国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

細胞周期蛋白依賴性激酶12:腫瘤治療的潛在靶點

2021-01-13 00:44:39吳子媚張文歆石煥英陳海飛鐘明康李群益施孝金
上海醫(yī)藥 2021年23期
關鍵詞:激酶基因突變細胞周期

吳子媚 張文歆 石煥英 陳海飛 鐘明康 李群益 施孝金

摘 要 細胞周期蛋白依賴性激酶12(cyclin-dependent kinase 12, CDK12)參與多種生物學過程,包括基因轉錄、RNA剪接、mRNA翻譯、內(nèi)含子多聚腺苷酸化、表觀遺傳學修飾和DNA損傷修復等。在不同類型腫瘤中,CDK12起著原癌基因或腫瘤抑制因子的作用。因此,CDK12被認為是腫瘤治療的潛在靶點。近期還有研究顯示,CDK12在腫瘤的免疫調(diào)節(jié)中發(fā)揮著重要作用。本文簡要介紹CDK12的生物學功能及其在腫瘤治療中的研究進展。

關鍵詞 細胞周期蛋白依賴性激酶12 腫瘤 生物標志物

中圖分類號:R730.23; R979.19 文獻標志碼:A 文章編號:1006-1533(2021)23-0012-04

基金項目:國家自然科學基金面上項目(81973399);國家自然科學基金青年科學基金項目(82001399);上海市“醫(yī)苑新星”青年醫(yī)學人才培養(yǎng)資助計劃——臨床藥師項目;上海市重點臨床??祈椖俊R床藥學項目(shslczdzk06502)

Cyclin-dependent kinase 12: a potential target in cancer therapy

WU Zimei, ZHANG Wenxin, SHI Huanying, CHEN Haifei, ZHONG Mingkang, LI Qunyi, SHI Xiaojin

(Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China)

ABSTRACT Cyclin-dependent kinase 12 (CDK12) engages in diversified biological functions, including gene transcription, RNA splicing, mRNA translation, intron polyadenylation, epigenetic modification and DNA damage repair. As an oncogene or tumor suppressor in different cancers, CDK12 is considered as a potential target for cancer therapy. Recent studies have shown that CDK12 plays an important role in tumor immunity. The biological functions and the research advances of CDK12 in cancer therapy are briefly discussed in this review.

KEY WORDS cyclin-dependent kinase 12; cancer; biomarker

細胞周期蛋白依賴性激酶(cyclin-dependent kinases, CDKs)是一類蛋白絲氨酸/蘇氨酸激酶,在細胞基因轉錄、細胞周期調(diào)控和神經(jīng)元分化過程中發(fā)揮著重要的作用。CDKs通常被分為兩類:一類主要與細胞周期控制相關,包括CDK1、CDK2、CDK4和CDK6等;另一類主要與基因轉錄相關,包括CDK7、CDK8、CDK9、CDK12和CDK13等[1]。與基因轉錄相關的CDKs通過磷酸化RNA聚合酶Ⅱ的羧基末端結構域(carboxyterminal domain, CTD)和其他靶標來調(diào)節(jié)基因轉錄。臨床前研究表明,基因轉錄抑制可優(yōu)先靶向腫瘤細胞,部分原因在于腫瘤細胞較正常細胞更依賴于高水平的超級增強子驅動的轉錄[2-3]。靶向基因轉錄已逐漸成為腫瘤治療領域的一個研究熱點,其中研究最多的兩種基因轉錄相關激酶是CDK7和CDK9。與CDK7類似,CDK12參與細胞周期和基因轉錄的調(diào)控,是腫瘤治療的一個潛在靶點。近年來,越來越多的證據(jù)表明,CDK12亦可用作一些腫瘤治療的生物標志物,且其參與了腫瘤的免疫調(diào)節(jié)。本文簡要介紹CDK12在腫瘤中的生物學功能及其在腫瘤治療中的研究進展。

CDK12基因定位于17號染色體長臂1區(qū)2帶,包含14個外顯子。CDK12由1 490個氨基酸組成,富含脯氨酸和絲氨酸,是一種典型的剪接因子[4]。CDK12與CDK13有43%的同源序列,它們均含有一個相對保守的激酶域。CDK12一般與細胞周期蛋白K結合,使RNA聚合酶ⅡCTD中的2和5位絲氨酸磷酸化,進而影響基因轉錄和其他生物學過程[5]。研究表明,CDK12的缺失并不影響整體的基因轉錄,但會改變DNA損傷應答和DNA復制相關基因的一個子集[5-6]。Blazek等[6]的研究發(fā)現(xiàn),CDK12的缺失主要減少了含有大量外顯子的長基因(>10 kb)的表達,包括那些參與基因組穩(wěn)定性調(diào)控的基因,如乳腺癌易感基因1、共濟失調(diào)-毛細血管擴張突變的和Rad3相關的激酶、Fanconi貧血補體組D2等。此外,CDK12激酶域的突變會抑制DNA雙鏈斷裂的同源重組修復(homologous recombination repair, HRR)[6-7]。CDK12也參與mRNA的剪接[4],但目前還不清楚其基因選擇性是如何實現(xiàn)的,以及在這一過程中還有哪些蛋白參與。除參與mRNA剪接外,CDK12還能影響內(nèi)含子多聚腺苷酸化,導致mRNA 3’端加工和表達受損,進而調(diào)節(jié)轉錄終止[8]。CDK12在mRNA的翻譯調(diào)節(jié)中亦發(fā)揮著重要作用。在翻譯起始階段,哺乳動物雷帕霉素靶蛋白復合體1(mammalian target of rapamycin complex 1, mTORC1)磷酸化翻譯抑制因子eIF4E結合蛋白1(eIF4E-binding protein 1, 4E-BP1)的37和46位蘇氨酸,隨后CDK12再磷酸化4E-BP1的65位絲氨酸和70位蘇氨酸[9]。被磷酸化的4E-BP1釋放eIF4E,后者將eIF4G募集到目標mRNA的5’端,翻譯啟動[10]。Choi等[11]的研究證實,CDK12與mTORC1協(xié)同調(diào)節(jié)中心體、著絲粒、動粒復合物和檢查點激酶1(checkpoint kinase 1, CHK1)的關鍵亞基的翻譯,這些亞基參與細胞有絲分裂和細胞周期調(diào)控。有研究發(fā)現(xiàn),果蠅中CDK12的缺失會導致異染色質蛋白1在常染色質區(qū)域的異位積累,最終下調(diào)靶基因的表達[9]。這表明CDK12可調(diào)控常染色質向異染色質的轉化,而此是CDK12調(diào)控基因表達的另一種獨特機制。

串聯(lián)重復是指DNA中的一個或多個核苷酸前后相連接的重復?;蚪M研究發(fā)現(xiàn),某些腫瘤基因組中含有獨特的串聯(lián)重復表型[12-14],這種串聯(lián)重復表型在三陰性乳腺癌、卵巢癌和子宮內(nèi)膜癌中的發(fā)生率高達50%,在腎上腺皮質癌、食管癌、胃癌和肺鱗癌中的發(fā)生率為10% ~ 30%,在其他腫瘤中較少見[15]。有研究發(fā)現(xiàn),CDK12失活的卵巢癌基因組中存在廣泛的局部串聯(lián)重復(>8 kb),它們分散在基因組的非編碼和編碼區(qū)域中,并在基因密集區(qū)域呈富集態(tài)[16]。目前,這些與CDK12相關的串聯(lián)重復的產(chǎn)生機制在很大程度上仍不清楚。一般來說,細胞周期調(diào)控相關的CDKs可通過多重機制阻止DNA復制的重新啟動,故基因組在每個細胞周期中只被能復制1次[17]。在酵母中,如果對復制起始蛋白MCM2-7和CDC6的調(diào)控失調(diào),可能啟動串聯(lián)重復形成的初始步驟[18]。研究顯示,CDK12和細胞周期蛋白K可經(jīng)協(xié)同作用磷酸化細胞周期蛋白E1,抑制細胞周期蛋白E1的活性,進而促進G1期的復制前復合體的組裝,而細胞周期蛋白K或CDK12的敲減則能阻止此復制前復合體的組裝[19]。因此,CDK12缺失可能會最終導致串聯(lián)重復在細胞分裂過程中的積累。

研究表明,>5%的晚期前列腺癌存在CDK12雙等位基因失活或突變[20]。Wu等[21]的研究發(fā)現(xiàn),7%的轉移性耐去勢治療前列腺癌(metastatic castration-resistant prostate cancer, mCRPC)患者的CDK12雙等位基因失活。與乳腺癌易感基因2缺失或有錯配修復缺陷的基因組特征不同,CDK12基因突變的腫瘤基因編碼區(qū)中的串聯(lián)重復會產(chǎn)生大量的融合基因,后者可能具有抗原的功能。CDK12基因突變的前列腺癌的基因融合負擔至少是存在HRR缺陷或共濟失調(diào)-毛細血管擴張突變的前列腺癌的3倍。與此一致,CDK12基因突變的前列腺癌的T細胞浸潤總水平和擴展的T細胞克隆數(shù)均高于其他基因組亞型(除錯配修復缺陷外)前列腺癌,且某些趨化因子及其受體的表達水平也增高[21]。與CDK12基因突變的前列腺癌可能更具免疫原性的推論相符的證據(jù)還有,在4例mCRPC患者中,2例CDK12基因突變的患者對細胞程序性死亡受體-1(programmed cell death protein-1, PD-1)抑制劑治療有反應[21]。此外,有研究顯示,在乳腺癌中,抑制CDK12可誘導免疫原性細胞死亡,聯(lián)用PD-1抑制劑后還能增強樹突狀細胞和T細胞的浸潤能力[22]。這些數(shù)據(jù)提示,CDK12缺失可能有益于免疫檢查點抑制劑的治療。為驗證此推論,臨床上正在進行多項相關試驗,包括一項伊匹單抗聯(lián)合納武單抗治療CDK12基因突變的轉移性腫瘤患者的Ⅱ期研究(NCT03570619)。

THZ1最初被發(fā)現(xiàn)是一種CDK7抑制劑,后被證實對CDK12也有抑制作用[23]。THZ1抑制CDK12的質量濃度是抑制CDK7質量濃度的3.75倍[24]。THZ531是THZ1衍生物,其對CDK12的抑制效力是對CDK7抑制效力的50多倍(半數(shù)抑制質量濃度分別為158和8 500 nmol/L)[25]。需指出的是,THZ531可通過上調(diào)三磷酸腺苷結合轉運蛋白B超家族成員1和三磷酸腺苷結合轉運蛋白G超家族成員2的表達而實現(xiàn)藥物外排,這是一種潛在的耐藥機制[26]。THZ531分別與CDK12、CDK13和CDK7中1 039、1 017和312位的半胱氨酸殘基共價結合[26]。靶向1 039位的半胱氨酸殘基意味著具有CDK12選擇性。Gao等[26]還篩選到了沒有THZ531等樣藥物外排作用的化合物E9。Ito等[27]合成并發(fā)現(xiàn)了化合物2,后者能抑制RNA聚合酶ⅡCTD中2位絲氨酸的磷酸化,抑制人類表皮生長因子受體2(human epidermal growth factor receptor 2, HER2)過表達乳腺癌細胞的生長[28]。盡管目前已找到幾種有研究價值的化合物,但至今尚無CDK12抑制劑上市。

令人驚喜的是,近年來的研究表明,CDK12基因突變或缺失可增強聚(二磷酸腺苷-核糖)聚合酶[poly(ADP-ribose) polymerase, PARP]抑制劑、絡鉑類藥物、細胞周期檢查點(如CHK1)抑制劑和免疫檢查點抑制劑的抗腫瘤作用[21, 29-31]。在乳腺癌易感基因突變的三陰性乳腺癌中,腫瘤細胞DNA存在HRR缺陷,而PARP抑制劑能抑制DNA的損傷修復,進而產(chǎn)生合成致死的效應[32-33]。但是,腫瘤細胞可通過未知機制修復HRR缺陷,由此表現(xiàn)出對PARP抑制劑的耐藥[34],而聯(lián)用CDK12抑制劑可克服腫瘤細胞對PARP抑制劑的原發(fā)性和獲得性耐藥。此外,CHK1抑制劑能選擇性地殺滅CDK12基因突變或缺失的細胞,其機制可能與CDK12本身就具有CHK1調(diào)控作用有關[31]。CDK12基因突變的卵巢癌細胞的CHK1表達減少,而CDK12基因突變細胞的生存廣泛依賴于殘余CHK1的活性,故這些細胞對低劑量CHK1抑制劑敏感[31]。

對于myc過表達的腫瘤,靶向CDK12是一種有前途的治療策略[35],這是因為:一方面,CDK12可在myc 3’端募集轉錄終止因子來調(diào)節(jié)myc的轉錄[36];另一方面,CDK12可增強mTORC1靶基因的翻譯,這些靶基因中包括myc轉錄、翻譯所必需的基因[11]。尤文肉瘤患者中最常見的染色體易位是融合蛋白EWS/FLI[37],而CDK12/13抑制劑能以EWS/FLI依賴性方式損害DNA損傷修復,提示CDK12/13抑制劑可治療此類尤文肉瘤患者[38]。HER2過表達的腫瘤也可能對CDK12抑制劑敏感[28]。

CDK12參與多種生物學過程,包括基因轉錄、RNA剪接、mRNA翻譯、內(nèi)含子多聚腺苷酸化和表觀遺傳學修飾等。抑制CDK12可抑制某些特定腫瘤亞型的腫瘤生長。CDK12已成為腫瘤治療的重要潛在靶點。臨床前研究顯示,在一些腫瘤中,CDK12會增強腫瘤的免疫調(diào)節(jié),進而增強腫瘤對免疫抑制劑的敏感性。不過,我們目前對CDK12調(diào)控哪類基因表達的選擇機制不甚了解,對CDK12參與腫瘤免疫調(diào)節(jié)的確切機制也不清楚。盡管至今還無CDK12抑制劑上市,但隨著對CDK12在腫瘤中作用的研究的深入,可能會為腫瘤治療提供一種新的策略。

參考文獻

[1] Malumbres M. Cyclin-dependent kinases [J]. Genome Biol, 2014, 15(6): 122.

[2] Galbraith MD, Bender H, Espinosa JM. Therapeutic targeting of transcriptional cyclin-dependent kinases [J]. Transcription, 2019, 10(2): 118-136.

[3] Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer [J]. Cell, 2017, 168(4): 629-643.

[4] Ko TK, Kelly E, Pines J. CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles [J]. J Cell Sci, 2001, 114(Pt 14): 2591-2603.

[5] Chirackal Manavalan AP, Pilarova K, Kluge M, et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes [J]. EMBO Rep, 2019, 20(9): e47592.

[6] Blazek D, Kohoutek J, Bartholomeeusen K, et al. The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes [J]. Genes Dev, 2011, 25(20): 2158-2172.

[7] Ekumi KM, Paculova H, Lenasi T, et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex [J]. Nucleic Acids Res, 2015, 43(5): 2575-2589.

[8] Dubbury SJ, Boutz PL, Sharp PA. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation [J]. Nature, 2018, 564(7734): 141-145.

[9] Pan L, Xie W, Li KL, et al. Heterochromatin remodeling by CDK12 contributes to learning in Drosophila [J]. Proc Natl Acad Sci U S A, 2015, 112(45): 13988-13993.

[10] Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR [J]. Genes Dev, 2001, 15(7): 807-826.

[11] Choi SH, Martinez TF, Kim S, et al. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability [J]. Genes Dev, 2019, 33(7/8): 418-435.

[12] Stephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes[J]. Nature, 2009, 462(7276): 1005-1010.

[13] Ng CK, Cooke SL, Howe K, et al. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer [J]. J Pathol, 2012, 226(5): 703-712.

[14] McBride DJ, Etemadmoghadam D, Cooke SL, et al. Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes [J]. J Pathol, 2012, 227(4): 446-455.

[15] Menghi F, Barthel FP, Yadav V, et al. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations [J]. Cancer Cell, 2018, 34(2): 197-210.e5.

[16] Popova T, Manié E, Boeva V, et al. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications[J]. Cancer Res, 2016, 76(7): 1882-1891.

[17] Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms [J]. Nature, 2001, 411(6841): 1068-1073.

[18] Green BM, Finn KJ, Li JJ. Loss of DNA replication control is a potent inducer of gene amplification [J]. Science, 2010, 329(5994): 943-946.

[19] Lei T, Zhang P, Zhang X, et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation [J]. Nat Commun, 2018, 9(1): 1876.

[20] Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer [J]. Cell, 2015, 161(5): 1215-1228.

[21] Wu YM, Cie?lik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer [J]. Cell, 2018, 173(7): 1770-1782.e14.

[22] Li Y, Zhang H, Li Q, et al. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer [J]. Cancer Lett, 2020, 495: 12-21.

[23] Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor [J]. Nature, 2014, 511(7511): 616-620.

[24] Olson CM, Liang YK, Leggett A, et al. Development of a selective CDK7 covalent inhibitor reveals predominant cellcycle phenotype [J]. Cell Chem Biol, 2019, 26(6): 792-803. e10.

[25] Zhang T, Kwiatkowski N, Olson CM, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors [J]. Nat Chem Biol, 2016, 12(10): 876-884.

[26] Gao Y, Zhang T, Terai H, et al. Overcoming resistance to the THZ series of covalent transcriptional CDK inhibitors [J]. Cell Chem Biol, 2018, 25(2): 135-142.e5.

[27] Ito M, Tanaka T, Toita A, et al. Discovery of 3-benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective cyclin-dependent kinase 12 (CDK12) inhibitors [J]. J Med Chem, 2018, 61(17): 7710-7728.

[28] Choi HJ, Jin S, Cho H, et al. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling [J]. EMBO Rep, 2019, 20(10): e48058.

[29] Bajrami I, Frankum JR, Konde A, et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity [J]. Cancer Res, 2014, 74(1): 287-297.

[30] Joshi PM, Sutor SL, Huntoon CJ, et al. Ovarian cancerassociated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors [J]. J Biol Chem, 2014, 289(13): 9247-9253.

[31] Paculová H, Kramara J, ?ime?ková ?, et al. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors [J]. Tumour Biol, 2017, 39(10): 1010428317727479.

[32] Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic [J]. Science, 2017, 355(6330): 1152-1158.

[33] Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? [J]. Nat Rev Clin Oncol, 2018, 15(9): 564-576.

[34] Johnson SF, Cruz C, Greifenberg AK, et al. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer [J]. Cell Rep, 2016, 17(9): 2367-2381.

[35] Zeng M, Kwiatkowski NP, Zhang T, et al. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13 [J]. Elife, 2018, 7: e39030.

[36] Davidson L, Muniz L, West S. 3’ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells [J]. Genes Dev, 2014, 28(4): 342-356.

[37] Ludwig JA. Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future [J]. Curr Opin Oncol, 2008, 20(4): 412-418.

[38] Iniguez AB, Stolte B, Wang WJ, et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma [J]. Cancer Cell, 2018, 33(2): 202-216.e6.

猜你喜歡
激酶基因突變細胞周期
大狗,小狗——基因突變解釋體型大小
英語世界(2023年6期)2023-06-30 06:29:10
蚓激酶對UUO大鼠腎組織NOX4、FAK、Src的影響
蚓激酶的藥理作用研究進展
管家基因突變導致面部特異性出生缺陷的原因
紅霉素聯(lián)合順鉑對A549細胞的細胞周期和凋亡的影響
基因突變的“新物種”
NSCLC survivin表達特點及其與細胞周期的關系研究
X線照射劑量率對A549肺癌細胞周期的影響
癌癥進展(2016年10期)2016-03-20 13:15:43
黏著斑激酶和踝蛋白在黏著斑合成代謝中的作用
熊果酸對肺癌細胞株A549及SPCA1細胞周期的抑制作用
呈贡县| 禄劝| 南溪县| 肃北| 乐至县| 济阳县| 绥芬河市| 嵊州市| 康马县| 松江区| 张掖市| 平南县| 澎湖县| 莆田市| 汉源县| 隆德县| 正镶白旗| 岑溪市| 宁明县| 长宁县| 花垣县| 辰溪县| 淳安县| 石景山区| 岳普湖县| 青川县| 宁远县| 揭阳市| 龙岩市| 穆棱市| 满城县| 江城| 道孚县| 长春市| 都江堰市| 桐庐县| 隆子县| 岫岩| 海宁市| 河曲县| 奇台县|