譚爽 梁鳳超 鄢南興 林喆 康建兵
Stewart次鏡調(diào)整平臺(tái)空間包絡(luò)判定算法研究
譚爽 梁鳳超 鄢南興 林喆 康建兵
(北京空間機(jī)電研究所,北京 100094)
由于空間遙感相機(jī)受體積、質(zhì)量和制造成本的限制,Stewart次鏡調(diào)整平臺(tái)需要在任意運(yùn)動(dòng)時(shí)刻不超出給定的包絡(luò)尺寸,急需一種解決相機(jī)次鏡平臺(tái)空間運(yùn)動(dòng)約束的包絡(luò)判定算法。文章根據(jù)結(jié)構(gòu)參數(shù)建立了Stewart次鏡調(diào)整平臺(tái)運(yùn)動(dòng)模型,利用三角函數(shù)關(guān)系并考慮支桿長(zhǎng)度的約束,推導(dǎo)模型中平移與旋轉(zhuǎn)的極限位置,然后給出空間包絡(luò)的判定方法。將該判定模型應(yīng)用于某空間遙感相機(jī)的Stewart次鏡調(diào)整平臺(tái)實(shí)例中,運(yùn)用解析法可快速計(jì)算出極限位置,節(jié)約了大量時(shí)間;運(yùn)用數(shù)值法可進(jìn)一步精確求出在有支桿長(zhǎng)度約束時(shí)的極限位置,解析法和數(shù)值法結(jié)果均滿足包絡(luò)尺寸的要求,表明該包絡(luò)判定算法適用于六自由度并聯(lián)機(jī)構(gòu)的空間包絡(luò)判定。
六自由度并聯(lián)機(jī)構(gòu) 空間包絡(luò) 包絡(luò)模型 次鏡調(diào)整 空間相機(jī)
空間光學(xué)遙感器在軌應(yīng)用時(shí),由于受到發(fā)射力學(xué)環(huán)境、在軌重力場(chǎng)和溫度場(chǎng)等因素的影響,載荷部組件易產(chǎn)生相對(duì)位姿失配和面形誤差,導(dǎo)致光學(xué)載荷的探測(cè)性能偏離原有設(shè)計(jì)、系統(tǒng)探測(cè)性能和成像品質(zhì)嚴(yán)重衰減[1-3]。由于遙感器的次鏡質(zhì)量小、靈敏度高,可通過(guò)調(diào)整次鏡多自由度位姿來(lái)矯正相對(duì)位姿失配,從而減小甚至消除初級(jí)像差(球差、彗差、像散、場(chǎng)曲),理論和實(shí)踐均已表明,這是調(diào)整代價(jià)較小且調(diào)整效果最佳的方式[4-7]。在工程實(shí)現(xiàn)方面,國(guó)內(nèi)外均普遍采用Stewart平臺(tái)來(lái)調(diào)整次鏡的位姿,從而實(shí)現(xiàn)六自由度高精度位姿調(diào)整,其中最具有代表性的是美國(guó)詹姆斯韋伯太空望遠(yuǎn)鏡[8-11]。
某高分辨率空間光學(xué)遙感器,選擇Stewart平臺(tái)作為次鏡位姿調(diào)整平臺(tái),進(jìn)行次鏡位姿的在軌實(shí)時(shí)調(diào)整,使光學(xué)探測(cè)系統(tǒng)的主次鏡位姿關(guān)系回歸至理想狀態(tài),從而滿足系統(tǒng)高分辨率成像的需求。實(shí)際上Stewart平臺(tái)主要應(yīng)用于機(jī)床、飛行器仿真、醫(yī)學(xué)以及精密定位等領(lǐng)域[12-15],這些應(yīng)用對(duì)Stewart平臺(tái)空間尺寸的約束要求不高。而在航天領(lǐng)域,由于衛(wèi)星與載荷在滿足性能與功能的同時(shí),需要考慮每個(gè)分系統(tǒng)的尺寸在工作時(shí)不能超出規(guī)定的界限,再加上質(zhì)量與制造成本的限制,因此分解Stewart次鏡調(diào)整平臺(tái),總體會(huì)給出包絡(luò)尺寸的約束,即要求Stewart次鏡調(diào)整平臺(tái)在位姿調(diào)整的任何時(shí)刻,機(jī)構(gòu)的任何邊緣均不超過(guò)總體給出的包絡(luò)尺寸??紤]到實(shí)際情況,六自由度并聯(lián)機(jī)構(gòu)是一個(gè)立體模型,動(dòng)平臺(tái)具有一定的厚度,在旋轉(zhuǎn)時(shí)若不考慮周全,很可能導(dǎo)致機(jī)構(gòu)的邊緣超出包絡(luò)尺寸。因此,急需一種解決空間相機(jī)次鏡平臺(tái)空間約束的空間包絡(luò)判定算法。
本文給出了判定Stewart次鏡調(diào)整平臺(tái)在運(yùn)動(dòng)過(guò)程中任意時(shí)刻是否超出包絡(luò)尺寸的判斷算法。在運(yùn)動(dòng)學(xué)反解的基礎(chǔ)上,對(duì)動(dòng)平臺(tái)表面圓周上的點(diǎn)進(jìn)行坐標(biāo)分析,建立六自由度并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)模型,并給出模型極限位置的定義,運(yùn)用解析法和數(shù)值法分別推導(dǎo)出模型極限位置并給出空間包絡(luò)的判定方法。解析法結(jié)果簡(jiǎn)單,快速給出極限位置,節(jié)約了大量的仿真時(shí)間;數(shù)值解用于有其他約束時(shí)進(jìn)一步精確求出極限位置,但非常耗費(fèi)時(shí)間。該判定方法適用于判斷Stewart次鏡調(diào)整平臺(tái)是否超出給定的包絡(luò)尺寸,可以避免衛(wèi)星空間的浪費(fèi),從而降低成本。
在進(jìn)行空間光學(xué)遙感器的總體設(shè)計(jì)中,需綜合考慮相機(jī)體積、質(zhì)量和制造成本,對(duì)各個(gè)有效載荷均有空間約束。通過(guò)系統(tǒng)分解,給定次鏡調(diào)整機(jī)構(gòu)的空間約束為直徑、高D的圓柱體,Stewart次鏡調(diào)整機(jī)構(gòu)在運(yùn)動(dòng)過(guò)程中,要求不能超出這一圓柱體的包絡(luò)范圍。
圖1 Stewart六自由度并聯(lián)機(jī)構(gòu)
由動(dòng)平臺(tái)向慣性參考坐標(biāo)系投影,可得表示上平臺(tái)姿態(tài)的方向余弦陣[21],即
式中為動(dòng)坐標(biāo)系繞軸轉(zhuǎn)動(dòng)的角度;為動(dòng)坐標(biāo)系繞軸轉(zhuǎn)動(dòng)的角度;為動(dòng)坐標(biāo)系繞軸轉(zhuǎn)動(dòng)的角度。
-動(dòng)坐標(biāo)系中的任何向量p都可以通過(guò)坐標(biāo)變化變換為-靜坐標(biāo)系中的向量,轉(zhuǎn)換公 式為
式(2)為六自由度并聯(lián)機(jī)構(gòu)動(dòng)平臺(tái)上、下表面圓周上點(diǎn)的運(yùn)動(dòng)學(xué)模型,點(diǎn)的運(yùn)動(dòng)軌跡由間距為h的上下兩個(gè)圓在空間經(jīng)過(guò)平移與旋轉(zhuǎn)形成。因此式(2)可以用于判斷并聯(lián)機(jī)構(gòu)是否滿足包絡(luò)尺寸要求。
為后續(xù)推導(dǎo)方便,記
為便于推導(dǎo),記動(dòng)平臺(tái)運(yùn)動(dòng)范圍為
2.1.1 解析法
對(duì)式(3)利用解析法求點(diǎn)每一坐標(biāo)絕對(duì)值的最值,即極限位置。由于六自由度并聯(lián)機(jī)構(gòu)關(guān)于、軸對(duì)稱,且平臺(tái)位于正方向,所以只需要分別求出x、y和z的最大值即可。
(1)平移運(yùn)動(dòng)極限位置坐標(biāo)
當(dāng)動(dòng)平臺(tái)進(jìn)行平移運(yùn)動(dòng)時(shí),動(dòng)平臺(tái)在、、軸上的坐標(biāo)值滿足
所以,點(diǎn)平移運(yùn)動(dòng)極限位置坐標(biāo)為
(2)旋轉(zhuǎn)運(yùn)動(dòng)極限位置坐標(biāo)
1)r的最大值
根據(jù)三角函數(shù)關(guān)系,當(dāng)h=?時(shí),可得旋轉(zhuǎn)運(yùn)動(dòng)沿方向的極限位置坐標(biāo)為
2)r的最大值
通過(guò)求導(dǎo)分析,當(dāng)h=?時(shí),可得旋轉(zhuǎn)運(yùn)動(dòng)沿方向的極限位置坐標(biāo),即
3)r的最大值
顯而易見(jiàn),在旋轉(zhuǎn)過(guò)程中,r最大值出現(xiàn)在動(dòng)平臺(tái)上表面。因此,式(3)中r為
綜合平移和旋轉(zhuǎn)兩種運(yùn)動(dòng),可得到六自由度并聯(lián)機(jī)構(gòu)極限位置模型為
2.1.2 數(shù)值法
解析法適用于快速簡(jiǎn)單判定極限位置,若給出其他約束條件,使?jié)M足約束條件時(shí)的工作空間一步縮小,無(wú)法一下得到極限位置,則需要通過(guò)數(shù)值法進(jìn)行計(jì)算。下面以支桿約束為例介紹數(shù)值法的具體工作流程。
僅當(dāng)所有的極限位置都在包絡(luò)空間范圍內(nèi),才能夠判定六自由度并聯(lián)機(jī)構(gòu)滿足包絡(luò)尺寸要求。即六自由度并聯(lián)機(jī)構(gòu)的空間包絡(luò)判定模型為
式(6)成立,才能得到六自由度并聯(lián)機(jī)構(gòu)在運(yùn)動(dòng)范圍運(yùn)動(dòng)時(shí)均在包絡(luò)尺寸內(nèi)的結(jié)論。
當(dāng)有約束條件時(shí),要剔除不滿足約束的位姿,所以求解出來(lái)的極限位置應(yīng)該不超過(guò)沒(méi)有約束時(shí)對(duì)應(yīng)的極限位置。因此可先利用解析法求出給定位姿的極限位置(e,e,e),若滿足式(6),則有無(wú)約束,都可以直接給出六自由度并聯(lián)機(jī)構(gòu)在包絡(luò)尺寸內(nèi);若不滿足式(6),則利用數(shù)值法求出有約束條件時(shí)的極限位置e、e和e,然后判斷極限位置是否滿足式(6)。若滿足,則整個(gè)機(jī)構(gòu)在運(yùn)動(dòng)過(guò)程中滿足包絡(luò)尺寸要求。
某相機(jī)Stewart次鏡位姿調(diào)整平臺(tái)的結(jié)構(gòu)參數(shù)、運(yùn)動(dòng)范圍與包絡(luò)尺寸參數(shù)如表1所示。桿長(zhǎng)約束:6個(gè)支桿長(zhǎng)度均在[130,150]mm。
表1 次鏡位姿調(diào)整平臺(tái)機(jī)構(gòu)結(jié)構(gòu)參數(shù)與約束參數(shù)
Tab.1 The structural parameters and the constraint conditions of the secondary mirror adjustment mechanism
利用MATLAB編程,應(yīng)用數(shù)值算法求出在支桿長(zhǎng)度約束下,當(dāng)?,?,?均取0.1mm,?,?,?均取0.1°,?取0.001°時(shí),該六自由度并聯(lián)機(jī)構(gòu)的極限位置坐標(biāo)為:e=122mm,e=122mm,e=143.7mm。各項(xiàng)結(jié)果均滿足式(6)要求。
因此,在給定支桿約束時(shí)動(dòng)平臺(tái)的所有極限位置都在包絡(luò)范圍內(nèi),即該次鏡位姿調(diào)整平臺(tái)六自由度并聯(lián)機(jī)構(gòu)在運(yùn)動(dòng)范圍內(nèi)所有可達(dá)的點(diǎn)均在直徑350mm、高150mm的圓柱體包絡(luò)范圍內(nèi),滿足技術(shù)指標(biāo)要求。
針對(duì)空間光學(xué)遙感器對(duì)Stewart次鏡調(diào)整機(jī)構(gòu)的空間約束要求,根據(jù)六自由度并聯(lián)機(jī)構(gòu)結(jié)構(gòu)參數(shù)與運(yùn)動(dòng)范圍等參數(shù),建立六自由度并聯(lián)機(jī)構(gòu)動(dòng)平臺(tái)的運(yùn)動(dòng)模型,給出了該模型極限位置判定的解析算法與約束條件下的數(shù)值算法,并完整地給出了六自由度并聯(lián)機(jī)構(gòu)空間包絡(luò)判定算法,所得結(jié)論如下:
1)解析算法建模過(guò)程清晰、公式簡(jiǎn)單、計(jì)算量小,但包絡(luò)空間大,包含一些無(wú)效狀態(tài)。適用于簡(jiǎn)單快速計(jì)算沒(méi)有約束限制情況下六自由度并聯(lián)機(jī)構(gòu)是否滿足包絡(luò)尺寸要求。
2)數(shù)值法過(guò)程繁瑣,計(jì)算代價(jià)大,但在有約束時(shí),包含的軌跡更接近真實(shí)狀態(tài),因此適用于精確計(jì)算各個(gè)約束下六自由度并聯(lián)機(jī)構(gòu)是否滿足包絡(luò)尺寸要求。
3)可先利用解析法快速求出極限位置,若滿足包絡(luò)尺寸要求,不用再計(jì)算有約束時(shí)的極限位置,直接給出六自由度并聯(lián)機(jī)構(gòu)滿足包絡(luò)尺寸的結(jié)論。
在某空間遙感器Stewart次鏡調(diào)整平臺(tái)的設(shè)計(jì)中,運(yùn)用解析與數(shù)值方法,判定所研制的Stewart次鏡調(diào)整平臺(tái)極限位置嚴(yán)格處于總體給定的包絡(luò)尺寸內(nèi),為后續(xù)相關(guān)應(yīng)用提供了參考。
[1] 溫正方, 張景旭, 張麗敏. 五自由度次鏡調(diào)整機(jī)構(gòu)的研究[J]. 工程設(shè)計(jì)學(xué)報(bào), 2010, 17(6): 473-478. WEN Zhengfang, ZHANG Jingxu, ZHANG Limin. Research of Five-degree-of-freedom Adjustment Mechanism for Secondary Mirror[J]. Journal of Engineering Design, 2010, 17(6): 473-478. (in Chinese)
[2] 武錫銅. 高精度六自由度并聯(lián)平臺(tái)控制系統(tǒng)設(shè)計(jì)[D]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué), 2018: 1-3. WU Xitong. Control System Design of High Precision 6-DOF Parallel Platform[D]. Hefei: University of Science and Technology of China, 2018: 1-3. (in Chinese)
[3] 王瀚, 曹小濤, 趙偉國(guó), 等. 空間相機(jī)次鏡調(diào)整機(jī)構(gòu)的改進(jìn)布谷鳥(niǎo)標(biāo)定方法[J]. 紅外與激光工程, 2018, 47(5): 1-8. WANG Han, CAO Xiaotao, ZHAO Weiguo, et al. Improved Cuckoo Calibration Method of Space Telescope Secondary Mirror Adjusting Mechanism[J]. Infrared and Laser Engineering, 2018, 47(5): 1-8. (in Chinese)
[4] YANG Dehua, CHENG Ying, WU Changcheng, et al. A Novel Hexapod and Its Prototype for Secondary Mirror Alignment in Telescopes[J]. Research in Astronomy and Astrophysics, 2018, 18(9): 1-10.
[5] SCHIPANI P, PERROTTA F, MOLFESE C, et al. The VST Secondary Mirror Support System[C]//Advanced Optical and Mechanical Technologies in Telescopes And Instrumentation. USA: SPIE, 2008: 701845: 1-10.
[6] 王茫茫, 劉兆軍, 李博. 空間相機(jī)次鏡在軌校正仿真分析[J]. 航天返回與遙感, 2018, 39(2): 73-83. WANG Mangmang, LIU Zhaojun, LI Bo. Simulation Analysis of On-orbit Alignment for the Space Camera Secondary Mirror[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(2): 73-83. (in Chinese)
[7] 姚蕊, 李慶偉, 孫京海, 等. FAST望遠(yuǎn)鏡饋源艙精度分析研究[J]. 機(jī)械工程學(xué)報(bào), 2017, 53(17): 36-42. YAO Rui, LI Qingwei, SUN Jinghai, et al. Accuracy Analysis on Focus Cabin of FAST[J]. Journal of Mechanical Engineering, 2017, 53(17): 36-42. (in Chinese)
[8] WOLF E M, GALLAGHER B B, SCOTT KNIGHT J, et al. JWST Mirror and Actuator Performance at Cryo-vacuum [C]//Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave. USA: SPIE, 2018, 1069808: 1-14.
[9] FEINBERG L, BOLCAR M, KNIGHT S, et al. Ultra-stable Segmented Telescope Sensing and Control Architecture[C]// UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII. USA: SPIE, 2017, 10398: 1-9.
[10] TOULEMONT Y, PASSVOGEL T, PILBRATT G L, et al. The 3.5m all SiC Telescope for HERSCHEL[C]//The International Society for Optical Engineering. USA: SPIE, 2004, 5487: 1119-1128.
[11] PIRNAY O, MARCHIORI G, YEILYAPRAK C, et al. DAG 4m Telescope: Assembly, Integration and Testing[C]// Ground-based and Airborne Telescopes VII. USA: SPIE, 2018, 9906: 990662, 1-14.
[12] 馬光, 周萬(wàn)勇, 汪杰, 等. 六自由度并聯(lián)平臺(tái)多軸運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)[J]. 機(jī)床與液壓, 2020, 48(5): 1-5. MA Guang, ZHOU Wanyong, WANG Jie, et al. Design of Multi-axis Motion Control System for 6-DOF Parallel Platform[J]. Machine Tool & Hydraulics, 2020, 48(5): 1-5. (in Chinese)
[13] 張樸真, 楊建中, 從強(qiáng), 等. 六自由度微振動(dòng)模擬平臺(tái)動(dòng)力學(xué)分析[J]. 航天器工程, 2016, 25(2): 19-25. ZHANG Puzhen, YANG Jianzhong, CONG Qiang, et al. Dynamic Analysis of a 6-DOF Micro-vibration Simulation Platform[J]. Spacecraft Engineering, 2016, 25(2): 19-25. (in Chinese)
[14] 唐天梅. 基于空間并聯(lián)機(jī)構(gòu)的六維放射治療床[J]. 醫(yī)療裝備, 2018, 31(9): 36-37. TANG Tianmei. Research of 6 DOF Radiation Treatment Bed Based on Spatial Parallel Mechanism[J]. Chinese Journal of Medical Device, 2018, 31(9): 36-37. (in Chinese)
[15] CAO X, ZHAO W, ZHAO H, et al. 6-PSS Precision Positioning Stewart Platform for the Space Telescope Adjustment Mechanism[C]// 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: 487-492.
[16] TANG Z Y, MA H, PEI Z C, et al. A New Numerical Method for Stewart Platform Forward Kinematics[C]// Chinese Control Conference, 2016: 6311-6316.
[17] TANG J, CAO D Q,YU T H. Decentralized Vibration Control of a Voice Coil Motor-based Stewart Parallel Mechanism: Simulation and Experiments[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(1): 132-145.
[18] 侯立果, 王丹, 安大衛(wèi), 等. 多維力加載裝置動(dòng)力學(xué)建模及加載試驗(yàn)[J]. 北京航空航天大學(xué)學(xué)報(bào), 2018, 44(5): 1095-1101. HOU Liguo, WANG Dan, AN Dawei, et al. Dynamic Modeling and Loading Experiment of Multi-dimensional Loading Device[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1095-1101. (in Chinese)
[19] JIAO J, WU Y, YU K P, et al. Dynamic Modeling and Experimental Analyses of Stewart Platform with Flexible Hinges[J]. Journal of Vibration and Control, 2019, 25(1): 151-171.
[20] MIUNSKE T, PRADPTA J, SAWODNY O. Model Predictive Motion Cueing Algorithm for an over Determined Stewart Platform[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(2): 1-9.
[21] 傅邵文. 基于LPV方法的Stewart平臺(tái)分散控制問(wèn)題研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2008: 15. FU Shaowen. Research on Stewart Platform’s Decentralized Control Problems Based on LPV Method[D]. Harbin: Harbin Institute of Technology, 2008: 15. (in Chinese)
Study on the Envelope Space Determination Algorithm of the Stewart Platform in the Secondary Mirror Adjustment
TAN Shuang LIANG Fengchao YAN Nanxing LIN Zhe KANG Jianbing
(Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China)
Since the space remote sensing camera is limited by size, weight and manufacturing costs, the secondary mirror pose during adjustment by the Stewart platform, must stay within the given envelope space at any time. An envelope space algorithm is urgently needed to judge whether the Stewart platform is within the given envelope space in real time. Considering the thickness of the moving platform, a kinematics model was firstly built up on the basis of the structure parameters. The extreme translations and orientations of the model were deduced by trigonometric functions respectively and they were added together to get the Stewart platform extreme positions. With the struts length constraint applied on the model, position coordinates that satisfy the constraint were calculated directly, and then the extreme positions were found to determine the envelope space. At last, with an example of the Stewart platform in a space remote sensing camera, the extreme positions were computed by the model in analytical and numerical methods. Both the results of the two methods satisfied the given envelope space. In practice, the analytical method can compute the extreme positions rapidly and efficiently, and the numerical method can have more accurate solutions than the analytical one. The envelope space determination algorithm is suitable for the envelope space judgment of the 6-DOF (6-degree-of-freedom) parallel mechanism.
Stewart platform; space envelope; envelope model; secondary mirror; space camera
TP 24
A
1009-8518(2021)01-0108-07
10.3969/j.issn.1009-8518.2021.01.013
譚爽,女,1989年生,2015年獲得中國(guó)空間技術(shù)研究院光學(xué)工程碩士學(xué)位,工程師。目前主要從事六自由度并聯(lián)機(jī)構(gòu)設(shè)計(jì)與控制算法的相關(guān)工作。E-mail:tsjlyz@163.com。
2020-05-25
譚爽, 梁鳳超, 鄢南興, 等. Stewart次鏡調(diào)整平臺(tái)空間包絡(luò)判定算法研究[J]. 航天返回與遙感, 2021, 42(1): 108-114.
TAN Shuang, LIANG Fengchao, YAN Nanxing, et al. Study of the Envelope Space Determination Algorithm of the Stewart Platform in the Secondary Mirror Adjustment[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1): 108-114. (in Chinese)
(編輯:夏淑密)