliana[63]和三齒蒿[23, 59, 64]等植物中都有報(bào)道。
研究發(fā)現(xiàn),某些植物只能和部分鄰近植物進(jìn)行交流,而對(duì)其他植物無(wú)反應(yīng),植物間的交流存在著物種特異性。譬如,?;页嵋苟隇楹Φ拿藁ㄖ仓赆尫懦龅膿]發(fā)物增加了鄰近棉花和苜蓿植物的抗蟲(chóng)性,降低了?;页嵋苟甑漠a(chǎn)卵量;然而?;页嵋苟隇楹Φ能俎:桶<败囕S草Trifolium alexandrinum植株釋放的揮發(fā)物并沒(méi)有增加鄰近棉花的抗蟲(chóng)性[24]。玉米遭到?;页嵋苟隇楹罂梢匝杆俚蒯尫胚胚?,顯著增強(qiáng)鄰近玉米的抗蟲(chóng)性,輕微地誘導(dǎo)鄰近棉花的抗蟲(chóng)性,而沒(méi)有誘導(dǎo)鄰近豇豆Vigna unguiculata的抗蟲(chóng)性[12]。由此可見(jiàn),植物能夠特異性識(shí)別鄰近植物釋放的揮發(fā)物。因此,根據(jù)植物間交流的物種特異性,我們可以利用特定植物的揮發(fā)物防御害蟲(chóng),實(shí)現(xiàn)綠色防控。
3.4 植食性昆蟲(chóng)
植食性昆蟲(chóng)也是驅(qū)動(dòng)HIPVs調(diào)控植物間信息傳遞的重要因子。北美一枝黃花Solidago altissima被黃花葉甲蟲(chóng)Trirhabda virgate為害后釋放的HIPVs能夠激發(fā)鄰近相同甚至不同基因型的植物提高對(duì)甲蟲(chóng)的防御水平;而采用未經(jīng)甲蟲(chóng)誘導(dǎo)的揮發(fā)物處理植物,只有鄰近相同基因型的植物會(huì)啟動(dòng)同等防御,不同基因型的植物沒(méi)有表現(xiàn)同樣的反應(yīng)[17]。這一結(jié)果說(shuō)明植食性昆蟲(chóng)會(huì)驅(qū)動(dòng)植物進(jìn)化出更開(kāi)放的交流機(jī)制。
此外,植物個(gè)體的發(fā)育程度、植物暴露揮發(fā)物的時(shí)間和濃度、植食性昆蟲(chóng)為害的時(shí)間和強(qiáng)度以及氣候變化等生物或非生物因素都影響著植物與植物交流的效率[15, 32, 6566]。
4 展望
在HIPVs介導(dǎo)的植物間交流中,HIPVs的釋放和傳遞通常對(duì)“接收者”是有益的,但是對(duì)于“發(fā)出者”產(chǎn)生了一種耗能代價(jià)[6768]。提高鄰近植物的抗性可能改變了“發(fā)出者”和“接收者”的競(jìng)爭(zhēng)性平衡,這種平衡對(duì)“發(fā)出者”表現(xiàn)不利,但幫助“接收者”成功地降低了害蟲(chóng)的攻擊[69]。植物之間互相競(jìng)爭(zhēng)營(yíng)養(yǎng)等資源,而植物間的交流為“接收者”提供了可靠的信息,但對(duì)“發(fā)出者”沒(méi)有表現(xiàn)出明顯的優(yōu)勢(shì),為什么植物會(huì)浪費(fèi)能量幫助自己的競(jìng)爭(zhēng)對(duì)手去應(yīng)對(duì)即將來(lái)臨的威脅[70]?目前普遍認(rèn)為,HIPVs的“發(fā)出者”可能并非是對(duì)“接收者”有意圖的警告,更可能是“接收者”的竊聽(tīng)行為[19, 69, 7172]。因此,在未來(lái)的研究中,我們既要評(píng)估“發(fā)出者”和“接收者”的適應(yīng)性,也要比較二者對(duì)資源的需求度,充分理解二者之間的關(guān)系,才能更好地利用HIPVs介導(dǎo)植物間的交流。
目前對(duì)植物間交流的探究多集中在實(shí)驗(yàn)室研究階段,且多數(shù)研究使用人工合成的揮發(fā)物組分模擬HIPVs的釋放,導(dǎo)致?lián)]發(fā)物處理濃度遠(yuǎn)遠(yuǎn)高于HIPVs的真實(shí)釋放量,由此得出的結(jié)果是否能夠代表自然界中存在的真實(shí)情況還有待進(jìn)一步的驗(yàn)證[45]。這也是目前限制HIPVs調(diào)控植物間信息傳遞研究繼續(xù)深入的關(guān)鍵。因此,研究者應(yīng)該更加關(guān)注自然界中植物間的交流,特別是自然界中HIPVs的濃度,這對(duì)未來(lái)利用HIPVs進(jìn)行害蟲(chóng)的綠色防控至關(guān)重要。此外,鄰近植物識(shí)別HIPVs的過(guò)程對(duì)于理解植物間交流至關(guān)重要,在植物體內(nèi)是否存在類似昆蟲(chóng)嗅覺(jué)識(shí)別系統(tǒng)的神經(jīng)調(diào)控網(wǎng)絡(luò),還不得而知[4];在接收到HIPVs后,植物如何利用這些化學(xué)信號(hào)來(lái)調(diào)控自身的防御系統(tǒng),究竟是直接利用化合物進(jìn)行調(diào)控還是這些化合物僅作為調(diào)控信號(hào)仍缺乏深入研究[45]。
近年來(lái),對(duì)植物間交流的研究逐漸增多,利用植物間信息交流開(kāi)展害蟲(chóng)綠色防控具有非常廣闊的前景。比如,基于相鄰植物間交流的理論,種植哨兵植物預(yù)先察覺(jué)即將到來(lái)的威脅,警告鄰近植物做好防御準(zhǔn)備[2, 73];或利用植物間信息交流中的生物活性揮發(fā)物組分,通過(guò)基因修飾(轉(zhuǎn)基因植物)增加植物對(duì)昆蟲(chóng)的敏感性,快速釋放關(guān)鍵活性揮發(fā)物警告鄰近植物[74]。目前農(nóng)業(yè)生產(chǎn)上采用的相鄰植物間“推拉”調(diào)控策略效果顯著,通過(guò)選擇一種或多種驅(qū)避(推)害蟲(chóng)的植物以及吸引(拉)它們?nèi)∈车闹参?,使被保護(hù)作物免受侵?jǐn)_[2, 73, 75]。
除HIPVs介導(dǎo)植物間的交流外,病原菌誘導(dǎo)的植物揮發(fā)物(pathogen-induced plant volatiles; PIPVs)[7679]及機(jī)械損傷誘導(dǎo)的植物揮發(fā)物(wound-induced plant volatiles; WIPVs)[5658, 8083]也會(huì)介導(dǎo)植物間的交流,誘導(dǎo)鄰近植物產(chǎn)生抗病性或抗蟲(chóng)性。因此,我們還可以采取一些機(jī)械方法在害蟲(chóng)為害之前預(yù)防并降低其為害,比如,對(duì)植株采取機(jī)械性修剪[59]、去頂[84]以及人為的干擾觸動(dòng)[85],一方面降低害蟲(chóng)對(duì)植物的為害,另一方面也誘導(dǎo)了其鄰近植物的抗蟲(chóng)性。
此外,未受脅迫的植物釋放的組成型揮發(fā)物也能夠介導(dǎo)植物間的交流。健康洋蔥Allium cepa釋放的揮發(fā)物會(huì)改變鄰近馬鈴薯Solanum tuberosum揮發(fā)物的釋放模式,驅(qū)避桃蚜Myzus persicae[86]。我們推測(cè),植物之間會(huì)相互競(jìng)爭(zhēng)資源,“接收者”通過(guò)獲取未受脅迫的“發(fā)出者”揮發(fā)物中的重要組分,從而提高自身的適應(yīng)性。
參考文獻(xiàn)
[1] POELMAN E H, DICKE M. Plant-mediated interactions among insects within a community ecological perspective [M]∥Annual plant reviews 47: insect-plant interactions. New York: Wiley, 2014: 309338.
[2] TURLINGS T C J, ERB M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential [J]. Annual Review of Entomology, 2018, 63(1): 433452.
[3] HEIL M, BUENO J C S. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(13): 54675472.
[4] HEIL M. Herbivore-induced plant volatiles: targets, perception and unanswered questions [J]. New Phytologist, 2014, 204(2): 297306.
[5] KARBAN R, YANG L H, ESWARDS K F. Volatile communication between plants that affects herbivory: a meta-analysis [J]. Ecology Letters, 2014, 17(1): 4452.
[6] DAS A, LEE S H, HYUN T K, et al. Plant volatiles as method of communication [J]. Plant Biotechnology Reports, 2013, 7(1): 926.
[7] DELORY B M, DELAPLACE P, FAUCONNIER M L, et al. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? [J]. Plant Soil, 2016, 402(1/2): 126.
[8] 王杰, 宋圓圓, 胡林, 等. 植物抗蟲(chóng)“防御警備”:概念、機(jī)理與應(yīng)用[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2018, 29(6): 20682078.
[9] RHOADES D F. Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows [J]. American Chemical Society Symposium Series, 1983, 208: 5568.
[10]PENG J, VAN LOON J J A, ZHENG S, et al. Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants [J]. Plant Biology, 2011, 13(2): 276284.
[11]ALI M, SUGIMOTO K, RAMADAN A, et al. Memory of plant communications for priming anti-herbivore responses [J/OL]. Scientific Reports, 2013, 3: 1872. DOI: 10. 1038/srep01872.
[12]ERB M, VEYRAT N, ROBERT C A M, et al. Indole is an essential herbivore-induced volatile priming signal in maize [J/OL]. Nature Communications, 2015, 6: 6273. DOI: 10. 1038/ncomms7273.
[13]MUTYAMBAI D M, BRUCE T J A, BERG J V D, et al. An indirect defence trait mediated through egg-induced maize volatiles from neighbouring plants [J/OL]. PLoS ONE, 2016, 11(7): e0158744. DOI: 10. 1371/journal. pone. 0158744.
[14]COPPOLA M, CASCONE P, MADONNA V, et al. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato [J/OL]. Scientific Reports, 2017, 7(1): 15522. DOI: 10. 1038/s41598-017-15481-8.
[15]LI Tao, BLANDE J D. Associational susceptibility in broccoli: mediated by plant volatiles, impeded by ozone [J]. Global Change Biology, 2015, 21(5): 19932004.
[16]ZHANG Pengjun, WEI Jianing, ZHAO Chan, et al. Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 73877396.
[17]KALSKE A, SHIOJIRI K, UESUGI A, et al. Insect herbivory selects for volatile-mediated plant-plant communication [J]. Current Biology, 2019, 29(18): 31283133.
[18]BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions: "talking trees" in the genomics era [J]. Science, 2006, 311(5762): 812815.
[19]KARBAN R. Plant behaviour and communication [J]. Ecology Letters, 2008, 11(7): 727739.
[20]MOREIRA X, ABDALA-ROBERTS L. Specificity and context-dependency of plant-plant communication in response to insect herbivory [J]. Current Opinion in Insect Science, 2019, 32: 1521.
[21]張?zhí)K芳, 張真, 王鴻斌, 等. 植物防御的新發(fā)現(xiàn):植物植物相互交流[J]. 植物生態(tài)學(xué)報(bào), 2013, 36(10): 11201124.
[22]BRUIN J, DICKE M, SABELIS M W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics [J]. Experientia, 1992, 48(5): 525529.
[23]KARBAN A, SHIOJIRI K, ISHIZAKI S, et al. Kin recognition affects plant communication and defence [J/OL]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1756): 20123062. DOI: 10.1098/rspb.2012.3062.
[24]ZAKIR A, SADEK M M, BENGTSSON M, et al. Herbivore-induced plant volatiles provide associational resistance against an ovipositing herbivore [J]. Journal of Ecology, 2013, 101(2): 410417.
[25]DICKE M, VAN LOON J J A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context [J]. Entomologia Experimentalis et Applicata, 2000, 97(3): 237249.
[26]DICKE M, BALDWIN I T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’ [J]. Trends Plant Science, 2010, 15(3): 167175.
[27]HOLOPAINEN J K, BLANDE J D. Molecular plant volatile communication [J]. Advances in Experimental Medicine and Biology, 2012, 739: 1731.
[28]MESCHER M C, DE MORAES C M. Role of plant sensory perception in plant-animal interactions [J]. Journal of Experimental Botany, 2015, 66(2): 425433.
[29]SIMPRAGA M, TAKABAYASHI J, HOLOPAINEN J K. Language of plants: Where is the word? [J]. Journal of Integrative Plant Biology, 2016, 58(4): 343349.
[30]孫仲享, 宋圓圓, 曾任森. 植物揮發(fā)物介導(dǎo)的種內(nèi)與種間關(guān)系研究進(jìn)展[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 40(5): 166174.
[31]NAGASHIMA A, HIGAKI T, KOEDUKA T, et al. Transcriptional regulators involved in responses to volatile organic compounds in plants [J]. Journal of Biological Chemistry, 2019, 294(7): 22562266.
[32]YE Meng, GLAUSER G, LOU Yonggen, et al. Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice [J]. Plant Cell, 2019, 31(3): 687698.
[33]MEENTS A K, CHEN S P, REICHELT M, et al. Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants [J/OL]. Scientific Reports, 2019, 9(1): 17431. DOI: 10.1038/s41598019539460.
[34]KESSLER A, BALDWIN I T. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science, 2001, 291(5511): 21412144.
[35]KOST C, HEIL M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants [J]. Journal of Ecology, 2006, 94(3): 619628.
[36]HEIL M. Indirect defence via tritrophic interactions [J]. New Phytologist, 2008, 178(1): 4161.
[37]HARE J D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects [J]. Annual Review of Entomology, 2011, 56(1): 161180.
[38]LI Tao, HOLOPAINEN J K, KOKKO H, et al. Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants [J]. Functional Ecology, 2012, 26(5): 11761185.
[39]TSCHARNTKE T, THIESSEN S, DOLCH R, et al. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa [J]. Biochemical Systematics & Ecology, 2001, 29(10): 10251047.
[40]KANG Zhiwei, LIU Fanghua, ZHANG Zhanfeng, et al. Volatile β-ocimene can regulate developmental performance of peach aphid Myzus persicae through activation of defense responses in Chinese cabbage Brassica pekinensis [J/OL]. Frontiers in Plant Science, 2018, 9: 708. DOI: 10. 3389/fpls. 2018. 00708.
[41]SUGIMOTO K, MATSUI K, IIJIMA Y, et al. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 71447149.
[42]ERB M. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling [J]. Current Opinion in Plant Biology, 2018, 44: 117121.
[43]TIMILSENA B P, SEIDL-ADAMS I, TUMLINSON J H. Herbivore-specific plant volatiles prime neighboring plants for nonspecific defense responses [J]. Plant, Cell & Environment, 2019, 43(3): 787800.
[44]TON J, D’ALESSANDRO M, JOURDIE V, et al. Priming by airborne signals boosts direct and indirect resistance in maize [J]. Plant Journal, 2006, 49(1): 1626.
[45]GERSHENZON J. Plant volatiles carry both public and private messages [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(13): 52575258.
[46]HEIL M, TON J. Long-distance signalling in plant defence [J]. Trends in Plant Science, 2008, 13(6): 264272.
[47]HEIL M, ADAME-ALVAREZ R M. Short signalling distances make plant communication a soliloquy [J]. Biology Letters, 2010, 6: 843845.
[48]FROST C J, APPEL H M, CARLSON J E, et al. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores [J]. Ecology Letters, 2007, 10(6): 490498.
[49]VON MEREY G, VEYRAT N, MAHUKU G, et al. Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpenes by the plants, but has little effect on the attraction of pest and beneficial insects [J]. Phytochemistry, 2011, 72(14/15): 18381847.
[50]ENGELBERTH J, ALBORN H T, SCHMELZ E A, et al. Airborne signals prime plants against insect herbivore attack [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(6): 17811785.
[51]FROST C J, MESCHER M C, DERVINIS C, et al. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate [J]. New Phytologist, 2008, 180(3): 722734.
[52]ZEBELO S A, MATSUI K, OZAWA R, et al. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication [J]. Plant Science, 2012, 196: 93100.
[53]JING Tingting, DU Wenkai, GAO Ting, et al. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants [J]. Plant, Cell & Environment, 2021,44(4):11781191.
[54]SU Qi, YANG Fengbo, ZHANG Qinghe, et al. Defence priming in tomato by the green leaf volatile (Z)-3-hexenol reduces whitefly transmission of a plant virus [J]. Plant, Cell & Environment, 2020, 43(11): 27972811.
[55]KARBAN R, BALDWIN I T, BAXTER K J, et al. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush [J]. Oecologia, 2000, 125(1): 6671.
[56]KARBAN R, MARON J, FELTON G W, et al. Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants [J]. OIKOS, 2003, 100(2): 325332.
[57]KARBAN R, HUNTZINGER M, MCCALL A C. The specificity of eavesdropping on sagebrush by other plants [J]. Ecology, 2004, 85(7): 18461852.
[58]KARBAN R, SHIOJIRI K, MCCALL H A C. Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication [J]. Ecology, 2006, 87(4): 922930.
[59]KARBAN R, SHIOJIRI K, ISHIZAKI S. An air transfer experiment confirms the role of volatile cues in communication between plants [J]. American Naturalist, 2010, 176(3): 381384.
[60]PEARSE I S, HUGHES K, SHIOJIRI K, et al. Interplant volatile signaling in willows: revisiting the original talking trees [J]. Oecologia, 2013, 172(3): 869875.
[61]KOBAYASHI Y, YAMAMURA N. Evolution of signal emission by uninfested plants to help nearby infested relatives [J]. Evolutionary Ecology, 2007, 21(3): 281294.
[62]SEMCHENKO M, SAAR S, LEPIK A. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes [J]. New Phytologist, 2014, 204(3): 631637.
[63]BIEDRZYCKI M L, JILANY T A, DUDLEY SA, et al. Root exudates mediate kin recognition in plants [J]. Communicative & Integrative Biology, 2010, 3(1): 2835.
[64]KARBAN R, SHIOJIRI K. Self-recognition affects plant communication and defense [J]. Ecology Letters, 2009, 12(6): 502506.
[65]SHIOJIRI K, KARBAN R. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers [J]. Oecologia, 2006, 149(2): 214220.
[66]GIRON-CALVA P S, MOLINA-TORRES J, HEIL M, et al. Volatile dose and exposure time impact perception in neighboring plants [J]. Journal of Chemical Ecology, 2012, 38(2): 226228.
[67]STRAUSS S Y, RUDGERS J A, LAU J A, et al. Direct and ecological costs of resistance to herbivory [J]. Trends in Ecology & Evolution, 2002, 17(6): 278285.
[68]HOBALLAH M E, KLLNER T G, DEGENHARDT J, et al. Costs of induced volatile production in maize [J]. OIKOS, 2004, 105(1): 168180.
[69]HEIL M, KARBAN R. Explaining evolution of plant communication by airborne signals [J]. Trends in Ecology & Evolution, 2010, 25(3): 137144.
[70]NINKOVIC V, MARKOVIC D, DAHLIN I. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions [J]. Perspectives in Plant Ecology Evolution and Systematics, 2016, 23: 1117.
[71]KARBAN R, MARON J. The fitness consequences of interspecific eavesdropping between plants [J]. Ecology, 2002, 83(5): 12091213.
[72]BALDWIN I T, KESSLER A, HALITSCHKE R. Volatile signaling in plant-plant-herbivore interactions: what is real? [J]. Current Opinion in Plant Biology, 2002, 5(4): 351354.
[73]PICKETT J A, KHAN Z R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges [J]. New Phytologist, 2016, 212(4): 856870.
[74]ARIMURA G I, MUROI A, NISHIHARA M. Plant-plant-plant communications, mediated by (E)-β-ocimene emitted from transgenic tobacco plants, prime indirect defense responses of lima beans [J]. Journal of Plant Interactions, 2012, 7(3): 193196.
[75]PICKETT J A, WOODCOCK C M, MIDEGA C A, et al. Push-pull farming systems [J]. Current Opinion in Biotechnology, 2014, 26: 125132.
[76]SHULAEV V, SILVERMAN P, RASKIN I, et al. Airborne signalling by methyl salicylate in plant pathogen resistance [J]. Nature, 1997, 385(6618): 718721.
[77]KYUTARO K, KENJI M, RIKA O, et al. Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana [J]. Plant & Cell Physiology, 2005, 46(7): 10931102.
[78]YI H S, HEIL M, ADAME-ALVAREZ R M, et al. Airborne induction and priming of plant defenses against a bacterial pathogen [J]. Plant Physiology, 2009, 151(4): 21522161.
[79]PIESIK D, LEMNCZYK G, SKOCZEK A, et al. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus [J]. Journal of Plant Physiology, 2011, 168(13): 15341542.
[80]FARMER E E, RYAN C A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(19): 77137716.
[81]DOLCH R, TSCHARNTKE T. Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours [J]. Oecologia, 2000, 125(4): 504511.
[82]KARBAN R. Communication between sagebrush and wild tobacco in the field [J]. Biochemical Systematics & Ecology, 2001, 29(10): 9951005.
[83]KIKUTA Y, UEDA H, NAKAYAMA K, et al. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants [J]. Plant & Cell Physiology, 2011, 52(3): 588596.
[84]RENOU A, TRTA I, TOGOLA M. Manual topping decreases bollworm infestations in cotton cultivation in Mali [J]. Crop Protection, 2011, 30(10): 13701375.
[85]MARKOVIC D, COLZI I, TAITI C, et al. Airborne signals synchronize the defenses of neighboring plants in response to touch [J]. Journal of Experimental Botany, 2019, 70(2): 691700.
[86]NINKOVIC V, DAHLIN I, VUCETIC A, et al. Volatile exchange between undamaged plants-a new mechanism affecting insect orientation in intercropping [J/OL]. PLoS ONE, 2013, 8(7): e69431. DOI: 10. 1371/journal. pone. 0069431.
(責(zé)任編輯:楊明麗)