徐境懋 顧明華 韋燕燕 何冰 王學(xué)禮 呂夢(mèng)婷
摘要:【目的】探究外源納米硒和亞硒酸鈉對(duì)鎘污染土壤中水稻的鎘吸收、轉(zhuǎn)運(yùn)和積累的影響,為鎘污染農(nóng)田水稻的安全生產(chǎn)提供參考?!痉椒ā坎捎门柙栽囼?yàn),以不添加外源硒為對(duì)照(CK),設(shè)4個(gè)外源硒處理,分別為每千克土施用納米硒0.5和2.5 mg/kg、亞硒酸鈉(以硒計(jì))0.5和2.5 mg/kg。于水稻灌漿期測(cè)定水稻劍葉葉綠素含量,收獲前測(cè)定水稻光合指標(biāo),收獲后測(cè)定水稻生物量、產(chǎn)量及水稻根、莖、葉、糙米中鎘含量和土壤中鎘的形態(tài),計(jì)算鎘在水稻各部位的分配率和水稻體內(nèi)鎘的遷移率。【結(jié)果】與CK相比,納米硒和亞硒酸鈉處理均顯著提高收獲期水稻劍葉的SPAD值和光合速率(P<0.05,下同);除0.5 mg/kg納米硒處理對(duì)水稻產(chǎn)量無(wú)顯著性影響外(P>0.05),其余處理的水稻產(chǎn)量均顯著提高。外源納米硒和亞硒酸鈉處理均降低土壤中可溶可交換態(tài)鎘的含量,0.5 mg/kg納米硒處理效果最佳,可溶可交換態(tài)鎘含量降低16.0%。外源納米硒和亞硒酸鈉處理能降低鎘污染土壤中水稻對(duì)鎘的吸收、運(yùn)轉(zhuǎn)和積累,2.5 mg/kg納米硒處理效果最佳,水稻根鎘含量降低26.8%,水稻糙米鎘含量降低32.7%,鎘從根到莖葉的轉(zhuǎn)移率降低42.7%,差異均達(dá)顯著水平?!窘Y(jié)論】在鎘污染土壤中施加適量納米硒和亞硒酸鈉可有效降低土壤中鎘的有效性,減少水稻對(duì)鎘的吸收、運(yùn)轉(zhuǎn)和積累。每千克土施用納米硒2.5 mg/kg阻控水稻鎘積累的效果較佳,可作為鎘污染區(qū)水稻安全生產(chǎn)的推薦技術(shù)。
關(guān)鍵詞:水稻;納米硒;鎘含量;鎘形態(tài);轉(zhuǎn)移率
中圖分類號(hào):S511.31? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)10-2727-08
Abstract:【Objective】The effects of exogenous nano-selenium and sodium selenite on cadmium absorption,transport and accumulation in rice in cadmium contaminated soil were studied to provide scientific reference for the regulation of cadmium contaminated farmland and the safe production of rice. 【Method】In this paper,pot experiment was carried out,no exogenous selenium was added as control(CK),and four treatments were set up,0.5 and 2.5 mg/kg of nano-selenium,0.5 and 2.5 mg/kg of sodium selenite (in terms of selenium) were applied per kilogram of soil, respectively. The content of chlorophyll in rice leaves was measured at the grain filling stage,the photosynthetic index of rice was measured before harvest,and the biomass and yield of rice and rice root, stem and leaf were measured after harvest. The content of cadmium in brown rice and the form of cadmium in soil were measured. The distribution rate of cadmium in different parts of rice and the migration rate of cadmium in rice were calculated. 【Result】Compared with CK, nano-selenium and sodium selenite treatments significantly increased SPAD value and photosynthetic rate of rice flag leaves at harvest stage(P<0.05, the same below); except 0.5 mg/kg nano-selenium treatment had no significant effect on rice yield(P>0.05), the other treatments significantly promoted the yield of rice. Both exogenous nano-selenium and sodium selenite treatments reduced the content of soluble exchangeable cadmium in soil,and the treatment of applying 0.5 mg/kg Se derived from nano-selenium of soil had the most significant effect,which reduced the content of soluble exchangeable cadmium by 16.0%. The treatments of exogenous nano-selenium and sodium selenite could reduce the absorption,transport and accumulation of cadmium in rice. Cadmium uptake in rice roots,cadmium content in rice grains,and the transfer rate of cadmium from root to stem and leaf treated with applying 2.5 mg/kg selenium derived from nano-selenium of soil decreased significantly by 26.8%,32.7% and 42.7%,respectively. 【Conclusion】The application of nano-selenium and sodium selenite in cadmium contaminated soil can effectively reduce the availability of cadmium in cadmium contaminated soil,and reduce the absorption,transportation and accumulation of cadmium in rice. The application of 2.5 mg/kg of nano-selenium per kilogram of soil has a better effect on preventing the accumulation of cadmium in rice, which can be used as a recommended technique for safe production of rice in cadmium contaminated areas.
Key words:rice;nano-selenium;cadmium content;cadmium speciation;transfer rate
Foundation item:National Natural Science Foundation of China(41967048);Guangxi Natural Science Foundation(2016GXNSFAA380308);Guangxi Innovation Driven Project(Guike AA17202038)
0 引言
【研究意義】由于礦產(chǎn)開(kāi)發(fā)污染物、工業(yè)三廢的排放和肥料的盲目施用,我國(guó)農(nóng)田環(huán)境中的鎘污染不斷加?。惥┒嫉?,2013)。水稻是我國(guó)居民的主糧,但水稻易于積累鎘,據(jù)報(bào)道我國(guó)每年生產(chǎn)的鎘超標(biāo)糧食達(dá)146億t(龐敏,2018)。鎘超標(biāo)稻米的攝入對(duì)人類健康造成了重大威脅,控制水稻鎘污染,降低稻米鎘含量已迫在眉睫。硒是人體必需的微量元素之一,且少量硒對(duì)植物生長(zhǎng)有益,有研究發(fā)現(xiàn)外源無(wú)機(jī)硒能顯著緩解植物的鎘毒害(張美德,2015;斯鑫鑫等,2021);此外,納米硒與傳統(tǒng)硒肥相比,生物毒性小,具有納米粒子小尺寸效應(yīng)、表面效應(yīng)等優(yōu)勢(shì)(Wang et al.,2007;徐佰青等,2020),應(yīng)用前景受到廣泛關(guān)注。因此,研究納米硒對(duì)鎘污染土壤水稻鎘積累的影響,對(duì)稻米的安全生產(chǎn)和保障居民健康均具有重要意義?!厩叭搜芯窟M(jìn)展】目前已有不少關(guān)于施用外源無(wú)機(jī)硒(亞硒酸鈉、硒酸鈉)降低植物鎘含量的報(bào)道。在鎘污染農(nóng)田種植水稻時(shí)施用亞硒酸鈉和硒酸鈉均能降低水稻中的鎘含量(管遠(yuǎn)清等,2018);低濃度亞硒酸鈉可有效緩解黃芪幼苗鎘脅迫,降低鎘吸收和轉(zhuǎn)運(yùn)(馬月花,2019);在5 μmol/L鎘脅迫下,硒改變了鎘在油菜根中的化學(xué)形態(tài)和亞細(xì)胞分布,增加了細(xì)胞壁多糖含量,有利于促進(jìn)鎘在油菜根中的固定(趙圓圓,2019);鎘脅迫下施加亞硒酸鈉可降低西葫蘆幼苗中的鎘含量,從而減少鎘毒害(郭鋒等,2020)。納米硒作為一種新興納米單質(zhì)粒子材料,由于其安全性高,有逐漸替代傳統(tǒng)無(wú)機(jī)硒肥的趨勢(shì),且大多數(shù)研究均表明納米硒對(duì)作物品質(zhì)具有改善作用。劉嘉興等(2019)研究表明,葉面噴施納米硒可促進(jìn)生菜葉綠素的合成,提高生菜的還原糖和維生素C含量;胡萬(wàn)行等(2020)研究發(fā)現(xiàn),紫色馬鈴薯葉面噴施納米硒可顯著提高馬鈴薯塊莖的品質(zhì);Li等(2020)研究發(fā)現(xiàn),葉面噴施納米硒可促進(jìn)辣椒辣椒素合成,并促進(jìn)次生代謝物和抗氧化劑積累。【本研究切入點(diǎn)】目前,關(guān)于納米硒對(duì)鎘污染土壤中水稻鎘積累影響的研究尚未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以廣西某地的鎘污染土壤為供試土壤,采用盆栽試驗(yàn),探究向土壤施用不同濃度的納米硒和亞硒酸鈉對(duì)水稻鎘吸收、轉(zhuǎn)運(yùn)及積累的影響,為鎘污染農(nóng)田中水稻的安全生產(chǎn)提供參考。
1 材料與方法
1. 1 試驗(yàn)地概況
試驗(yàn)在廣西大學(xué)農(nóng)學(xué)院(東經(jīng)108°17′21″,北緯22°51′18″)試驗(yàn)大棚中進(jìn)行。供試土壤采自廣西某地的鎘污染農(nóng)田,土壤理化性質(zhì):鎘含量1.6 mg/kg,pH 7.1,有機(jī)質(zhì)22.6 g/kg,堿解氮75.4 mg/kg,速效鉀67.2 mg/kg,速效磷12.2 mg/kg,總硒含量0.6 mg/kg。
1. 2 試驗(yàn)材料
供試水稻品種為秈型三系雜交水稻宜香99E-4;供試納米硒參照閆金朋(2019)的方法制備,亞硒酸鈉(Na2SeO3)純度98%(天津市四通化工廠生產(chǎn))。
1. 3 試驗(yàn)方法
試驗(yàn)采用盆栽法,在直徑50 cm、高30 cm的塑料桶中裝7.5 kg風(fēng)干過(guò)篩土。以不添加外源硒為對(duì)照(CK),設(shè)4個(gè)外源硒處理,分別為每千克土中施用納米硒0.5 mg/kg(Se0-0.5)和2.5 mg/kg(Se0-2.5)、亞硒酸鈉(以硒計(jì))0.5 mg/kg(SeⅣ-0.5)和2.5 mg/kg(SeⅣ-2.5)。外源硒一次性施加到土壤中并拌勻,每處理4個(gè)重復(fù),共20盆。其他肥料各處理一致,每1 kg風(fēng)干土施加氮肥(尿素)0.5 g、磷肥(磷酸二氫鉀)0.7 g、鉀肥(氯化鉀)0.4 g。將水稻種子置于氯酸鈉溶液中浸泡滅菌,播種于消過(guò)毒的育苗盤(pán),在溫室大棚中催芽,培養(yǎng)一周后,選取3葉1心的水稻幼苗進(jìn)行移栽,每盆3穴,每穴2株,150 d后收獲成熟水稻。其他措施均按照水稻盆栽試驗(yàn)管理規(guī)程進(jìn)行管理。
1. 4 測(cè)定指標(biāo)及方法
水稻灌漿期用葉綠素測(cè)定儀(SPAD-502,深圳菲特立科技有限公司)檢測(cè)水稻劍葉SPAD值;水稻收獲前用光合作用測(cè)定儀(LI-6400,美國(guó)LI-COR公司)測(cè)定水稻第3完全展開(kāi)葉的凈光合速率、氣孔導(dǎo)度、胞間CO2濃度和蒸騰速率;水稻收獲后測(cè)定其地上部生物量和產(chǎn)量。采用連續(xù)提取法測(cè)定土壤中鎘的形態(tài)(可溶可交換態(tài)鎘、有機(jī)吸附態(tài)鎘、無(wú)機(jī)沉淀物吸附態(tài)鎘和殘留態(tài)鎘)(楊曉磊和朱恩,2016)。將烘干磨碎的水稻根、莖、葉和糙米樣品放入消解管中,加入5 mL濃硝酸,置于微波消解儀(CEM Mars6,美國(guó))中消解,消解液中鎘含量采用ICP-MS(Agilient 7500a,美國(guó))進(jìn)行測(cè)量。
鎘的轉(zhuǎn)移率(TF)計(jì)算:
根到莖葉轉(zhuǎn)移率(%)=莖葉鎘積累量/根部鎘積累量×100
莖葉到籽粒轉(zhuǎn)移率(%)=籽粒鎘積累量/莖葉鎘積累量×100
水稻各部位鎘分配率計(jì)算:
分配率(%)=N鎘積累量/總鎘積累量×100
式中,N代表籽粒、莖、葉、根。
1. 5 統(tǒng)計(jì)分析
利用Excel 2016進(jìn)行數(shù)據(jù)整理;使用SPPS 21.0進(jìn)行方差分析及Duncan’s多重比較;采用Origin 2017作圖。
2 結(jié)果與分析
2. 1 外源硒對(duì)鎘污染土壤中水稻葉片光合特性的影響
由圖1可看出,與CK相比,納米硒和亞硒酸鈉處理均顯著提高了收獲期水稻劍葉的SPAD值(P<0.05,下同),但4個(gè)外源硒處理間無(wú)顯著差異(P>0.05,下同)。由表1可知,與CK相比,納米硒和亞硒酸鈉處理均可顯著提高收獲期水稻的光合速率,光合速率提高12.7%~20.6%,但各外源硒處理間差異不顯著;亞硒酸鈉處理顯著提高水稻葉片氣孔導(dǎo)度,但納米硒和亞硒酸鈉處理間差異不顯著;除0.5 mg/kg納米硒(Se0-0.5)處理與CK的胞間CO2濃度差異不顯著外,其他外源硒處理均顯著降低水稻葉片的胞間CO2濃度;納米硒和亞硒酸鈉處理均顯著提高水稻葉片的蒸騰速率,2.5 mg/kg亞硒酸鈉(SeⅣ-2.5)處理的水稻葉片蒸騰速率最高,較CK提高31.3%。
2. 2 外源硒對(duì)鎘污染土壤中水稻生長(zhǎng)的影響
由圖2可知,在鎘污染土壤中,納米硒和亞硒酸鈉處理均可提高水稻的地上部生物量和產(chǎn)量,0.5 mg/kg納米硒(Se0-0.5)處理提高水稻地上部生物量的效果最好,較CK顯著提高21.0%,且同時(shí)顯著高于其他外源硒處理;0.5 mg/kg亞硒酸鈉(SeⅣ-0.5)處理提高水稻產(chǎn)量的效果最佳,較CK顯著提高23.9%,0.5 mg/kg納米硒(Se0-0.5)處理的水稻產(chǎn)量與CK差異不顯著。
2. 3 外源硒對(duì)鎘污染土壤中鎘形態(tài)的影響
由圖3可看出,無(wú)機(jī)沉淀物吸附態(tài)鎘在土壤中所占比例最高,其余依次為殘?jiān)鼞B(tài)鎘、有機(jī)吸附態(tài)鎘和可溶可交換態(tài)鎘。與CK相比,4種外源硒處理均降低了土壤中可溶可交換態(tài)鎘的比例,降幅為3.6%~16.0%,0.5 mg/kg納米硒(Se0-0.5)處理效果最佳;除0.5 mg/kg亞硒酸鈉(SeⅣ-0.5)處理外,其余外源硒處理均提高了殘?jiān)鼞B(tài)鎘的比例,升幅為4.0%~10.4%;0.5 mg/kg納米硒(Se0-0.5)降低可溶可交換態(tài)鎘含量比例最高,達(dá)16.0%。總的來(lái)說(shuō),適量施用納米硒和亞硒酸鈉對(duì)污染水稻土壤中的鎘均可起到鈍化作用,且納米硒的鈍化效果相對(duì)較佳。
2. 4 外源硒對(duì)鎘污染土壤中水稻鎘含量的影響
由圖4可看出,添加外源硒處理均可降低水稻各部位的鎘含量。與CK相比,添加外源硒處理顯著降低水稻根部鎘含量19.4%~26.8%,其中2.5 mg/kg納米硒(Se0-2.5)處理的鎘含量最低,同一添加量水平納米硒與亞硒酸鈉處理的水稻根鎘含量差異不顯著(圖4-A)。外源硒處理也顯著降低了水稻莖、葉及糙米中的鎘含量,與CK相比,水稻莖、葉和糙米鎘含量分別降低38.0%~55.7%、31.1%~47.2%和17.3%~32.7%,且納米硒處理的降鎘效果優(yōu)于亞硒酸鈉處理(圖4-B、圖4-C和圖4-D)。整體來(lái)看,2.5 mg/kg納米硒(Se0-2.5)處理的水稻根、莖、葉及糙米鎘含量均最低,降鎘效果最佳。
2. 5 外源硒對(duì)鎘污染土壤中水稻體內(nèi)鎘分配率的影響
由圖5可知,水稻中的鎘主要分布在根部,占整株的48.3%~58.5%;其次是莖和葉,鎘分配率分別是17.7%~23.4%和9.7%~17.0%;籽粒的鎘分配率最低,僅6.0%~7.3%。與CK相比,外源硒顯著影響鎘在水稻根、莖、葉的分配,且施加納米硒的的效果優(yōu)于亞硒酸鈉,其中2.5 mg/kg納米硒(Se0-2.5)處理將根部鎘的分配比例提高10.1%,0.5 mg/kg納米硒(Se0-0.5)處理則將莖、葉鎘的比例依次減少5.7%和7.3%。
2. 6 外源硒對(duì)鎘污染土壤中對(duì)水稻體內(nèi)鎘轉(zhuǎn)移率的影響
為進(jìn)一步分析納米硒和亞硒酸鈉對(duì)水稻體內(nèi)鎘積累的影響,采用轉(zhuǎn)運(yùn)系數(shù)來(lái)反映鎘在水稻植株不同部位的轉(zhuǎn)移分配。由圖6-A可知,在鎘污染土壤中,CK中鎘從根到莖葉的轉(zhuǎn)移率高達(dá)83.6%,外源硒處理顯著降低鎘從根到莖葉的轉(zhuǎn)移率,0.5 mg/kg納米硒(Se0-0.5)、2.5 mg/kg納米硒(Se0-2.5)、0.5 mg/kg亞硒酸鈉(SeⅣ-0.5)和2.5 mg/kg亞硒酸鈉(SeⅣ-2.5)處理的鎘從根到莖葉的轉(zhuǎn)移率分別為47.1%、47.9%、67.2%和64.6%,分別較CK降低43.7%、42.7%、19.6%和22.7%。但鎘從莖葉到籽粒的轉(zhuǎn)移率差異并不顯著(圖6-B)??偟膩?lái)說(shuō),納米硒降低水稻根中鎘向莖葉轉(zhuǎn)移的效果較好。
3 討論
3. 1 外源硒對(duì)鎘污染土壤中水稻生長(zhǎng)的影響
前人研究表明,硒可減少重金屬脅迫的不利影響。適宜濃度的硒可減輕鎘毒害從而促進(jìn)植物生長(zhǎng)(于淑慧等,2013)。鎘含量升高會(huì)誘導(dǎo)植物體內(nèi)產(chǎn)生過(guò)量的活性氧(ROS)(郭鋒等,2020),ROS會(huì)損害光合器官,從而對(duì)植物光合作用產(chǎn)生毒害(Christian and Michel,2009)。硒不是植物生長(zhǎng)的必需營(yíng)養(yǎng)元素,但硒可提高植物體內(nèi)的抗氧化酶活性,從而調(diào)節(jié)活性氧代謝(Djanaguiraman et al.,2010),增強(qiáng)作物抵御脅迫的能力(鐘松臻等,2017)。郭鋒等(2020)研究表明,硒可顯著提高西葫蘆幼苗抗氧化酶活性,從而緩解鎘毒害。本研究中,2種形態(tài)的外源硒處理均顯著提高了水稻劍葉的葉綠素含量,改善了葉片的光合作用能力,與孫協(xié)平等(2020)研究鎘脅迫下硒對(duì)柑橘葉片葉綠素含量也有提高作用的結(jié)果相似;此外,外源硒處理其他光合指標(biāo)的變化均優(yōu)于對(duì)照,說(shuō)明施加外源硒對(duì)植物的光合作用具有明顯提高,與鐘松臻等(2017)的研究結(jié)論一致,其增強(qiáng)水稻葉片光合作用的主要原因可能得益于外源硒減輕了鎘對(duì)葉綠素的破壞,從而緩解鎘脅迫對(duì)水稻生長(zhǎng)的影響。
前人關(guān)于外源硒肥對(duì)作物產(chǎn)量影響的研究結(jié)果存在差異,姜漢峰等(2020)研究表明外源硒對(duì)作物產(chǎn)量無(wú)顯著影響,而張妮等(2015)研究發(fā)現(xiàn)施用外源硒可促進(jìn)小麥增產(chǎn)。本研究發(fā)現(xiàn),鎘污染土壤中施加納米硒和亞硒酸鈉均可提高水稻產(chǎn)量,但0.5 mg/kg納米硒對(duì)水稻產(chǎn)量的影響不顯著,原因可能是納米硒緩解了鎘對(duì)水稻的毒害,促進(jìn)了水稻的營(yíng)養(yǎng)生長(zhǎng),但該濃度下對(duì)水稻的生殖生長(zhǎng)影響不顯著,而亞硒酸鈉的增產(chǎn)效果優(yōu)于納米硒。納米材料具有表面效應(yīng)、小尺寸效應(yīng)等獨(dú)特的物理化學(xué)特性,被認(rèn)為更易與有機(jī)體作用而產(chǎn)生組織損傷(Nowack and Bucheli,2007)。本研究中的納米硒粒徑為50~100 nm,未對(duì)水稻生長(zhǎng)產(chǎn)生不良影響。總的來(lái)說(shuō),施用納米硒和亞硒酸鈉均可通過(guò)緩解鎘對(duì)水稻光合作用的抑制,提高葉片光合作用能力,緩解鎘脅迫對(duì)水稻生長(zhǎng)的影響,進(jìn)而提高水稻產(chǎn)量。
3. 2 外源硒對(duì)鎘污染土壤中鎘形態(tài)的影響
土壤鎘形態(tài)與水稻鎘含量密切相關(guān),其中水溶交換態(tài)鎘是土壤鎘形態(tài)中的有效部分,能被植物吸收利用,與水稻籽粒鎘含量顯著正相關(guān),可作為土壤污染的評(píng)判指標(biāo)(喻華等,2017;劉道榮和周漪,2020)。本研究發(fā)現(xiàn),2種形態(tài)外源硒均可降低土壤中可溶可交換態(tài)鎘含量,且在土壤中施加0.5 mg/kg納米硒和亞硒酸鈉,可顯著降低可溶可交換態(tài)鎘所占比例,提高殘?jiān)鼞B(tài)鎘所占比例,與劉達(dá)等(2016)報(bào)道的外源硒降低非根際土壤交換態(tài)鎘含量43.79%的結(jié)果相似。土壤中可交換態(tài)重金屬最易被生物利用,而殘?jiān)鼞B(tài)活性最小,最難被生物利用(馬麗等,2019)。由此可見(jiàn),施加適量的外源硒可降低土壤中的有效態(tài)鎘含量,提高土壤殘?jiān)鼞B(tài)鎘含量。進(jìn)一步分析發(fā)現(xiàn),納米硒處理對(duì)土壤鎘的鈍化效果優(yōu)于亞硒酸鈉處理。納米顆粒產(chǎn)生的量子效應(yīng)會(huì)影響物質(zhì)的性能和結(jié)構(gòu),表現(xiàn)出比宏觀結(jié)構(gòu)更加優(yōu)越的理化性質(zhì)(Gong et al.,2018);特別是納米顆粒擁有更大的比表面積,比一般單質(zhì)的表面能更高,由于表面配位原子數(shù)不足,因此更能吸附土壤中的其他原子(徐麗君,2009)。已有報(bào)道表明,鐵、錳等元素的納米材料可作為鈍化材料應(yīng)用于重金屬污染土壤的修復(fù)當(dāng)中(Chen et al.,2016;徐佰青等,2020 )。本研究同樣表明外源施用納米硒有利于減少鎘在土壤中的有效性。
3. 3 外源硒對(duì)鎘污染土壤中水稻吸收轉(zhuǎn)運(yùn)鎘的影響
根系是水稻吸收鎘的第一道屏障。鎘通過(guò)根系細(xì)胞中的載體蛋白運(yùn)輸進(jìn)入植物體內(nèi),之后轉(zhuǎn)移至根系維管柱,最后向地上部轉(zhuǎn)運(yùn)(Li et al.,2017)。鎘在水稻根部?jī)?nèi)外皮層間的運(yùn)輸則需借助其他金屬轉(zhuǎn)運(yùn)蛋白的介導(dǎo),如OsIRT1(鐵離子轉(zhuǎn)運(yùn)蛋白)、OsIRT2、OsHMA2(重金屬ATP酶)和OsNramp5(自然抗性相關(guān)巨噬細(xì)胞蛋白)等(馬卉等,2020)。有研究發(fā)現(xiàn),OsNramp5參與鎘在根木質(zhì)部的裝載,OsHMA2也參與鎘在水稻根冠之間的轉(zhuǎn)運(yùn),綜合影響著鎘的向上轉(zhuǎn)運(yùn)(Takahashi et al.,2011;Satoh-Nagasawa et al.,2012)。本研究顯示,在鎘污染土壤施加納米硒與亞硒酸鈉后,水稻根部鎘含量顯著下降,與張生榮(2019)研究發(fā)現(xiàn)施加低濃度的納米硒與亞硒酸鈉能降低上海青根部鎘含量60%以上的研究結(jié)果一致。此外,本研究還發(fā)現(xiàn)水稻中的鎘主要分布在根部,占植物總鎘含量的48.3%~58.5% ,與對(duì)照相比,納米硒和亞硒酸鈉處理均提高了根部鎘的分配率,說(shuō)明外源納米硒和亞硒酸鹽不僅降低鎘的吸收,還增加鎘在根系的固定,減少鎘向地上部分的遷移。Cui等(2018)報(bào)道指出外源硒處理能下調(diào)表達(dá)水稻細(xì)胞鎘相關(guān)轉(zhuǎn)運(yùn)基因OsIRT1、OsIRT2、OsLCT1和OsNramp5,從而影響鎘的運(yùn)輸。龐曉辰等(2014)的研究也證實(shí)外源硒可増加根部NPT(非蛋白巰基)細(xì)胞生成,促進(jìn)鎘與根部細(xì)胞壁、NPT等結(jié)合,抑制鎘向植物地上部轉(zhuǎn)運(yùn)。由此可見(jiàn),降低有效態(tài)鎘含量,調(diào)控鎘吸收轉(zhuǎn)運(yùn)基因表達(dá)可能是外源硒降低水稻鎘吸收并抑制鎘向地上部轉(zhuǎn)運(yùn)的主要原因。此外,本研究還發(fā)現(xiàn),納米硒在降低水稻根系鎘吸收、促進(jìn)鎘在根部固定及抑制鎘從根向莖葉轉(zhuǎn)移的作用效果優(yōu)于亞硒酸鈉,其原因可能與納米硒具有獨(dú)特的巨大比表面積和微界面等特性有關(guān)。
稻米是人體鎘攝入的主要途徑之一,GB 2762—2017《食品安全國(guó)家標(biāo)準(zhǔn) 食品中污染物限量》規(guī)定稻米鎘含量不得超過(guò)0.2 mg/kg。本研究中,鎘脅迫下對(duì)照處理糙米鎘含量高于0.2 mg/kg,而4個(gè)外源硒處理的糙米鎘含量均低于0.2 mg/kg,且顯著低于對(duì)照的鎘含量,與管遠(yuǎn)清等(2018)的研究結(jié)果一致。施加納米硒降低稻米中鎘含量的效果優(yōu)于亞硒酸鈉處理,2.5 mg/kg納米硒處理的降幅最高,達(dá)32.7%。因此,選擇適合形態(tài)的硒及其濃度均可有效降低水稻籽粒中的鎘含量。但考慮到納米硒的施用安全性優(yōu)于亞硒酸鈉,因此推薦按2.5 mg/kg納米硒用量作為稻田鎘污染的阻控技術(shù)。但本研究中盆栽試驗(yàn)的水稻生長(zhǎng)環(huán)境與大田環(huán)境條件有所不同,納米硒對(duì)鎘污染區(qū)水稻的鎘阻控效果還待進(jìn)一步研究。
4 結(jié)論
在鎘污染土壤中施加適量的納米硒和亞硒酸鈉均可降低土壤中鎘的有效性,緩解水稻鎘毒害,抑制水稻根系鎘的向上運(yùn)輸并降低籽粒鎘積累。每千克土施用納米硒2.5 mg/kg阻控水稻鎘積累的效果較佳,可作為鎘污染區(qū)水稻安全生產(chǎn)的推薦技術(shù)。
參考文獻(xiàn):
陳京都,何理,許軻,戴其根,郭保衛(wèi),張洪程,霍中洋,魏海燕. 2013. 鎘脅迫對(duì)不同基因型水稻生長(zhǎng)及礦質(zhì)營(yíng)養(yǎng)元素吸收的影響[J]. 生態(tài)學(xué)雜志,32(12):3219-3225. [Chen J D,He L,Xu K,Dai Q G,Guo B W,Zhang H C,Huo Z Y,Wei H Y. 2013. Growth and nutritional element absorption of different rice genotypes under cadmium stress[J]. Chinese Journal of Ecology,32(12):3219-3225.] doi:10.13292/j.1000-4890.2013.0493.
管遠(yuǎn)清,李無(wú)雙,殷行行,丁永禎,馮人偉,王瑞剛,周莉. 2018. 不同水分條件下硒對(duì)水稻鎘吸收與轉(zhuǎn)運(yùn)的影響[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),51(12):1309-1315. [Guan Y Q,Li W S,Yin X X,Ding Y Z,F(xiàn)eng R W,Wang R G,Zhou L. 2018. Effect of selenium on cadmium uptake and transfer in rice plant under diffe-rent water management[J]. Journal of Tianjin University(Science and Technology),51(12):1309-1315.] doi:10. 11784/tdxbz201712060.
郭鋒,吳偉鋒,馮瑜,許劍敏,馬祥愛(ài). 2020. 硒鎘交互作用對(duì)西葫蘆幼苗生長(zhǎng)及抗氧化酶活性的影響[J]. 核農(nóng)學(xué)報(bào),34(10):2335-2342. [Guo F,Wu W F,F(xiàn)eng Y,Xu J M,Ma X A. 2020. Interactive effects of selenium and cadmium on the growth and antioxidative enzymes in zucchini seedling[J]. Journal of Nuclear Agricultural Sciences,34(10):2335-2342.] doi:10.11869/j.issn.100-8551.2020. 10.2335.
胡萬(wàn)行,石玉,程玉琦,趙博思,周云云,張毅. 2020. 納米硒對(duì)紫色馬鈴薯生長(zhǎng)及其礦質(zhì)元素含量和品質(zhì)特性的影響[J]. 西北植物學(xué)報(bào),40(2):296-303. [Hu W X,Shi Y,Cheng Y Q,Zhao B S,Zhou Y Y,Zhang Y. 2020. Effects of nano-selenium on the growth and its mineral element contents and quality characteristics of purple potatoes[J]. Acta Botanica Boreali-Occidentalia Sinica,40(2):296-303.] doi:10.7606/j.issn.1000-4025.2020.02.0296.
姜漢峰,王文希,石壘,盧安喜,徐印印,邢丹英. 2020. 不同硒源葉面肥對(duì)棉花的生長(zhǎng)效應(yīng)[J]. 長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版),17(5):61-64. [Jiang H F,Wang W X,Shi L,Lu A X,Xu Y Y,Xing D Y. 2020. Effects of foliar fertilizer from different selenium sources on cotton growth[J]. Journal of Yangtze University(Natural Science Edition),17(5):61-64.] doi:10.3969/j.issn.1673-1409.2020.05.011.
劉達(dá),涂路遙,趙小虎,尹俊欽,吳志超,胡承孝,田小平,楊晶. 2016. 鎘污染土壤施硒對(duì)植物生長(zhǎng)及根際鎘化學(xué)行為的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),36(3):999-1005. [Liu D,Tu L Y,Zhao X H,Yin J Q,Wu Z Z,Hu C X,Tian X P,Yang J. 2016. Effect of selenium application to the cadmium-polluted rhizosphere on plant growth and chemical behavior of cadmium[J]. Acta Scientiae Circumstantiae,36(3):999-1005.] doi:10.13671/j.hjkxxb.2015.0502.
劉道榮,周漪. 2020. 浙西水田土壤鎘形態(tài)與有效性研究[J]. 物探與化探,44(5):1239-1244. [Liu D R,Zhou Y. 2020. Speciation characteristics and bioavailability of cadmium in paddy soils,western Zhejiang Province[J]. Geophysical and Geochemical Exploration,44(5):1239-1244.] doi:10.11720/wtyht.2020.1562.
劉嘉興,李旭芬,石玉,郭慧玲,侯雷平,張毅. 2019. 葉面噴施生態(tài)納米硒對(duì)生菜品質(zhì)的影響[J]. 浙江農(nóng)業(yè)科學(xué),60(5):803-806. [Liu J X,Li X F,Shi Y,Guo H L,Hou L P,Zhang Y. 2019. Effect of foliar spraying ecological nano-selenium on the quality of lettuce[J]. Journal of Zhejiang Agricultural Sciences,60(5):803-806.] doi:10. 16178/j.issn.0528-9017.20190540.
馬卉,焦小雨,許學(xué),李娟,倪大虎,許蓉芳,王鈺,汪秀峰. 2020. 水稻重金屬鎘代謝的生理和分子機(jī)制研究進(jìn)展[J]. 作物雜志,(1):1-8. [Ma H,Jiao X Y,Xu X,Li J,Ni D H,Xu R F,Wang Y,Wang X F. 2020. Advances in physiological and molecular mechanisms of cadmium metabolism in rice[J]. Crops,(1):1-8.] doi:10.16035/j.issn. 1001-7283.2020.01.001.
馬麗,宋雁輝,徐政雄. 2019. 淺析土壤重金屬形態(tài)轉(zhuǎn)化與土壤污染治理[J]. 環(huán)境影響評(píng)價(jià),41(5):18-21. [Ma L,Song Y H,Xu Z X. 2019. Review of conversion of heavy metals speciation in soil and soil pollution control[J]. Environmental Impact Assessment,41(5):18-21.] doi: 10.14068/j.ceia.2019.05.004.
馬月花. 2019. 黃芪幼苗對(duì)硒、鎘處理的響應(yīng)以及硒緩解鎘脅迫的機(jī)理研究[D]. 哈爾濱:東北林業(yè)大學(xué). [Ma Y H. 2019. Response of Astragalus membranaceus seedling to treatment of selenium and cadmium and mechanism of selenium relieving cadmium stress[D]. Harbin:Northeast Forestry University.]
龐敏. 2018. 鎘超標(biāo)稻谷資源的安全利用關(guān)鍵技術(shù)研究[D]. 長(zhǎng)沙:湖南大學(xué). [Pang M. 2018. Research on the safe utilization technology of cadmium exceeding stand rice resource[D]. Changsha:Hunan University.]
龐曉辰,王輝,吳澤嬴,王爽,劉楚燁,何國(guó)秀,葛瀅. 2014. 硒對(duì)水稻鎘毒性的影響及其機(jī)制的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),33(9):1679-1685. [Pang X C,Wang H,Wu Z Y,Wang S,Liu C Y,He G X,Ge Y. 2014. Alleviation by selenium of cadmium toxicity to rice and its mechanisms[J]. Journal of Agro-Environment Science,33(9):1679-1685.] doi:10.11654/jaes.2014.09.002.
斯鑫鑫,唐尙柱,趙曉海,王順永,李玉成. 2021. 藍(lán)藻有機(jī)富硒肥的研制及其在普通白菜種植中的應(yīng)用[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),37(2):340-347. [Si X X,Tang S Z,Zhao X H,Wang S Y,Li Y C. 2021. Development of selenium-enriched cyanobacteria organic fertilizer and its application in bok choy planting[J]. Jiangsu Journal of Agricultural Sciences,37(2):340-347.] doi:10.3969/j.issn.1000-4440.2021.02.009.
孫協(xié)平,周廣文,羅友進(jìn),韓國(guó)強(qiáng),張玲玲. 2020. 硒鎘伴生對(duì)富硒土壤柑橘生長(zhǎng)及生理代謝的影響[J]. 核農(nóng)學(xué)報(bào),34(3):661-668. [Sun X P,Zhou G W,Luo Y J,Han G Q,Zhang L L. 2020. Effect of selenium cadmium associated on growth and physiological metabolism of citrus in se-enriched soil[J]. Journal of Nuclear Agricultural Sciences,34(3):661-668.] doi:10.11869/j.issn.100-8551. 2020.03.0661.
徐佰青,李平平,李仲龍,王山榕,王永劍. 2020. 納米材料在污染土壤修復(fù)中的應(yīng)用研究進(jìn)展[J]. 當(dāng)代化工,49(5):983-987. [Xu B Q,Li P P,Li Z L,Wang S R,Wang Y J. 2020. Research progress in application of nanomaterials in contaminated soil remediation[J]. Contemporary Chemi-cal Industry,49(5):983-987.] doi:10.3969/j.issn.1671-0460.2020.05.055.
徐麗君. 2009. 新穎SERS基底的制備、表征和光學(xué)活性研究[D]. 長(zhǎng)沙:湖南大學(xué). [Xu L J. 2009. Fabrication,characterization,and optical activity of new SERS substrates[D]. Changsha:Hunan University.] doi:10.7666/d.y151 0769.
閆金朋. 2019. 施用不同形態(tài)硒對(duì)鎘脅迫下水稻生長(zhǎng)及吸收、轉(zhuǎn)運(yùn)鎘的影響[D]. 南寧:廣西大學(xué). [Yan J P. 2019. Effects of selenium application on growth and cadmium uptake,translocation in rice under cadmium stress[D]. Nanning:Guangxi University.]
楊曉磊,朱恩. 2016. 土壤重金屬鎘有效態(tài)檢測(cè)及形態(tài)分析方法研究[J]. 現(xiàn)代農(nóng)業(yè)科技,(12):220. [Yang X L,Zhu E. 2016. Study on available state detection and speciation analysis of heavy metal cadmium in soil[J]. Modern Agricultural Science and Technology,(12):220.] doi:10. 3969/j.issn.1007-5739.2016.12.136.
于淑慧,周鑫斌,王文華,常紅,周永祥. 2013. 硒對(duì)水稻幼苗吸收鎘的影響[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版),35(9):17-22. [Yu S H,Zhou X B,Wang W H,Chang H,Zhou Y X. 2013. Effects of selenium on cadmium absorption in rice seedlings[J]. Journal of Southwest University(Natural Science Edition),35(9):17-22.] doi:10.3969/j.issn. 1671-962X.2012.06.042.
喻華,秦魚(yú)生,陳琨,曾祥忠,張焱,李麗君,涂仕華. 2017. 水稻土鎘形態(tài)分布特征及其生物效應(yīng)研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),30(2):452-457. [Yu H,Qin Y S,Chen K,Zeng X Z,Zhang Y,Li L J,Tu S H. 2017. Distribution characteristics of cadmium forms and its correlation with biological effect in paddy soil[J]. Southwest China Journal of Agricultural Sciences,30(2):452-457.] doi:10.16213/j.cnki.scjas.2017.2.035.
張美德,艾倫強(qiáng),盧超,何銀生,劉海華. 2015. 硒對(duì)鎘脅迫下白術(shù)幼苗生理特性的影響[J]. 江蘇農(nóng)業(yè)科學(xué),43(10):306-308. [Zhang M D,Ai L Q,Lu C,He Y S,Liu H H. 2015. Effects of selenium on physiological characteristics of atractylodes macrocephala seedlings under cadmium stress[J]. Jiangsu Agriculture Sciences,43(10):306-308.] doi:10.15889/j.issn.1002-1302.2015.10.101.
張妮,李琦,張棟,侯振安,冶軍,蘇志偉,梁成龍. 2015. 外源硒對(duì)滴灌小麥籽粒硒含量及產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào),35(7):995-1001. [Zhang N,Li Q,Zhang D,Hou Z A,Ye J,Su Z W,Liang C L. 2015. Effect of selenium fertilizer in drip irrigation on wheat yield and selenium content[J]. Journal of Triticeae Crops,35(7):995-1001.] doi:10.7606/j.issn.1009-1041.2015.07.16.
張生榮. 2019. 納米硒在植物體內(nèi)的遷移轉(zhuǎn)化及緩解植物鎘脅迫的機(jī)理研究[D]. 濟(jì)南:山東大學(xué). [Zhang S R. 2019. Mechanism of migration and transformation of Nano selenium and mitigates cadmium stress in plants[D]. Jinan:Shandong University.]
趙園園. 2019. 硒對(duì)鎘脅迫下油菜生長(zhǎng)及根部鎘響應(yīng)的調(diào)控[D]. 武漢:華中農(nóng)業(yè)大學(xué). [Zhao Y Y. 2019. Selenium regulated plant growth and cadmium response in root of rape under cadmium stress[D]. Wuhan:Huangzhong Agri-cultural University.]
鐘松臻,張寶軍,張木,李蘋(píng),付弘婷. 2017. 硒對(duì)水稻光合作用及抗氧化作用的影響[J]. 中國(guó)土壤與肥料,(4):134-139. [Zhong S Z,Zhang B J,Zhang M,Li P,F(xiàn)u H T. 2017. Effects of selenium on photosynthesis and antioxidation of rice[J]. Soil and Fertilizer Sciences in China,(4):134-139.] doi:10.11838/sfsc.20170421.
Chen W F,Zhang J H,Zhang X M,Wang W Y,Li Y X. 2016. Investigation of heavy metal(Cu,Pb,Cd,and Cr)stabilization in river sediment by nano-zero-valent iron/activated carbon composite[J]. Environmental Science and? Pollution Research,23(2):1460-1470. doi:10.1007/s11 356-015-5387-5.
Christian T,Michel H. 2009. Singlet oxygen in plants:Production,detoxification and signaling[J]. Trends in Plant Scien-ce,14(4):219-228. doi:10.1016/j.tplants.2009.01.008.
Cui J H,Liu T X,Li Y D,Li F B. 2018. Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes[J]. Science of the Total Environment,644:602-610. doi:10.1016/j.scitotenv.2018.07.002.
Djanaguiraman M,Prasad P V V,Seppanen M. 2010. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system[J]. Plant Physiology & Biochemistry,48(12):999-1007. doi:10.1016/j.plaphy.2010.09.009.
Gong X M,Huang D L,Liu Y G,Peng Z W,Zeng G M,Xu P,Cheng M,Wang R Z,Wan J. 2018. Remediation of contaminated soils by biotechnology with nanomaterials:Bio-behavior,applications,and perspectives[J]. Critical reviews in biotechnology,38(3):455-468. doi:10.1080/07388551.2017.1368446.
Li D,Zhou C R,Zhang J B,An Q S,Wu Y L,Li J Q,Pan C P. 2020. Nanoselenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway[J]. Journal of Agricultural and Food Chemistry,68(37):9888-9895. doi:10.1021/acs.jafc. 0c03044.
Li H,Luo N,Li Y W,Li Y W,Cai Q Y,Li H Y,Mo C H,Wong M H. 2017. Cadmium in rice:Transport mechanisms,influencing factors,and minimizing measures[J]. Environmental Pollution,224:622-630. doi:10.1016/j.envpol.2017.01.087.
Nowack B,Bucheli T D. 2007. Occurrence,behavior and effects of nanoparticles in the environment[J]. Environmental Pollution,150(1):5-22. doi:10.1016/j.envpol. 2007.06.006.
Satoh-Nagasawa N,Mori M,Nakazawa N,Kawamoto T,Nagato Y,Sakurai K,Takahashi H,Watanabe A,Akagi H. 2012. Mutations in rice(Oryza sativa) heavy metal ATPase 2(OsHMA2)restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology,53(1):213-224. doi:10. 1093/pcp/pcr166.
Takahashi R,Ishimaru Y,Senoura T,Shimo H,Ishikawa S,Arao T,Nakanishi H,Nishizawa N K. 2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany,62(14):4843-4850. doi:10.1093/jxb/err136.
Wang H,Zhang J,Yu H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes:comparison with selenomethionine in mice[J]. Free Radical Biology & Me-dicine,42(10):1524-1533. doi:10.1016/j.freeradbiomed. 2007.02.013.
(責(zé)任編輯 王 暉)