張春霞,劉峰
優(yōu)博專欄
造血干細(xì)胞發(fā)育過程中的信號通路調(diào)控
張春霞1,2,劉峰1
1. 中國科學(xué)院動物研究所,膜生物學(xué)國家重點實驗室,北京 100101 2. 波士頓兒童醫(yī)院,波士頓 02115
血液系統(tǒng)是維持機(jī)體生命活動最重要的系統(tǒng)之一,為機(jī)體提供所需的氧氣和營養(yǎng)物質(zhì),通過物質(zhì)交換維持內(nèi)環(huán)境的穩(wěn)態(tài),同時為機(jī)體提供免疫防御與保護(hù)。血細(xì)胞是血液的重要組成成分,機(jī)體中成熟血細(xì)胞類型起源于具有自我更新及分化潛能的多能成體干細(xì)胞—造血干細(xì)胞(hematopoietic stem cells, HSCs)。造血干細(xì)胞及各類血細(xì)胞產(chǎn)生、發(fā)育及成熟的過程稱為造血過程,該過程開始于胚胎發(fā)育早期并貫穿整個生命過程,任一階段出現(xiàn)異常都可能導(dǎo)致血液疾病的發(fā)生。因此,深入探究造血發(fā)育過程及其調(diào)控機(jī)制對于認(rèn)識并治療血液疾病至關(guān)重要。近年來,以小鼠()和斑馬魚()作為動物模型來研究造血發(fā)育取得了一系列的進(jìn)展。其中,BMP、Notch和Wnt等信號通路對造血干細(xì)胞的命運決定和產(chǎn)生發(fā)揮了重要作用。本文對這些信號通路在小鼠和斑馬魚造血過程中的調(diào)控作用進(jìn)行系統(tǒng)總結(jié),以期能夠完善造血發(fā)育過程的調(diào)控網(wǎng)絡(luò)并為臨床應(yīng)用提供指導(dǎo)。
造血干細(xì)胞;信號通路;BMP;Notch;Wnt
造血干細(xì)胞(hematopoietic stem cells, HSCs)是一群具有自我更新及分化潛能的多能干細(xì)胞,可以產(chǎn)生所有類型的血細(xì)胞[1]。血細(xì)胞可以分為髓系和淋系兩大類,其中髓系細(xì)胞包括紅系細(xì)胞、粒系細(xì)胞、巨核系細(xì)胞和單核系細(xì)胞,淋系細(xì)胞主要包括T淋巴細(xì)胞、B淋巴細(xì)胞和自然殺傷性細(xì)胞(NK細(xì)胞)。造血干細(xì)胞及各類血細(xì)胞產(chǎn)生、發(fā)育和成熟的過程稱為造血過程。脊椎動物的造血過程起始于胚胎期,可以分為初級造血和次級造血兩個階段。造血干細(xì)胞以內(nèi)皮-造血轉(zhuǎn)化的形式產(chǎn)生于次級造血階段。造血干細(xì)胞發(fā)育在脊椎動物中是高度保守的過程,該過程受到多種信號通路和調(diào)控因子的精密調(diào)控。一些信號通路,如ERK、Notch以及β-Catenin介導(dǎo)的Wnt信號通路,在造血干細(xì)胞產(chǎn)生過程中的作用是動態(tài)變化的,也是濃度和時間依賴的。深入了解這些信號通路在造血干細(xì)胞發(fā)育過程中的調(diào)控網(wǎng)絡(luò)和作用機(jī)制,不僅能夠幫助理解體內(nèi)造血干細(xì)胞的產(chǎn)生過程,也能為體外造血提供理論依據(jù)。小鼠()和斑馬魚()是目前最常用的研究造血發(fā)育的動物模型。從胚胎發(fā)育早期到成體,盡管發(fā)生部位有所不同,造血發(fā)育的階段性過程在兩種動物模型中是相似的。本文以BMP、Notch和Wnt信號通路為例,詳細(xì)介紹信號通路在造血發(fā)育過程中的調(diào)控作用。
哺乳動物的造血發(fā)生起源于胚胎的腹側(cè)中胚層,其中部分細(xì)胞特化為成血成血管細(xì)胞(hemangioblast),這類細(xì)胞同時具有向血細(xì)胞和血管細(xì)胞分化的能力[2]。在小鼠中,成血成血管細(xì)胞最早出現(xiàn)在卵黃囊的血島區(qū)(blood island in the yolk sac),胚胎期7.5天(E7.5)左右此處可檢測到血細(xì)胞的產(chǎn)生,這一過程稱為初級造血(primitive hematopoiesis),主要產(chǎn)生初級紅系(primitive erythroid)和初級髓系(primitive myeloid)血細(xì)胞,為胚胎早期發(fā)育供氧氣和免疫防御[3]。E9.5卵黃囊區(qū)能夠產(chǎn)生一群具有分化成紅細(xì)胞、巨核細(xì)胞和巨噬細(xì)胞等多項潛能的紅系–髓系前體細(xì)胞(erythro-myeloid progenitors, EMPs)[4,5]。近期研究發(fā)現(xiàn)特定組織定居的巨噬細(xì)胞,如肝臟的Kupffer細(xì)胞、腦部的小膠質(zhì)細(xì)胞、上皮的郎格罕氏細(xì)胞及肺部的肺泡巨噬細(xì)胞等,都來源于卵黃囊的紅系–髓系前體細(xì)胞,并不依賴于造血干細(xì)胞[6,7]。除紅系和髓系細(xì)胞之外,在造血干細(xì)胞產(chǎn)生之前,卵黃囊還能產(chǎn)生一群具有淋系(lymphoid)分化潛能的前體細(xì)胞,可以分化為B淋巴細(xì)胞和T淋巴細(xì)胞,為機(jī)體供免疫防御[8]。
初級造血是一個短暫的階段,其產(chǎn)生的血細(xì)胞類型和數(shù)目不足以維持胚胎發(fā)育和成體需要,因此很快就被次級造血(definitive hematopoiesis)代替[4]。造血干細(xì)胞產(chǎn)生于次級造血階段,主要在E10.5小鼠胚胎的動脈–性腺–中腎區(qū)(aorta-gonad-mesone-phros, AGM)產(chǎn)生[9],在小鼠的胎盤[10]等區(qū)域也能檢測到造血干細(xì)胞。隨著研究的深入,造血干細(xì)胞的產(chǎn)生過程已經(jīng)逐漸明晰。在主動脈腹側(cè)壁的一群內(nèi)皮細(xì)胞可以特化成具有造血潛能的生血內(nèi)皮(hemogenic endothelium, HE),隨后細(xì)胞形態(tài)發(fā)生變化,形成造血簇(hematopoietic clusters),逐漸脫離動脈內(nèi)皮形成造血干細(xì)胞進(jìn)入主動脈,這一過程稱為內(nèi)皮–造血轉(zhuǎn)化(endothelial-to-hematopoietic transition, EHT)[11]。新產(chǎn)生的造血干細(xì)胞在E12左右進(jìn)入胎肝(fetal liver, FL)并進(jìn)行大量擴(kuò)增并逐漸成熟,其中一部分造血干細(xì)胞隨后進(jìn)入胸腺,分化為T淋巴細(xì)胞。最終,造血干細(xì)胞定位到終生造血器官骨髓(bone marrow, BM)。正常狀態(tài)下骨髓中的造血干細(xì)胞處于靜息狀態(tài),一旦機(jī)體需要,造血干細(xì)胞將會迅速動員起來并分化成各種血細(xì)胞以補(bǔ)充機(jī)體需要[1]。
在過去的20年里,斑馬魚憑借其獨特的優(yōu)勢,已經(jīng)成為研究發(fā)育的經(jīng)典動物模型。首先,斑馬魚是體外受精,從受精卵到發(fā)育至成體的整個過程都可以在體外直接觀察,而且便于進(jìn)行操控;其次,斑馬魚胚胎是透明的,利用各種轉(zhuǎn)基因或活體標(biāo)記技術(shù),能夠?qū)Ω鹘M織器官的發(fā)育進(jìn)行實時觀察和追蹤;再次,斑馬魚產(chǎn)卵的周期比較短,并且較易獲得大量胚胎,這樣有利于進(jìn)行高通量篩選實驗;最重要的是斑馬魚的基因組與哺乳動物高度保守,斑馬魚中的很多成果可以為哺乳動物的相關(guān)研究提供參考[12]。
斑馬魚的造血發(fā)育過程與哺乳動物相似,均起源于胚胎的腹側(cè)中胚層。在發(fā)育過程中,后部的側(cè)板中胚層(posterior lateral mesoderm, PLM)逐漸向中間遷移形成中間細(xì)胞團(tuán)(intermediate cell mass, ICM),并在此處產(chǎn)生初級紅系細(xì)胞。同時前部側(cè)板中胚層(anterior lateral mesoderm, ALM)能夠產(chǎn)生初級髓系細(xì)胞[12,13]。斑馬魚的紅系–髓系前體細(xì)胞出現(xiàn)在受精后36小時(36 hours post fertilization, 36 hpf)左右的尾部造血組織(caudal hematopoietic tissue, CHT),并且能夠在此處進(jìn)行分化[14]。斑馬魚的造血干細(xì)胞也是在AGM區(qū)域經(jīng)過內(nèi)皮–造血轉(zhuǎn)化過程產(chǎn)生。利用轉(zhuǎn)基因熒光標(biāo)記的方法對斑馬魚造血干細(xì)胞的產(chǎn)生過程進(jìn)行實時追蹤觀察發(fā)現(xiàn),主動脈腹側(cè)壁的部分內(nèi)皮細(xì)胞可以特化成為生血內(nèi)皮,其形態(tài)也由扁平逐漸變成圓形,最后以出芽的形式脫離主動脈[14,15]。與小鼠不同的是,斑馬魚的造血干細(xì)胞不形成血細(xì)胞簇,而是以單個細(xì)胞的形式產(chǎn)生,并在產(chǎn)生后直接進(jìn)入動靜脈之間的間充質(zhì),隨后進(jìn)入靜脈。斑馬魚的內(nèi)皮–造血轉(zhuǎn)化過程起始于32 hpf,在60 hpf之前結(jié)束。新產(chǎn)生的造血干細(xì)胞隨后會遷移到CHT區(qū)域進(jìn)行擴(kuò)增和分化,部分細(xì)胞會遷移到胸腺分化成T淋巴細(xì)胞。造血干細(xì)胞最終會進(jìn)入斑馬魚的終生造血器官—腎臟(Kidney Marrow),為胚胎和成體提供各類血細(xì)胞。
在造血發(fā)育過程中,轉(zhuǎn)錄因子Scl (stem cell leukemia,也稱作T-cell acute lymphocytic leukemia 1, TAL1)是成血成血管細(xì)胞的標(biāo)記基因之一,對主動脈和造血干細(xì)胞的發(fā)育都有重要的調(diào)控作用[16,17]。斑馬魚的基因有兩個轉(zhuǎn)錄本—和,雖然這兩個轉(zhuǎn)錄本都能夠參與調(diào)控造血干細(xì)胞的產(chǎn)生,但是它們分別調(diào)控內(nèi)皮-造血轉(zhuǎn)化過程的不同階段。通過構(gòu)建熒光標(biāo)記的和轉(zhuǎn)基因斑馬魚并進(jìn)行實時觀察發(fā)現(xiàn),在生血內(nèi)皮細(xì)胞中特異表達(dá),對生血內(nèi)皮的命運決定至關(guān)重要,而則在新產(chǎn)生的造血干細(xì)胞中特異表達(dá),對造血干細(xì)胞在AGM區(qū)的維持發(fā)揮作用[18]。
作為常用的造血干細(xì)胞標(biāo)記基因之一,轉(zhuǎn)錄因子Runx1(RUNX family transcription factor 1,也稱作acute mylogenous leukemia 1, AML1)可以標(biāo)記所有的胚胎造血干細(xì)胞[19]。在小鼠胚胎中進(jìn)行的功能實驗發(fā)現(xiàn),缺失后次級造血過程被阻斷[20]。進(jìn)一步的條件性敲除實驗發(fā)現(xiàn),內(nèi)皮細(xì)胞中的Runx1對于造血干細(xì)胞的產(chǎn)生必不可少,而造血干細(xì)胞產(chǎn)生之后,Runx1對造血維持并不重要[21]。近年來,對于Runx1在造血干細(xì)胞產(chǎn)生過程中的作用有了進(jìn)一步認(rèn)識。通過觀察斑馬魚內(nèi)皮–造血轉(zhuǎn)化過程發(fā)現(xiàn),缺失后,部分內(nèi)皮細(xì)胞可以發(fā)生形變并開始出芽,但在形成造血干細(xì)胞過程中這群細(xì)胞會發(fā)生破裂,導(dǎo)致造血干細(xì)胞無法產(chǎn)生[15]。隨后的研究發(fā)現(xiàn),Runx1可以保證造血特性的獲得,而其下游靶基因Gfi1/Gfi1b (growth factor independent 1A transcription repressor 1)能夠在生血內(nèi)皮細(xì)胞中抑制內(nèi)皮基因的表達(dá),并促進(jìn)細(xì)胞發(fā)生形變,進(jìn)而保證造血干細(xì)胞的正常產(chǎn)生[22]。
除此之外,Gata2 (GATA binding protein 2)也是造血干細(xì)胞產(chǎn)生的關(guān)鍵調(diào)控因子。在小鼠的造血發(fā)育過程中,Gata2在主動脈及造血干細(xì)胞簇中特異表達(dá)[23]。在內(nèi)皮細(xì)胞中特異性敲除Gata2發(fā)現(xiàn),生血內(nèi)皮可以正常產(chǎn)生,但是內(nèi)皮-造血轉(zhuǎn)化過程不能發(fā)生[24],與Runx1不同的是,在造血干細(xì)胞產(chǎn)生之后,血細(xì)胞中的Gata2對于造血干細(xì)胞的生存和維持也非常重要[24,25]。斑馬魚的有兩個同源基因—,和。其中,在受精后11小時就開始表達(dá)于成血成血管細(xì)胞中[26],而特異性表達(dá)在生血內(nèi)皮中[27]。在功能上,Gata2a和Gata2b都能通過調(diào)控的表達(dá)來促進(jìn)生血內(nèi)皮的特化,同時又受到Gata2a的調(diào)控[27,28]。
骨形態(tài)發(fā)生蛋白(bone morphogenesis proteins, BMPs)是轉(zhuǎn)化生長因子(transforming growth factor β, TGF-β)超家族的一員[29]。作為一種形態(tài)發(fā)生素,BMP信號在胚胎發(fā)生、發(fā)育以及成體組織穩(wěn)態(tài)的維持中都發(fā)揮著重要作用[30]。經(jīng)典的BMP信號通路是Smads依賴性的。BMP配體先與I型受體(BMPRIs) 結(jié)合,形成復(fù)合體后再與II型受體(BMPRII)結(jié)合。II型受體是持續(xù)激活型的,能夠磷酸化I型受體。激活的I型受體隨后磷酸化下游的Smad蛋白。作為細(xì)胞內(nèi)的信號分子,脊椎動物中的8種Smad蛋白可以分為3類:受體調(diào)節(jié)型Smads (receptor-regulated Smads, R-Smads)、共配體型Smads (common-mediator Smads, Co-Smads)以及抑制型Smads (inhibitory Smads, I-Smads)。Co-Smads (Smad4)和I-Smads (Smad6和Smad7)在TGF-β超家族中是通用的,而R-Smads中能夠參與BMP信號傳導(dǎo)的主要包括Smad1、Smad5和Smad8[31]。
經(jīng)受體激活后的R-Smads從細(xì)胞膜上脫離,在胞內(nèi)與Smad4結(jié)合并進(jìn)入細(xì)胞核。在細(xì)胞核內(nèi),Smads可以結(jié)合DNA,同時可以招募共同作用因子調(diào)控基因表達(dá),如Smad1/5–Smad4與OAZ (Olf-1/ EBF-associated zinc finger)形成復(fù)合體后能夠招募共激活因子p300/CBP等促進(jìn)基因表達(dá)[32];Smad1- Smad4與Nkx3.2形成復(fù)合體后能夠招募共抑制因子mSin3/HDAC1等抑制基因表達(dá)[33]。作為抑制型Smads,Smad6能夠抑制Smad4與磷酸化Smad1的結(jié)合從而阻斷BMP信號的傳遞[34];Smad7能夠競爭性地結(jié)合TGF-β或BMP受體,并能夠與Smurf1/2共同作用通過泛素化途徑降解受體進(jìn)而阻斷信號的傳遞[35,36]。
3.1.1 經(jīng)典的BMP-Smad1/5在HSC發(fā)育過程的調(diào)控作用
脊椎動物的造血發(fā)育起源于腹側(cè)中胚層, BMP蛋白(尤其是BMP4)能夠誘導(dǎo)腹側(cè)中胚層的形成[37,38]。為了進(jìn)一步研究BMP信號通路在造血發(fā)育中的作用,研究人員用轉(zhuǎn)基因的方法在時間和空間上來控制BMP信號的活性。首先,為避免BMP信號缺失對早期中胚層發(fā)育的影響,研究人員利用造血、血管及前腎前體細(xì)胞特異性的啟動子在斑馬魚胚胎側(cè)板中胚層中過表達(dá)功能缺失的BMP受體,發(fā)現(xiàn)BMP信號在這些前體細(xì)胞中的缺失能夠促進(jìn)血管和造血的發(fā)育但抑制前腎發(fā)育,說明BMP信號在細(xì)胞命運決定中起到重要的調(diào)控作用[39]。隨后,為避免對動脈發(fā)育的影響,研究人員利用熱激蛋白(heat shock protein 70, hsp70)啟動子特異性地在斑馬魚動脈發(fā)育完成之后過表達(dá)功能缺失的BMP受體來抑制BMP信號通路,結(jié)果發(fā)現(xiàn)造血干細(xì)胞的產(chǎn)生和維持不能正常進(jìn)行[40],說明BMP信號在造血發(fā)育中具有不可缺少的作用。雖然BMP4在24hpf的斑馬魚胚胎中表達(dá)于腹側(cè)間充質(zhì)(ventral mesenchyme)中,但是BMP受體Bmpr2a在主動脈內(nèi)皮中可以檢測到[41],暗示著BMP受體可以將BMP信號傳遞到主動脈中,進(jìn)而調(diào)控造血干細(xì)胞的產(chǎn)生。在小鼠胚胎中,BMP4在腹側(cè)間充質(zhì)中表達(dá),BMP受體Alk3、Alk6和BmprII,以及BMP下游效應(yīng)因子Smad1、4、5在AGM區(qū)動脈和血細(xì)胞中表達(dá)用小分子藥物抑制BMP信號后,小鼠造血活性明顯降低[42]。以上這些研究說明BMP信號對造血干細(xì)胞的產(chǎn)生和維持都發(fā)揮重要作用。
要讓加油站站點、庫存發(fā)揮作用,就要有足夠的運力保障?!昂瓦^去幾年相比,現(xiàn)在農(nóng)民用油都比較理性了。以前油價低時,農(nóng)民喜歡集中一起買很多油儲備起來,現(xiàn)在油價變化頻繁,農(nóng)民用油比較均衡,隨用隨買?!眲⒀涌蛴浾呓榻B道。
對于BMP信號通路調(diào)控造血發(fā)育過程的分子機(jī)制,近年來也有深入研究。作為BMP信號通路下游的關(guān)鍵信號分子,Smad1和Smad5對于斑馬魚的初級造血過程發(fā)揮著不同的作用。Smad1缺失能夠增加初級紅細(xì)胞的數(shù)目,而成熟巨噬細(xì)胞的產(chǎn)生受到抑制;Smad5缺失導(dǎo)致初級紅細(xì)胞的缺陷,巨噬細(xì)胞不受影響;但是Smad1或Smad5的缺失都會導(dǎo)致次級造血前體細(xì)胞的減少[43,44]。在小鼠成血成血管前體細(xì)胞中,缺失Smad1可以促進(jìn)后續(xù)造血基因的表達(dá),同時能夠使胞核內(nèi)的磷酸化Smad2 (pSmad2)信號增強(qiáng),這也暗示著BMP和TGF-β信號通路在造血發(fā)育調(diào)控中存在互作[45]。另外,作為TGF-β超家族共用的Co-Smad,Smad4在小鼠內(nèi)皮細(xì)胞而不是血細(xì)胞中的缺失能夠增加造血動脈內(nèi)造血簇的產(chǎn)生,也能夠促進(jìn)體外造血前體細(xì)胞的產(chǎn)生[46],意味著內(nèi)皮細(xì)胞的Smad4在小鼠造血發(fā)育過程中發(fā)揮著抑制作用。但是Smad5敲除的小鼠,造血干細(xì)胞的產(chǎn)生明顯減少,內(nèi)皮細(xì)胞的特性有所增強(qiáng)[44]。體外實驗發(fā)現(xiàn)Smad1直接結(jié)合到啟動子區(qū)域,促進(jìn)其表達(dá);同時,Smad6可以在Smurf1的協(xié)助下抑制Runx1的活性[47],暗示著BMP信號通路可能通過Smad1直接調(diào)控造血基因的表達(dá);但在體內(nèi)造血過程中是否存在直接調(diào)控還有待進(jìn)一步驗證。
3.1.2 造血干細(xì)胞發(fā)育過程中BMP信號通路與FGF信號通路的相互作用
在脊椎動物早期胚胎發(fā)育,包括神經(jīng)特化、初級造血和胚胎干細(xì)胞命運維持等過程中,BMP信號通路和ERK介導(dǎo)的FGF信號通路都發(fā)揮作用[48~50],共同對細(xì)胞命運的選擇進(jìn)行調(diào)控。通過啟動子驅(qū)動的遺傳學(xué)控制以及特異性的化學(xué)抑制劑處理,研究人員發(fā)現(xiàn)在造血干細(xì)胞的產(chǎn)生過程中BMP信號通路持續(xù)發(fā)揮作用,而ERK信號通路的作用是動態(tài)變化的。在血管發(fā)生過程中,ERK信號通路是動脈分化所必須的,一旦動靜脈分化完成,ERK信號就需要下調(diào)至閾值范圍內(nèi)以保證造血干細(xì)胞的產(chǎn)生。BMP信號通路在Smad1/5介導(dǎo)下調(diào)控ERK信號。Smad1/5招募共抑制因子HDAC1到啟動子區(qū),使其乙?;较陆担瑥亩谵D(zhuǎn)錄水平上抑制的表達(dá)。進(jìn)一步研究發(fā)現(xiàn),在斑馬魚造血發(fā)育過程中,過度激活的ERK信號能夠增強(qiáng)動脈內(nèi)皮細(xì)胞的特性以及內(nèi)皮細(xì)胞間的緊密連接,最終導(dǎo)致生血內(nèi)皮的產(chǎn)生及內(nèi)皮–造血轉(zhuǎn)化過程受到抑制,進(jìn)而影響造血干細(xì)胞的產(chǎn)生[44]。在小鼠造血發(fā)育過程中,研究人員在內(nèi)皮細(xì)胞內(nèi)特異性敲除Smad4,發(fā)現(xiàn)動脈內(nèi)皮中的BMP4表達(dá)增加,而增加的BMP4能夠通過非Smad依賴的方式激活ERK通路,從而增加造血細(xì)胞簇的產(chǎn)生[46]。這兩項研究說明BMP信號通路可以在蛋白水平和轉(zhuǎn)錄水平上通過調(diào)控ERK信號的活性來影響造血干細(xì)胞的產(chǎn)生,而ERK信號對造血干細(xì)胞的調(diào)控是動態(tài)變化的(圖1)。
Notch蛋白是一個在進(jìn)化上非常保守的跨膜受體蛋白,能夠介導(dǎo)細(xì)胞-細(xì)胞間的信號傳導(dǎo),對于細(xì)胞命運決定非常重要[51]。在哺乳動物和斑馬魚中,Notch信號是由多個蛋白之間的相互關(guān)聯(lián)進(jìn)行信號傳遞的,包括信號接收細(xì)胞表面的Notch信號的跨膜受體(小鼠Notch1、Notch2、Notch3和Notch4,斑馬魚Notch1a、Notch1b、Notch2和Notch3)與信號釋放細(xì)胞所釋放的Notch配體(Jagged和Delta)結(jié)合[52,53]。隨后,在ADAM TACE金屬蛋白酶(ADAM metalloprotease)的作用下,Notch受體S2位點被切割,在γ-分泌酶(γ-Secretase)的作用下S3位點被切割,釋放出Notch細(xì)胞內(nèi)結(jié)構(gòu)域(Notch intracellular domain, NICD)。而在無Notch信號激活的情況下,細(xì)胞核內(nèi)的RBPj能夠招募轉(zhuǎn)錄共抑制復(fù)合物(nuclear corepressor, NCoR)以及組蛋白去乙酰化酶(histone deacetylase, HDACs)抑制Notch信號靶基因的轉(zhuǎn)錄。Notch信號激活后,NICD可以入核,替換RBPj并且招募轉(zhuǎn)錄共激活復(fù)合物從而激活Notch信號靶基因的轉(zhuǎn)錄[54]。
圖1 斑馬魚造血干細(xì)胞發(fā)育過程中的信號通路調(diào)控示意圖
3.2.1 Notch信號通路在HSC發(fā)育過程的調(diào)控作用
Notch信號是造血干細(xì)胞發(fā)育過程中非常重要,也是研究較多的信號通路。Notch信號缺失的突變體中動脈血管不能正常分化[55],作為造血干細(xì)胞的來源,動脈血管的缺陷會導(dǎo)致造血干細(xì)胞異常產(chǎn)生,這一功能是由Notch1介導(dǎo)的[56]。動脈特異性標(biāo)記基因作為靶基因,可以直接受Notch1調(diào)控[57]。進(jìn)一步研究發(fā)現(xiàn),Notch信號通路對造血干細(xì)胞命運決定及其產(chǎn)生過程也發(fā)揮著細(xì)胞自主性調(diào)控作用。利用hsp70:gal4;uas:NICD轉(zhuǎn)基因斑馬魚品系,在不同時期進(jìn)行熱激處理來控制動脈標(biāo)記基因的表達(dá),發(fā)現(xiàn)Notch通過Runx1調(diào)控造血干細(xì)胞的產(chǎn)生與動脈發(fā)育是兩個獨立的過程[58]。小鼠中的實驗也證明,Jagged1介導(dǎo)的Notch1信號的激活可以通過調(diào)節(jié)Gata2和Cdca7調(diào)控基因的表達(dá),進(jìn)而調(diào)控造血干細(xì)胞的產(chǎn)生,這也不依賴于動脈發(fā)育[27,59~61]。整體來講,不同的Notch配體可以介導(dǎo)不同強(qiáng)度的Notch信號,Jagged1能夠介導(dǎo)生血內(nèi)皮細(xì)胞中低強(qiáng)度的Notch信號來維持造血干細(xì)胞的產(chǎn)生,而Dll4維持內(nèi)皮細(xì)胞中高強(qiáng)度的Notch信號來保證動脈的分化[62]。
近年來,隨著研究的深入,越來越多的結(jié)果證明Notch信號通路在造血發(fā)育過程中的作用是動態(tài)變化的,而且也是劑量依賴性的。在斑馬魚中,利用Notch信號的報告基因轉(zhuǎn)基因和造血干細(xì)胞標(biāo)記基因以及轉(zhuǎn)基因魚系,追蹤斑馬魚造血過程,發(fā)現(xiàn)tp1cmyb或tp1runx1細(xì)胞不會發(fā)生內(nèi)皮-造血轉(zhuǎn)化,是因為這些細(xì)胞首先要失去Notch活性轉(zhuǎn)變成tp1細(xì)胞后才能產(chǎn)生造血特性,最終轉(zhuǎn)變成造血干細(xì)胞。另外,應(yīng)用轉(zhuǎn)基因魚系Tg (hsp70:dn- MAML)和Tg (hsp70:GAL4/UAS:NICD)胚胎,通過在不同時期熱激處理控制Notch信號強(qiáng)度,研究者發(fā)現(xiàn)在動靜脈分化之前,激活Notch信號能夠促進(jìn)造血干細(xì)胞的產(chǎn)生。在動靜脈發(fā)育完成后,動脈內(nèi)皮細(xì)胞中的Notch信號的持續(xù)激活則會抑制造血干細(xì)胞的產(chǎn)生,而降低Notch信號強(qiáng)度,能夠促進(jìn)造血干細(xì)胞的產(chǎn)生[63]。在雞胚造血干細(xì)胞產(chǎn)生過程中,隨著表達(dá)的增加,Notch信號會逐漸降低,而抑制Notch信號后會在一定程度上促進(jìn)造血干細(xì)胞的產(chǎn)生[64]。
3.2.2 Notch信號通路上游調(diào)控因子
隨著對造血干細(xì)胞產(chǎn)生中Notch信號動態(tài)調(diào)控機(jī)制的認(rèn)識越來越清楚,越來越多的研究闡釋了Notch信號通路的上游調(diào)控機(jī)制(圖1)。首先,為保證動脈內(nèi)皮的分化及造血干細(xì)胞的產(chǎn)生,Notch信號需要正確的激活。在動靜脈分化階段,脊索分泌的Hedgehog信號能夠促進(jìn)體節(jié)中血管內(nèi)皮生長因子(Vascular endothelial growth factor, Vegf)的表達(dá),Vegf可以與具有動脈特性的成血管細(xì)胞表面的Vegf受體結(jié)合,進(jìn)而激活動脈內(nèi)皮中的Notch信號,促進(jìn)動脈的分化[65]。炎性信號也可以激活Notch信號并且特異性地調(diào)控造血干細(xì)胞的產(chǎn)生,而對動脈發(fā)育沒有影響。初級中性粒細(xì)胞分泌的腫瘤壞死因子a (tumor necrosis factor a, TNFa)和粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor, G-CSF)可以與內(nèi)皮細(xì)胞表面的受體TNFR2,Toll樣受體(Toll-like receptor 4, TLR4)結(jié)合,通過經(jīng)典的炎性信號通路使得內(nèi)皮細(xì)胞內(nèi)的NFkB進(jìn)入細(xì)胞核,進(jìn)而調(diào)控Notch受體Jagged1的表達(dá)[66,67]。除此之外,內(nèi)皮細(xì)胞內(nèi)的初級纖毛發(fā)生也能夠促進(jìn)Notch信號在動脈內(nèi)皮的激活,從而促進(jìn)生血內(nèi)皮細(xì)胞的特化,保障造血干細(xì)胞的正常產(chǎn)生[68]。
另一方面,動脈內(nèi)皮分化完成后,生血內(nèi)皮細(xì)胞內(nèi)Notch信號的下降也受到嚴(yán)密的調(diào)控。在轉(zhuǎn)錄水平上,NcoR2作為一個轉(zhuǎn)錄共抑制因子,特異表達(dá)在斑馬魚AGM區(qū),通過調(diào)控啟動子的乙酰化水平抑制其轉(zhuǎn)錄,進(jìn)而抑制Vegfd及其下游的Notch信號,以保證內(nèi)皮-造血轉(zhuǎn)化過程中內(nèi)皮特性的降低及造血特性的獲得[69]。在轉(zhuǎn)錄后調(diào)控水平上,內(nèi)皮細(xì)胞表達(dá)的N6-methyladenosine (m6A)甲基轉(zhuǎn)移酶Mettl3能夠在mRNA的3′UTR區(qū)域進(jìn)行m6A修飾,從而使得mRNA能被Ythdf2識別并降解。Mettl3或Ythdf2的缺失都會導(dǎo)致mRNA水平的升高,最終導(dǎo)致內(nèi)皮細(xì)胞特性的增強(qiáng)而阻止造血干細(xì)胞的產(chǎn)生[70]。在蛋白水平上,生血內(nèi)皮細(xì)胞中的G蛋白偶聯(lián)受體183 (G protein- coupled receptor 183, Gpr183)在內(nèi)皮-造血轉(zhuǎn)化開始之前能夠通過招募β-Arrestin1和E3連接酶Nedd4來降解Notch1蛋白從而降低Notch信號的活性,以保證造血干細(xì)胞的正常產(chǎn)生[63]。此外,在生血內(nèi)皮特化過程中,Rab5c通過精密調(diào)控Notch信號通路配體和受體的內(nèi)吞運輸,最終促進(jìn)了造血干細(xì)胞的發(fā)育[71]。
Wnt信號通路可以分為β-Catenin依賴的經(jīng)典Wnt信號通路(canonical pathway),非典型平面細(xì)胞極性途徑(planar cell polarity pathway)以及非經(jīng)典Wnt信號/鈣通路(Wnt/Ca2+pathway)。這3種信號通路都依賴于Wnt配體與細(xì)胞膜表面受體Frizzled (Fzd)的結(jié)合以及細(xì)胞內(nèi)Dishevelled的招募。Wnt信號通路的激活對于胚胎早期形態(tài)發(fā)生,體軸發(fā)育以及干細(xì)胞自我更新都至關(guān)重要[72]。
在β-Catenin依賴的經(jīng)典Wnt信號通路中,無Wnt配體的情況下,細(xì)胞內(nèi)的β-Catenin被降解復(fù)合物(destruction complex, Dishevelled-Axin-GSK3)結(jié)合并磷酸化,磷酸化的β-Catenin被β-TrCP識別并泛素化,從而被進(jìn)一步降解。在Wnt配體與細(xì)胞膜上的受體Frizzled (通常為Fzd1或Fzd4)以及共受體LRP5或LRP6結(jié)合后使得LRP蛋白發(fā)生磷酸化,磷酸化的LRP能夠結(jié)合降解復(fù)合物,阻止β-TrCP對β-Catenin的泛素化及降解,最終細(xì)胞漿內(nèi)的β-Catenin得以穩(wěn)定存在。部分β-Catenin進(jìn)入細(xì)胞核與TCF/LEF轉(zhuǎn)錄因子家族共同調(diào)控下游基因的表達(dá),進(jìn)而調(diào)控胚胎體軸建立、組織發(fā)生、干細(xì)胞的自我更新、增殖和分化,以及成體組織穩(wěn)態(tài)等過程[73]。
在非典型平面細(xì)胞極性途徑(Wnt/PCP pathway)中,Wnt配體(如Wnt5a、Wnt7、Wnt11等)與受體Frizzled (通常為Fzd3、Fzd6和Fzd7)及共受體(如PTK7、ROR2和RYK)或細(xì)胞表面蛋白(CD146、VANGL2、Syndecan和Glypican)結(jié)合后,進(jìn)一步招募Dishevelled與受體復(fù)合物結(jié)合,激活下游的Rho家族的小G蛋白(如Cdc42、Rac1和RhoA)來調(diào)控細(xì)胞骨架的形成,并通過JNK通路調(diào)控下游基因的轉(zhuǎn)錄,進(jìn)而調(diào)控細(xì)胞極性及細(xì)胞遷移[74]。在非經(jīng)典Wnt信號/鈣通路(Wnt/Ca2+pathway)中,Wnt配體(如Wnt5a)與受體Frizzled結(jié)合后能夠通過G蛋白將信號傳遞給PLCr從而促進(jìn)Ca2+的釋放。Ca2+的增加一方面能通過CaMKII激酶來調(diào)控下游信號,另一方面能夠通過NFAT來調(diào)控下游基因的表達(dá)[75]。Wnt信號/鈣通路對于胚胎背腹分化和體軸形成以及細(xì)胞分化都有重要作用[76]。
3.3.1 Wnt信號通路在HSC發(fā)育過程的調(diào)控作用
在斑馬魚中,過表達(dá)Wnt信號通路下游的抑制因子和能夠抑制造血干細(xì)胞的產(chǎn)生,而前列腺素E2 (prostaglandin E2, PGE2)可以調(diào)控Wnt信號通路中β-Catenin的磷酸化進(jìn)而調(diào)控造血發(fā)育[77]。斑馬魚體節(jié)中Wnt9a的缺失雖然對造血干細(xì)胞的命運決定沒有影響,但卻導(dǎo)致造血干細(xì)胞整體數(shù)目減少。進(jìn)一步的實驗說明體節(jié)中的Wnt9a能夠為造血干細(xì)胞的增殖提供有利微環(huán)境,從而保證造血干細(xì)胞的正常作用。Wnt信號通路可以和BMP信號通路共同激活Cdx-Hox,進(jìn)而調(diào)控造血過程[78]。在小鼠中,利用GSK3的抑制劑來增強(qiáng)Wnt信號能夠增加造血干細(xì)胞的數(shù)目;相反,β-Catenin的小分子拮抗劑處理能夠減少造血干細(xì)胞的數(shù)目。另外,在小鼠的胚胎造血過程中發(fā)現(xiàn),Wnt對造血干細(xì)胞產(chǎn)生的作用也是動態(tài)變化的[79]。在內(nèi)皮–造血轉(zhuǎn)化發(fā)生之前,β-Catenin在內(nèi)皮細(xì)胞中的激活可以促進(jìn)造血干細(xì)胞的產(chǎn)生,一旦造血的命運決定完成之后,β-Catenin的活性就會下調(diào)[79]。近期對于視黃酸(retinoic acid, RA)信號通路的研究發(fā)現(xiàn),它能夠下調(diào)生血內(nèi)皮細(xì)胞或造血前體細(xì)胞中的Wnt信號通路,以促進(jìn)造血干細(xì)胞的產(chǎn)生[80]。
除經(jīng)典的Wnt/β-Catenin信號通路之外,β-Catenin非依賴性的Wnt信號通路也能夠調(diào)控造血發(fā)育過程(圖1)。在受精后14~17小時左右斑馬魚胚胎中,體節(jié)中的Wnt16可以促進(jìn)Notch配體DeltaC和DeltaD的表達(dá),體節(jié)中的Notch3能夠接受DeltaC和DeltaD傳遞的信號,進(jìn)而促進(jìn)生骨節(jié)(sclerotome)和造血干細(xì)胞的特化,以細(xì)胞非自主性的方式調(diào)控造血干細(xì)胞的產(chǎn)生[81,82]。鑒于斑馬魚胚胎發(fā)育中Wnt16與FGF的活性有時間和空間上的相似性,研究人員對兩個信號通路進(jìn)行檢測后發(fā)現(xiàn),Wnt16對DeltaC的調(diào)控作用是由FGF信號通路介導(dǎo)的[83]。另外,Rspondin1作為Wnt信號的激活因子,可以通過調(diào)控Wnt16的表達(dá)來調(diào)控造血干細(xì)胞的產(chǎn)生[84]。但是目前對于體節(jié)如何調(diào)控造血干細(xì)胞命運決定的分子機(jī)制還有待進(jìn)一步研究。
造血干細(xì)胞能夠自我更新并分化產(chǎn)生各種類型的血細(xì)胞,其重建造血的能力是臨床上利用骨髓移植治療血液疾病的基礎(chǔ)。因此全面系統(tǒng)地研究造血發(fā)育過程的分子機(jī)制和復(fù)雜的信號調(diào)控網(wǎng)絡(luò),有助于突破臨床上造血干細(xì)胞匱乏的瓶頸,對血液疾病的治療和新藥的研發(fā)都有非常重要的意義。目前,對于造血干細(xì)胞的產(chǎn)生過程已經(jīng)有清晰的認(rèn)識,但是該過程的調(diào)控機(jī)制還有待進(jìn)一步完善。
近年來,隨著對造血干細(xì)胞產(chǎn)生過程中各個信號通路調(diào)控機(jī)制的研究越來越多,人們也越來越意識到在內(nèi)皮-造血轉(zhuǎn)化過程中,調(diào)控因子的動態(tài)平衡非常重要。例如:ERK和Notch信號的激活在這個過程中的作用都是動態(tài)變化的。在內(nèi)皮細(xì)胞中ERK和Notch的激活都是動脈分化所必需的,但是隨著內(nèi)皮-造血轉(zhuǎn)化的開始,內(nèi)皮細(xì)胞若要獲得造血特性,細(xì)胞內(nèi)調(diào)控內(nèi)皮特性的ERK和Notch信號活性需要下調(diào),以保證造血特性的獲得及維持。一旦這些信號沒有及時下調(diào),那么內(nèi)皮-造血轉(zhuǎn)化過程就不能完成,也不能產(chǎn)生造血干細(xì)胞。在體外造血過程中,能否通過調(diào)控這些信號通路的活性來促進(jìn)造血干細(xì)胞的產(chǎn)生和維持還需要進(jìn)一步研究。
感謝中國科學(xué)院動物研究所馬東媛博士和中國醫(yī)學(xué)科學(xué)院血液病醫(yī)院(中國醫(yī)學(xué)科學(xué)院血液學(xué)研究所)王璐博士對本文的仔細(xì)閱讀和修改。
[1] Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology.,2008, 132(4): 631–644.
[2] Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells.,1998, 125(4): 725–732.
[3] Palis J, Robertson S, Kennedy M, Wall C, Keller G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse.,1999, 126(22): 5073–5084.
[4] Chen MJ, Li Y, De Obaldia ME, Yang Q, Yzaguirre AD, Yamada-Inagawa T, Vink CS, Bhandoola A, Dzierzak E, Speck NA. Erythroid/myeloid progenitors and hemato-poietic stem cells originate from distinct populations of endothelial cells.,2011, 9(6): 541–552.
[5] McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, Kingsley PD, Koniski AD, Palis J. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo.,2015, 11(12): 1892–1904.
[6] Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu BS, Jacobsen SEW, Pollard JW, Frampton J, Liu KJ, Geissmann F. A lineage of myeloid cells independent of Myb and hema-topoietic stem cells.,2012, 336(6077): 86–90.
[7] Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progeni-tors.,2015, 518(7540): 547–551.
[8] B?iers C, Carrelha J, Lutteropp M, Luc S, Green JCA, Azzoni E, Woll PS, Mead AJ, Hultquist A, Swiers G, Perdiguero EG, Macaulay IC, Melchiori L, Luis TC, Kharazi S, Bouriez-Jones T, Deng QL, Ponten A, Atkinson D, Jensen CT, Sitnicka E, Geissmann F, Godin I, Sandberg R, de Bruijn MFTR, Jacobsen SEW. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells.,2013, 13(5): 535–548.
[9] Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo.,1994, 1(4): 291–301.
[10] Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HKA. The placenta is a niche for hematopoietic stem cells.,2005, 8(3): 365–375.
[11] Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium.,2010, 464(7285): 116–120.
[12] Chen AT, Zon LI. Zebrafish blood stem cells.,2009, 108(1): 35–42.
[13] Detrich HW, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI. Intrae-mbryonic hematopoietic cell migration during vertebrate development.,1995, 92(23): 10713–10717.
[14] Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo.,2007, 134(23): 4147–4156.
[15] Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition.,2010, 464(7285): 112–115.
[16] Patterson LJ, Gering M, Patient R. Scl is required for dorsal aorta as well as blood formation in zebrafish embryos.,2005, 105(9): 3502–3511.
[17] Ren X, Gomez GA, Zhang B, Lin S. Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells.,2010, 115(26): 5338– 5346.
[18] Zhen FH, Lan YH, Yan B, Zhang WQ, Wen ZL. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms.,2013, 140(19): 3977–3985.
[19] North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostag-landin E2 regulates vertebrate haematopoietic stem cell homeostasis.,2007, 447(7147): 1007–1011.
[20] Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis.,1996, 93(8): 3444–3449.
[21] Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA. Runx1 is required for the endothelial to haemato-poietic cell transition but not thereafter.,2009, 457(7231): 887–891.
[22] Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M, Costa G, Vargel O, Wilson NK, M?r?y T, Bonifer C, G?ttgens B, Kouskoff V, Lacaud G. GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment.,2012, 120(2): 314–322.
[23] Eich C, Arlt J, Vink CS, Solaimani Kartalaei P, Kaimakis P, Mariani SA, van der Linden R, van Cappellen WA, Dzierzak E. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate.,2018, 215(1): 233–248.
[24] de Pater E, Kaimakis P, Vink CS, Yokomizo T, Yamada-Inagawa T, van der Linden R, Kartalaei PS, Camper SA, Speck N, Dzierzak E. Gata2 is required for HSC generation and survival.,2013, 210(13): 2843–2850.
[25] Gao X, Johnson KD, Chang YI, Boyer ME, Dewey CN, Zhang J, Bresnick EH. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo.,2013, 210(13): 2833–2842.
[26] Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, Ekker SC, Patient R. The transcription factors Scl and Lmo2 act together during development of the heman-gioblast in zebrafish.,2006, 109(6): 2389–2398.
[27] Butko E, Distel M, Pouget C, Weijts B, Kobayashi I, Ng K, Mosimann C, Poulain FE, McPherson A, Ni CW, Stachura DL, Del Cid N, Espín-Palazón R, Lawson ND, Dorsky R, Clements WK, Traver D. Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo.,2015, 142(6): 1050–1061.
[28] Dobrzycki T, Mahony CB, Krecsmarik M, Koyunlar C, Rispoli R, Peulen-Zink J, Gussinklo K, Fedlaoui B, de Pater E, Patient R, Monteiro R. Deletion of a conserved Gata2 enhancer impairs haemogenic endothelium progra-mming and adult Zebrafish haematopoiesis.,2020, 3(1): 71.
[29] Massagué J. TGF-β SIGNAL TRANSDUCTION.,1998, 67(1): 753–791.
[30] Wang RN, Green J, Wang ZL, Deng YL, Qiao M, Peabody M, Zhang Q, Ye JX, Yan ZJ, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases.,2014, 1(1): 87–105.
[31] Massagué J, Seoane J, Wotton D. Smad transcription factors.,2005, 19(23): 2783–2810.
[32] Hata A, Seoane J, Lagna G, Montalvo E, Hemmati- Brivanlou A, Massagué J. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways.,2000, 100(2): 229–240.
[33] Kim DW, Lassar AB. Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2.,2003, 23(23): 8704– 8717.
[34] Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor.,1998, 12(2): 186–197.
[35] Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. Identification of Smad7, a TGFbeta- inducible antagonist of TGF-beta signalling.,1997, 389(6651): 631–635.
[36] Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.,2000, 6(6): 1365–1375.
[37] Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor.,2004, 22(4): 457–474.
[38] Pyati UJ, Webb AE, Kimelman D. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development.,2005, 132(10): 2333–2343.
[39] Gupta S, Zhu H, Zon LI, Evans T. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.,2006, 133(11): 2177– 2187.
[40] Wilkinson RN, Pouget C, Gering M, Russell AJ, Davies SG, Kimelman D, Patient R. Hedgehog and Bmp polarize hematopoietic stem cell emergence in the zebrafish dorsal aorta.,2009, 16(6): 909–916.
[41] Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, ten Dijke P, Mummery C. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish.,2008, 315(1): 55–71.
[42] Durand C, Robin C, Bollerot K, Baron MH, Ottersbach K, Dzierzak E. Embryonic stromal clones reveal develop-mental regulators of definitive hematopoietic stem cells.,2007, 104(52): 20838–20843.
[43] McReynolds LJ, Gupta S, Figueroa ME, Mullins MC, Evans T. Smad1 and Smad5 differentially regulate em-bryonic hematopoiesis.,2007, 110(12): 3881–3890.
[44] Zhang CX, Lv JH, He QP, Wang SF, Gao Y, Meng AM, Yang X, Liu F. Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence.,2014, 5: 3431.
[45] Cook BD, Liu S, Evans T. Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment.,2011, 117(24): 6489–6497.
[46] Lan Y, He WY, Li Z, Wang Y, Wang J, Gao J, Wang WL, Cheng T, Liu B, Yang X. Endothelial Smad4 restrains the transition to hematopoietic progenitorssuppression of ERK activation.,2014, 123(14): 2161–2171.
[47] Pimanda JE, Donaldson IJ, de Bruijn MFTR, Kinston S, Knezevic K, Huckle L, Piltz S, Landry JR, Green AR, Tannahill D, G?ttgens B. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity.,2007, 104(3): 840–845.
[48] Xu RH, Ault KT, Kim J, Park MJ, Hwang YS, Peng Y, Sredni D, Kung HF. Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2.,1999, 208(2): 352–361.
[49] Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF, FGF, and anti-BMP signals via Smad1 pho-sphorylation in neural induction.,2003, 17(24): 3023–3028.
[50] Yu PZ, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation.,2011, 8(3): 326–334.
[51] Kopan R, Ilagan MXG. The canonical Notch signaling pathway: unfolding the activation mechanism.,2009, 137(2): 216–233.
[52] Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man.,2004, 26(3): 225–234.
[53] Lomeli H, Castillo-Castellanos F. Notch signaling and the emergence of hematopoietic stem cells.,2020, 249(11): 1302–1317.
[54] Butko E, Pouget C, Traver D. Complex regulation of HSC emergence by the Notch signaling pathway.,2016, 409(1): 129–138.
[55] Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM. Notch signaling is required for arterial-venous differentiation during embryonic vascular development.,2001, 128(19): 3675–3683.
[56] Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, Ogawa S, Hamada Y, Hirai H. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells.,2003, 18(5): 699–711.
[57] Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, Garratt AN, Zang H, Mukouyama YS, Chen HY, Shou WN, Ballestar E, Esteller M, Rojas A, Pérez-Pomares JM, de la Pompa JL. Notch signaling is essential for ventricular chamber development.,2007, 12(3): 415–429.
[58] Burns CE, Traver D, Mayhall E, Shepard JL, Zon LI. Hematopoietic stem cell fate is established by the Notch- Runx pathway.,2005, 19(19): 2331–2342.
[59] Robert-Moreno A, Guiu J, Ruiz-Herguido C, López ME, Inglés-Esteve J, Riera L, Tipping A, Enver T, Dzierzak E, Gridley T, Espinosa L, Bigas A. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1.,2008, 27(13): 1886–1895.
[60] Robert-Moreno A, Espinosa L, de la Pompa JL, Bigas A. RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hemato-poietic cells.,2005, 132(5): 1117–1126.
[61] Guiu J, Bergen DJM, De Pater E, Islam ABMMK, Ayllón V, Gama-Norton L, Ruiz-Herguido C, González J, López-Bigas N, Menendez P, Dzierzak E, Espinosa L, Bigas A. Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence.,2014, 211(12): 2411–2423.
[62] Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu ZY, Guiu J, Islam ABMMK, Lee SU, Yan MH, Guidos CJ, López-Bigas N, Maeda T, Espinosa L, Kopan R, Bigas A. Notch signal strength controls cell fate in the haemogenic endothelium.,2015, 6: 8510.
[63] Zhang PP, He QP, Chen DB, Liu WX, Wang L, Zhang CX, Ma DY, Li W, Liu B, Liu F. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition.,2015, 25(10): 1093–1107.
[64] Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, Teillet MA, Vincent C, Rosselló Castillo C, Torres M, Piwarzyk E, Speck NA, Souyri M, Jaffredo T. Endothelio-mesenchymal interaction controls runx1 expression and modulates the notch pathway to initiate aortic hematopoiesis.,2013, 24(6): 600–611.
[65] Swift MR, Weinstein BM. Arterial-venous specification during development.,2009, 104(5): 576–588.
[66] He QP, Zhang CX, Wang L, Zhang PP, Ma DY, Lv JH, Liu F. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates.,2015, 125(7): 1098–1106.
[67] Espín-Palazón R, Stachura DL, Campbell CA, García- Moreno D, Del Cid N, Kim AD, Candel S, Meseguer J, Mulero V, Traver D. Proinflammatory signaling regulates hematopoietic stem cell emergence.,2014, 159(5): 1070–1085.
[68] Liu ZB, Tu HQ, Kang YS, Xue YY, Ma DY, Zhao CT, Li HY, Wang L, Liu F. Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish.,2019, 10(1): 1839.
[69] Wei YL, Ma DY, Gao Y, Zhang CX, Wang L, Liu F. Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish.,2014, 124(10): 1578–1585.
[70] Zhang CX, Chen YS, Sun BF, Wang L, Yang Y, Ma DY, Lv JH, Heng J, Ding YY, Xue YY, Lu XY, Xiao W, Yang YG, Liu F. m(6)A modulates haematopoietic stem and progenitor cell specification.,2017, 549(7671): 273–276.
[71] Heng J, Lv P, Zhang YF, Cheng XJ, Wang L, Ma DY, Liu F. Rab5c-mediated endocytic trafficking regulates hemato-poietic stem and progenitor cell development via Notch and AKT signaling.,2020, 18(4): e3000696.
[72] Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis.,2018, 145(11).
[73] Clevers H, Nusse R. Wnt/β-catenin signaling and disease.,2012, 149(6): 1192–1205.
[74] Daulat AM, Borg JP. Wnt/Planar cell polarity signaling: new opportunities for cancer treatment.,2017, 3(2): 113–125.
[75] De A. Wnt/Ca2+signaling pathway: a brief overview.,2011, 43(10): 745–756.
[76] Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways.,2005, 38(3–4): 439–446.
[77] Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration.,2009, 136(6): 1136–1147.
[78] Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway.,2008, 2(1): 72–82.
[79] Ruiz-Herguido C, Guiu J, D'Altri T, Inglés-Esteve J, Dzierzak E, Espinosa L, Bigas A. Hematopoietic stem cell development requires transient Wnt/β-catenin activity.,2012, 209(8): 1457–1468.
[80] Chanda B, Ditadi A, Iscove NN, Keller G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development.,2013, 155(1): 215–227.
[81] Clements WK, Kim AD, Ong KG, Moore JC, Lawson ND, Traver D. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells.,2011, 474(7350): 220–224.
[82] Kim AD, Melick CH, Clements WK, Stachura DL, Distel M, Panákova D, MacRae C, Mork LA, Crump JG, Traver D. Discrete Notch signaling requirements in the specification of hematopoietic stem cells.,2014, 33(20): 2363–2373.
[83] Lee Y, Manegold JE, Kim AD, Pouget C, Stachura DL, Clements WK, Traver D. FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling.,2014, 5: 5583.
[84] Genthe JR, Clements WK. R-spondin 1 is required for specification of hematopoietic stem cells through Wnt16 and Vegfa signaling pathways.,2017, 144(4): 590–600.
Regulatory signaling pathways in hematopoietic stem cell development
Chunxia Zhang1,2, Feng Liu1
The blood system provides the body with oxygen and nutrients, maintains the homeostasis of the internal environment through material exchange, and keeps the body with immune defense and protection. Hematopoietic stem cells (HSCs), which are pluripotent adult stem cells with self-renewal and differentiation potential, are the origin of mature blood cells in the body. The production, development and maturation processes of HSCs and their derivatives are the so-called ‘hematopoiesis’, which begins in the early embryonic development and throughout the life course; any abnormality during these processes can cause the occurrence of hematological diseases. Therefore, a deeper understanding of hematopoietic development and its regulation is important to the diagnosis and treatment of blood diseases. In recent years, a series of advances have been made in studying hematopoietic development using mice and zebrafish as animal models. It has been shown that BMP, Notch and Wnt signaling pathways play an important role in the fate determination and generation of HSCs. In this review, we systematically summarize the regulatory roles of these signaling pathways in the hematopoietic process of mice and zebrafish embryos, to improve our understanding on the underlying regulatory network of hematopoietic development and provide guidance for clinical application.
hematopoietic stem cell; signaling pathways; BMP; Notch; Wnt
張春霞,2010—2017年就讀于中國科學(xué)院動物研究所,在血液與心血管發(fā)育研究組攻讀博士學(xué)位,目前在美國哈佛醫(yī)學(xué)院/波士頓兒童醫(yī)院做博士后。博士期間,主要研究斑馬魚造血干細(xì)胞發(fā)育的調(diào)控機(jī)制,闡明了BMP與ERK信號通路在造血干細(xì)胞產(chǎn)生過程中的相互關(guān)聯(lián)(, 2014年),發(fā)現(xiàn)了炎性信號通路可以通過Notch信號來調(diào)控造血干細(xì)胞的產(chǎn)生(, 2015年),首次揭示了m6A修飾在胚胎造血干細(xì)胞命運決定中的關(guān)鍵作用(, 2017年)。這些工作不僅增加了人們對造血干細(xì)胞產(chǎn)生機(jī)制的認(rèn)識,而且對體外誘導(dǎo)擴(kuò)增造血干細(xì)胞提供了理論指導(dǎo)。博士論文《BMP-ERK信號通路以及炎性信號調(diào)控斑馬魚造血干細(xì)胞產(chǎn)生的分子機(jī)制》獲得2020年中國科學(xué)院優(yōu)秀博士生論文。
2021-01-20;
2021-03-01
國家重點研發(fā)計劃項目(編號:2018YFA0800200,2018YFA080100),中國科學(xué)院戰(zhàn)略性科技先導(dǎo)專項(編號:XDA16010207)和國家自然科學(xué)基金重點項目(編號:32030032,31830061)資助[Supported by the National Key Research and Development Program of China (Nos.2018YFA0800200, 2018YFA080100), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (No. XDA16010207), and the National Natural Science Foundation of China (Nos. 32030032, 31830061)]
張春霞,博士,研究方向:造血干細(xì)胞發(fā)育。E-mail: zhangchxa@163.com
劉峰,研究員,博士生導(dǎo)師,研究方向:造血干細(xì)胞發(fā)育。E-mail: liuf@ioz.ac.cn
10.16288/j.yczz.21-026
2021/3/16 11:16:44
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210315.0942.003.html
(責(zé)任編委: 張雷)