許奇龍
(浙江省龍游縣第二高級中學(xué) 324400)
例1現(xiàn)有一輛小推車,利用一根穿過定滑輪的繩索來搬運物體,將物體從低處移動到高處,如圖1所示,現(xiàn)將繩索記為PQ,物體質(zhì)量記為m.已知繩索PQ的P端固定在小車末尾的掛鉤上,而Q端則與物體接觸,固定物體,忽略繩索在拉動物體時的長度變化,同時繩索的質(zhì)量、定滑輪的質(zhì)量和尺寸以及繩索與滑輪之間存在的摩擦都不進行考慮.在初始階段,小車處于A點,左側(cè)以及右側(cè)的繩索都已固定且處于豎直、繃緊狀態(tài),記A點的小車的繩索的長度為H,在拉升物體的過程中,小車處于加速狀態(tài)且向左側(cè)水平運動,從A點出發(fā)經(jīng)過B點向C點運動.設(shè)A點與B點之間的距離也恰好是H,且小車經(jīng)過B點時的速度為vB,試求:小車由A點運動到B點的過程中繩索的拉力對物體所作的功.
根據(jù)圖1可以得出繩索的速度v從A點運動到B點再向C點運動的過程中,繩索的速度v會隨著角度θ發(fā)生變化而出現(xiàn)相應(yīng)的變化,因此在對小車由A點運動到B點所具有的即時速度大小vt的思考過程中,就可以從B點向外推到兩個理想性極限值來進行考察和推斷.在A點時,θ=90°,繩索的速度v=0,而當(dāng)小車運動到無限遠時,可以認為θ=0°,而此時的繩索的速度則逐漸由A點的速度v=0增大到和小車速度一致.那么就可以認為從A點開始運動到無窮遠處的過程中的繩索速度的改變規(guī)律是滿足關(guān)系v=v車cos90°=0的.進行驗證:在A處,v=v車cos90°=0;在無窮遠處,v=v車cos90°=v車,故成立.因此,就可以在B點應(yīng)用關(guān)系式v=vBcosθ.而由于vt=v,就可以推出小車在到達B點時相應(yīng)的物體的速度為vt.而在得出小車由A點運動到B點時,物體所具備的即時速度的大小vt后,本題的突破口就已經(jīng)找到,難點就已經(jīng)解決了,繩索的拉力對物體所做的功的大小的計算自然也就迎刃而解了.
以質(zhì)量為m的物體作為研究對象,根據(jù)動能定理就可得出:
即繩索的拉力對物體所做的功
例2現(xiàn)有兩個高度相同的光滑斜面,記為甲、乙.斜面乙和斜面甲是總長度一致,但是斜面乙是由兩部分拼接而成的,如圖2所示.現(xiàn)有兩個完全相同的小球,將它們分別從兩個斜面的頂端釋放,小球與接觸處的能量損失忽略不計,問:斜面甲和斜面乙上釋放的小球哪一個會先到達底端?
解析首先設(shè)斜面甲的長度為L,斜面乙長度與甲相等,因此也為L.對斜面甲來說,小球運動到斜面底端所花費的時間直接用運動學(xué)公式就可以求得,
對斜面乙來說,由于題干信息不足,因此無法利用常規(guī)方法直接求得小球運動到底端的時間.在這里,就可以利用極限思維法進行思考和分析.從斜面乙的兩部分所成夾角的連續(xù)性變化出發(fā),可以得到夾角的變化范圍為90°-180°,那么斜面甲就可以視為是斜面乙的理想極限值,即180°.繼續(xù)外推斜面乙到另一個理想極限值90°,如圖3所示,在90°斜面的情況下小球運用到底部所花費的時間就可以分為兩部分來進行計算,即AB段以及BC段.
因此小球運動的總時間t乙′為
因為L>h,所以t甲>t乙′.
又因為在圖2中斜面乙的折角為90°-180°,因此小球沿斜面乙滑行的時間t乙滿足t甲>t乙>t乙′.故斜面乙上的小球先滑到底端.
總而言之,面對物理題時,學(xué)生可以嘗試利用極限思維方法來進行解題,極限思維法能夠有效地攻克解題難點,幫助學(xué)生快速找到解題方向.同時,極限思維法能夠做到另辟蹊徑,化繁為簡,化難為易,其特殊性也使得學(xué)生在解題時的解題效率能夠得到極大的提升.