張鳳山,尚明珠,趙朋曉,程開(kāi)宇,唐穎棟,魏 俊
感潮河網(wǎng)降雨徑流污染空間分析與模擬
張鳳山,尚明珠,趙朋曉,程開(kāi)宇,唐穎棟,魏 俊*
(中國(guó)電建集團(tuán)華東勘測(cè)設(shè)計(jì)研究院有限公司,浙江 杭州 311122)
為了探究茅洲河流域感潮河網(wǎng)面源污染空間分布特征和降雨徑流污染規(guī)律,基于空間分析、統(tǒng)計(jì)分析與流域水動(dòng)力-水質(zhì)耦合模擬方法,對(duì)典型降雨情景下河網(wǎng)水質(zhì)情況進(jìn)行模擬分析,提出基于水質(zhì)改善目標(biāo)的生態(tài)補(bǔ)水點(diǎn)位空間布局優(yōu)化策略.研究表明,層次聚類凝聚算法和K-均值法迭代組合可以較好地實(shí)現(xiàn)面源污染分級(jí)與分類;茅洲河各支流中,石巖渠、松崗河中上游等河道(段)由于面源污染負(fù)荷相對(duì)較高且缺乏生態(tài)補(bǔ)水,雨后水質(zhì)恢復(fù)緩慢;基于補(bǔ)水總量不變?cè)瓌t,對(duì)生態(tài)補(bǔ)水方案進(jìn)行局部?jī)?yōu)化,優(yōu)化結(jié)果可使雨后受污染重點(diǎn)河道(段)水質(zhì)恢復(fù)速度加快一倍以上,提高了流域水質(zhì)的整體穩(wěn)定性.研究結(jié)論可為進(jìn)一步認(rèn)識(shí)茅洲河流域水污染特征、實(shí)現(xiàn)流域水環(huán)境精細(xì)化管理提供支撐.
感潮河網(wǎng);面源污染;數(shù)值模擬;茅洲河
降雨導(dǎo)致的面源污染由于其不確定性高,時(shí)空變異性大,是影響城市水環(huán)境的主要因素之一[1-4],目前的研究涵蓋流域[5-6]、城市[7-9]、小區(qū)或?qū)W校[10-11]等不同尺度,重點(diǎn)關(guān)注面源污染對(duì)下游受納水體水質(zhì)的沖擊[6,8-9].車蕊等[6]對(duì)東江流域近38a極端降雨事件分析發(fā)現(xiàn),氨氮在降雨過(guò)程中呈前期高,中后期低的特征.許淑敏[9]對(duì)引水工程緩解海河流域面源污染程度進(jìn)行分析,發(fā)現(xiàn)雨量較小時(shí)調(diào)水引流效果更佳.對(duì)于感潮河網(wǎng)地區(qū),污染物遷移轉(zhuǎn)化受到徑流和潮流共同作用,不利于擴(kuò)散和降解[12],更容易受到降雨徑流污染的沖擊.近年來(lái),珠江三角洲各地開(kāi)展了一系列感潮河網(wǎng)區(qū)水動(dòng)力水質(zhì)模擬研究,論證了閘泵優(yōu)化調(diào)度[13]、引水增流[14-15]等措施對(duì)河網(wǎng)水質(zhì)恢復(fù)的效果.研究[15]表明,珠江三角洲地區(qū)受到污染-咸潮雙重影響,利用閘泵-河庫(kù)聯(lián)合調(diào)度是改善珠江三角洲感潮河網(wǎng)水環(huán)境狀況的有效措施之一.
茅洲河流域?qū)僦榻侵薷谐焙泳W(wǎng),地處深圳市西部,于伶仃洋交椅灣入海,流域內(nèi)為高密度建成區(qū),老城區(qū)和老工業(yè)區(qū)眾多,產(chǎn)污量大,河流徑污比嚴(yán)重偏低,面源污染負(fù)荷高,面源污染中COD和NH3-N分別占總排放污染負(fù)荷的19%和11.2%[16],其中老城區(qū)特別是城中村面源污染風(fēng)險(xiǎn)最為突出.由于徑流是驅(qū)動(dòng)污染物向下游擴(kuò)散的主要?jiǎng)恿17],而伶仃洋為弱潮河口,潮差較小,潮動(dòng)力不足[18-19],不利于污染物遷移擴(kuò)散.同時(shí),受氣候變化和城市化發(fā)展等因素影響,深圳西部城區(qū)近40a間年降水量、汛期降水量和極端降水指標(biāo)均呈現(xiàn)增加趨勢(shì)[20],下墊面改變和降雨特征變化影響了茅洲河流域面源污染的時(shí)空分布規(guī)律.特定的自然環(huán)境條件和社會(huì)發(fā)展背景導(dǎo)致茅洲河流域面源污染風(fēng)險(xiǎn)居高不下.茅洲河經(jīng)過(guò)系統(tǒng)治理,截止2019年底,流域水質(zhì)明顯改善,旱季水質(zhì)較穩(wěn)定.但由于茅洲河較高的面源污染負(fù)荷和不利的河口潮動(dòng)力條件,雨后污染風(fēng)險(xiǎn)仍然較高.
本研究以茅洲河感潮河網(wǎng)為研究區(qū)域,基于GIS空間分析和聚類分析理論,對(duì)沿河雨水排口污染等級(jí)進(jìn)行分級(jí)分類,提高了大量排口數(shù)據(jù)統(tǒng)計(jì)分析的效率;在此基礎(chǔ)上通過(guò)流域水動(dòng)力-水質(zhì)耦合模型開(kāi)展典型降雨情景面源污染規(guī)律研究,提出改善雨后河道水質(zhì)恢復(fù)規(guī)律的工程措施,為揭示茅洲河流域水污染特征、保障河網(wǎng)水質(zhì)穩(wěn)定提供參考.
圖1 茅洲河流域示意
茅洲河是深圳第一大河,發(fā)源于羊臺(tái)山北麓,地跨深圳、東莞兩市,在沙井民主村匯入伶仃洋.流域面積344.23km2,干流全長(zhǎng)30.69km.其中,寶安區(qū)境內(nèi)流域面積122.65km2,干流河長(zhǎng)19.71km,感潮河段長(zhǎng)約13km,下游河口段11.4km為深圳市與東莞市界河.茅洲河流域?qū)毎矃^(qū)境內(nèi)共有干、支流19條,河道總長(zhǎng)度96.56km.目前,茅洲河流域(寶安片區(qū))已經(jīng)形成以松崗污水廠和沙井污水廠再生水為主要水源的生態(tài)補(bǔ)水系統(tǒng),如圖1所示,補(bǔ)水規(guī)模80萬(wàn)m3/d,實(shí)測(cè)再生水水質(zhì)主要指標(biāo)優(yōu)于地表水IV類,是改善茅洲河干支流水質(zhì)的重要手段之一.
1.2.1 聚類分析法 聚類分析廣泛應(yīng)用于水環(huán)境數(shù)據(jù)分析和水污染綜合評(píng)價(jià)[21-23].層次聚類方法是一種常用的聚類分析算法,可分為凝聚和分裂兩種方法[24].K-均值算法是聚類算法中最基礎(chǔ)也最重要的無(wú)監(jiān)督聚類算法,使類內(nèi)具有較高的相似度,而類間的相似度較低,適用于數(shù)值型數(shù)據(jù)且易于實(shí)現(xiàn),時(shí)間復(fù)雜度低,算法的可解釋度較強(qiáng)[25].
本文運(yùn)用SPSS分析工具進(jìn)行雨水排口聚類分析,首先應(yīng)用層次聚類凝聚算法得到結(jié)果類的數(shù)目,在此基礎(chǔ)上應(yīng)用K-均值法改進(jìn)聚類結(jié)果.
1.2.2 面源污染計(jì)算 降雨徑流污染強(qiáng)度由污染物累積過(guò)程和沖刷過(guò)程共同決定,采用飽和函數(shù)式(1)和指數(shù)函數(shù)式(2)分別計(jì)算污染物累積和沖刷過(guò)程[26].
式中:1為最大增長(zhǎng)可能, kg/hm2;2為半飽和常數(shù), (達(dá)到最大增長(zhǎng)一半時(shí)的天數(shù)), d.
式中:為污染物沖刷量, kg/h;1為沖刷系數(shù);2為沖刷指數(shù);為單位面積的徑流速率, mm/h;為污染物增長(zhǎng)質(zhì)量, kg/hm2.
本文基于典型降雨情景及排口聚類結(jié)果,采用雨水管理模型(SWMM)模型模擬面源污染情況.
1.2.3 河網(wǎng)水動(dòng)力水質(zhì)模擬 水動(dòng)力模塊控制方程為圣維南方程[27](式3、式4):
式中:為河道過(guò)水面積, m2;為流量, m3/s;為側(cè)向來(lái)流在河道方向的流速, m/s;為時(shí)間, s;為沿水流方向的水平坐標(biāo), m;為河道的側(cè)向來(lái)流量, m3/s;為動(dòng)量修正系數(shù);為重力加速度,m/s2;為水位, m;S為摩阻坡降.
水質(zhì)模塊控制方程為對(duì)流擴(kuò)散方程[27](式5):
式中:為模擬物質(zhì)的濃度, mg/L;為河流斷面平均流速, m/s;E為對(duì)流擴(kuò)散系數(shù), m2/s;為模擬物質(zhì)的一級(jí)衰減系數(shù), mg/(L·s);為空間坐標(biāo), m;為時(shí)間, s.
本文采用MIKE11模型對(duì)茅洲河流域河網(wǎng)水動(dòng)力、水質(zhì)過(guò)程進(jìn)行模擬.
近40a來(lái)茅洲河流域所在的深圳市西部城區(qū)年降水量整體呈現(xiàn)增加趨勢(shì)[20],表現(xiàn)出一定的年際變化規(guī)律.為了研究近期茅洲河流域降雨特征,本文基于近5a茅洲河流域日降雨過(guò)程進(jìn)行統(tǒng)計(jì)分析,結(jié)果表明近5a流域年平均降雨日數(shù)102d,主要集中在4~9月份,日降雨以小雨(小于10.0mm)為主,占總降雨日數(shù)的64.7%,中雨(10.0~24.9mm)占20.3%,大雨及以上(大于25.0mm)占15%.統(tǒng)計(jì)表明超過(guò)76%的降雨間隔時(shí)間在3d以內(nèi),僅約10%的降雨時(shí)間間隔在7d以上,從圖2各量級(jí)降雨事件的降雨間隔分布圖可看出,茅洲河流域降雨時(shí)間間隔普遍較短,連續(xù)性降雨頻發(fā).
圖2 茅洲河流域降雨特征統(tǒng)計(jì)
圖3 茅洲河流域典型降雨過(guò)程
在降雨量相當(dāng)時(shí),雨峰偏后的降雨污染負(fù)荷大于雨峰偏前情況[28];當(dāng)其他條件一定時(shí),降雨量累積值、最大降雨強(qiáng)度和平均降雨強(qiáng)度越大,污染負(fù)荷越大[29].結(jié)合前人研究經(jīng)驗(yàn)與茅洲河流域降雨規(guī)律分析結(jié)果,按照同一量級(jí)降雨事件中降雨量較大、前期干燥天數(shù)較長(zhǎng)、雨型集中、雨峰偏后的原則選取共3場(chǎng)典型降雨(小雨、中雨、大雨各1場(chǎng)),作為河網(wǎng)水環(huán)境模擬的典型降雨事件,日降雨量分別為8.8mm(小雨)、17.6mm(中雨)以及43.4mm(大雨),3場(chǎng)典型降雨逐小時(shí)降雨過(guò)程如圖3所示.
面源污染負(fù)荷強(qiáng)度與下墊面密切相關(guān).依據(jù)《深圳市面源污染整治管控技術(shù)路線及技術(shù)指南(試行)》[30]中對(duì)深圳市下墊面分類的方法,按面源污染負(fù)荷從低到高將茅洲河寶安片區(qū)用地分為A、B、C、D 4類,各等級(jí)代表性下墊面見(jiàn)表1.
表1 面源污染等級(jí)標(biāo)準(zhǔn)
按以上地塊劃分原則對(duì)茅洲河流域?qū)毎财瑓^(qū)下墊面面源污染等級(jí)進(jìn)行空間分析(圖4),由于茅洲河流域老城區(qū)和老工業(yè)區(qū)眾多,C類和D類等高污染負(fù)荷用地是該區(qū)域主要的用地類型,而A類和B類的用地明顯較少,反映了茅洲河寶安片區(qū)段干支流沿岸開(kāi)發(fā)密度高、面源污染風(fēng)險(xiǎn)大的特點(diǎn).
圖4 下墊面類型
經(jīng)統(tǒng)計(jì)茅洲河寶安片區(qū)沿河共分布428個(gè)雨水排口,各排口服務(wù)范圍面積與用地性質(zhì)差異顯著.通過(guò)GIS空間分析,以各沿河雨水排口服務(wù)范圍為統(tǒng)計(jì)單元,按排口污染物濃度由低到高將面源污染等級(jí)分為I~V級(jí),如圖5所示.當(dāng)降雨事件一定時(shí),降雨徑流污染過(guò)程主要與排口服務(wù)面積及下墊面類型密切相關(guān),特異性明顯;而排口服務(wù)范圍內(nèi)用地類型相似且匯流特性接近的區(qū)域污染物累積與沖刷過(guò)程又呈現(xiàn)相似特征.因此,為了統(tǒng)計(jì)分析茅洲河流域雨水排口特性,同時(shí)提高建模效率,有必要對(duì)雨水排口進(jìn)行分類統(tǒng)計(jì).本文以排口服務(wù)面積與污染負(fù)荷等級(jí)為聚類因子,采用先驗(yàn)策略,應(yīng)用層次聚類凝聚算法和K-均值法進(jìn)行迭代優(yōu)化,最終將雨水排口分為18個(gè)類別,排口分類結(jié)果見(jiàn)表2.
圖5 排口污染等級(jí)
表2 排口分類結(jié)果
圖6 排口聚類效果檢驗(yàn)
圖7 不同污染負(fù)荷等級(jí)代表性排口分布示意
為驗(yàn)證聚類效果,如圖6所示,排口呈現(xiàn)出組內(nèi)相似、組間差異明顯的特點(diǎn),表明分類效果良好.其中,第2、12類排口污染負(fù)荷高且集水面積較大,負(fù)荷總量高.同時(shí),聚類分析結(jié)果可以表征不同類型排口之間的污染等級(jí)及其空間分布,如圖7所示.其中,第3類排口為高污染排口,主要分布在沙井河及其支流、排澇河沿岸;第4類排口為低污染排口,主要分布在老虎坑、龜嶺東沿岸;第11類排口污染負(fù)荷中等,在各支流沿線廣泛分布.
模型范圍為茅洲河流域?qū)毎财瑓^(qū)干、支流,共概化河道(段)25條、節(jié)點(diǎn)452個(gè)、河道斷面322個(gè)、水閘14座.模型選取2019年3月21日~3月22日26h全潮期為率定期,2019年11月為驗(yàn)證期,以共和村斷面為參證斷面,通過(guò)水動(dòng)力、水質(zhì)同步監(jiān)測(cè)數(shù)據(jù)進(jìn)行模型參數(shù)率定和驗(yàn)證,采用納什效率系數(shù)(NSE)對(duì)模擬精度進(jìn)行評(píng)價(jià).結(jié)合相關(guān)研究成果[31]與流域資料情況,河道糙率取值為0.028~0.032,擴(kuò)散系數(shù)取10m2/s.模型率定和驗(yàn)證結(jié)果如圖8所示.其中圖8(a)、圖8(b)為率定期共和村斷面流量、水位模擬精度檢驗(yàn),NSE分別達(dá)到0.993、0.988,表明模型具有可靠的水動(dòng)力模擬精度;圖8(c)、圖8(d)分別為率定期和驗(yàn)證期共和村斷面氨氮濃度模擬精度檢驗(yàn),NSE分別為0.715和0.841,水質(zhì)模擬精度較高.率定和驗(yàn)證結(jié)果表明,茅洲河流域水環(huán)境模型可以較好地反應(yīng)流域水動(dòng)力和水污染特征,模擬結(jié)果較為可靠.
圖8 模型率定和驗(yàn)證
目前茅洲河流域已建成較為完善的補(bǔ)水系統(tǒng),但尚未建立針對(duì)雨后河道水質(zhì)改善的補(bǔ)水調(diào)度策略[32].在現(xiàn)狀工程條件下,基于已建立的茅洲河流域模型,在2.1節(jié)選定的典型降雨情景下分析茅洲河干流、支流雨后水質(zhì)變化規(guī)律.茅洲河流域降雨期間和雨后水質(zhì)情況如圖9所示,由于污染風(fēng)險(xiǎn)和工程背景的差異,降雨對(duì)干支流各河道水質(zhì)呈現(xiàn)出不同影響,其中,潭頭河、沙井河、潭頭渠由于沿線高污染風(fēng)險(xiǎn)排口較為密集,降雨期間水質(zhì)惡化明顯,但由于現(xiàn)狀補(bǔ)水系統(tǒng)完善,水質(zhì)恢復(fù)較快;石巖渠、松崗河中上游、七支渠上游、萬(wàn)豐河上游等河道(段)由于污染負(fù)荷相對(duì)較高且現(xiàn)狀缺少生態(tài)補(bǔ)水,水環(huán)境容量不足,雨后水質(zhì)恢復(fù)緩慢.
生態(tài)補(bǔ)水是改善河道水質(zhì)的有效措施,受到補(bǔ)水水質(zhì)、補(bǔ)水量、補(bǔ)水位置等因素的影響,不同補(bǔ)水調(diào)度方式的效果差異顯著[33].為了加快雨后河道水質(zhì)改善過(guò)程,基于補(bǔ)水總量不變?cè)瓌t,對(duì)現(xiàn)狀生態(tài)補(bǔ)水方案進(jìn)行局部?jī)?yōu)化,調(diào)整部分河道補(bǔ)水量和補(bǔ)水位置,優(yōu)化策略見(jiàn)表3.以中雨為例,補(bǔ)水方案優(yōu)化后七支渠、萬(wàn)豐河、松崗河、石巖渠雨后水質(zhì)恢復(fù)至V類水的速度加快一倍以上;沙井河、上寮河由于現(xiàn)狀補(bǔ)水量較大,適當(dāng)縮減補(bǔ)水量對(duì)其水質(zhì)恢復(fù)影響較小.雨后流域水質(zhì)情況如圖10所示,與圖9結(jié)果相比,在保持補(bǔ)水總量不變的前提下,優(yōu)化方案可顯著提高流域水質(zhì)的整體穩(wěn)定性.
表3 補(bǔ)水方案優(yōu)化策略
圖10 補(bǔ)水方案優(yōu)化后茅洲河干支流雨后水質(zhì)情況(NH3-N濃度)
3.1 茅洲河流域?qū)毎财瑓^(qū)開(kāi)發(fā)密度高,下墊面類型以高污染負(fù)荷地塊為主,面源污染風(fēng)險(xiǎn)大.基于GIS空間分析和聚類分析理論,以研究區(qū)域內(nèi)沿河污染排口服務(wù)范圍為統(tǒng)計(jì)單元,排口服務(wù)范圍和污染等級(jí)為聚類因子,采用先驗(yàn)策略,應(yīng)用層次聚類算法和K-均值算法進(jìn)行迭代優(yōu)化,將沿河雨水排口分為18類,經(jīng)檢驗(yàn)聚類效果良好.
3.2 流域水環(huán)境模型選取26h全潮期為率定期, 30d為驗(yàn)證期,以共和村斷面為參證站,采用同步水動(dòng)力、水質(zhì)實(shí)測(cè)數(shù)據(jù)進(jìn)行參數(shù)率定和驗(yàn)證.率定期和驗(yàn)證期的流量、水位模擬結(jié)果NSE均達(dá)到0.99左右;率定期和驗(yàn)證期水質(zhì)模擬結(jié)果NSE在0.7以上,模型參數(shù)較為可靠.
3.3 在現(xiàn)狀工程條件下分析茅洲河流域降雨期間和雨后水質(zhì)變化情況,干、支流各河道水質(zhì)變化呈現(xiàn)不同規(guī)律,部分河段沿線污染風(fēng)險(xiǎn)較高,雨后水質(zhì)明顯惡化,但現(xiàn)狀較為完善的生態(tài)補(bǔ)水系統(tǒng)可使其水質(zhì)較快恢復(fù);但仍部分游河道(段)由于污染負(fù)荷相對(duì)較高且生態(tài)補(bǔ)水不足,雨后水質(zhì)不易恢復(fù).基于生態(tài)補(bǔ)水總量不變的原則優(yōu)化現(xiàn)有補(bǔ)水策略,結(jié)果表明優(yōu)化后重點(diǎn)污染河道(段)雨后水質(zhì)恢復(fù)速率明顯加快,同時(shí)對(duì)其他河道無(wú)明顯不利影響,流域水質(zhì)整體穩(wěn)定性提高.
[1] 丁程程,劉 健.中國(guó)城市面源污染現(xiàn)狀及其影響因素 [J]. 中國(guó)人口.資源與環(huán)境, 2011,127(S1):86-89. Ding C C, Liu J. Discussion on urban non-point source pollution and control technologies in China [J]. China population, resources and environment, 2011,127(S1):86-89.
[2] 耿潤(rùn)哲,梁璇靜,殷培紅,等.面源污染最佳管理措施多目標(biāo)協(xié)同優(yōu)化配置研究進(jìn)展 [J]. 生態(tài)學(xué)報(bào), 2019,39(8):2667-2675. Geng R Z, Liang X J, Yin P H, et al. A review: multi-objective collaborative optimization of best management practices for non-point sources pollution contro1 [J]. Aeta Ecologica Sinica, 2019,39(8): 2667-2675.
[3] Charters F J, Cochrane T A, O’Sullivan A D. Predicting event-based sediment and heavy metal loads in untreated urban runoff from impermeable surfaces [J]. Water, 2020,12:969.
[4] 朱聞博,王 健,薛 菲,等.從海綿城市到多維海綿——系統(tǒng)解決城市水問(wèn)題 [M]. 南京:江蘇鳳凰科學(xué)出版社, 2018:37. Zhu W B, Wang J, Xue F, et al. Integrated solutions for urban water issues [M]. Nanjing: Phoenix Science Press, 2018:37.
[5] 彭兆弟,李勝生,劉 莊,等.太湖流域跨界區(qū)農(nóng)業(yè)面源污染特征 [J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2016,32(3):458-465. Peng Z D, Li S S, Liu Z, et al. Characteristics of transboundary non-point source agricultural pollution in the Taihu valley [J]. Journal of Ecology and Rural Environment, 2016,32(3):458-465.
[6] 車 蕊,林 澍,范中亞,等.連續(xù)極端降雨對(duì)東江流域水質(zhì)影響分析 [J]. 環(huán)境科學(xué), 2019,40(10):140-149. Che R, Lin S, Fan Z Y, et al. Effects of continuous extreme rainfall on water quality of the Dongjiang river basin [J]. Environmental Science, 2019,40(10):140-149.
[7] 何夢(mèng)男,張 勁,陳 誠(chéng),等.上海市淀北片降雨徑流過(guò)程污染時(shí)空特性分析 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2018,38(2):103-112. He M N, Zhang J, Chen C, et al. Analysis of the temporal and spatial characteristics of rainfall-runoff pollution in Dianbei basin of Shanghai [J]. Acta Scientiae Circumstantiae, 2018,38(2):103-112.
[8] Li C, Zheng X, Zhao F, et al. Effects of urban non-point source pollution from Baoding city on Baiyangdian lake [J]. Water, 2017,9(4): 249-266.
[9] 許淑敏.天津市降雨徑流對(duì)海河干流水質(zhì)的影響研究 [D]. 天津:天津大學(xué), 2018. Xu S M. Study on the effects of rainfall-runoff on the water quality in the Haihe mainstream in Tianjin [D]. Tianjin: Tianjin University, 2018.
[10] Gong Y W, Liang X, Li X, et al. Influence of rainfall characteristics on total suspended solids in urban runoff: a case study in Beijing [J]. Water, 2016,8:278-300.
[11] Qiu S, Yin H, Deng J, et al. Cost-effectiveness analysis of green–gray stormwater control measures for non-point source pollution [J]. International Journal of Environmental Research and Public Health, 2020,17:998-1010.
[12] 杜 建,陳曉宏,陳志和,等.珠江三角洲感潮河網(wǎng)區(qū)水環(huán)境引水調(diào)控研究 [J]. 水文, 2012,32(4):18-23,98. Du J, Chen X H, Chen Z H, et al. Water diversion and control for water environment in tidal network of Pearl River Delta [J]. Journal of China Hydrology, 2012,32(4):18-23,98.
[13] 江 濤,朱淑蘭,張 強(qiáng),等.潮汐河網(wǎng)閘泵聯(lián)合調(diào)度的水環(huán)境效應(yīng)數(shù)值模擬 [J]. 水利學(xué)報(bào), 2011,42(4):388-395. Jiang T, Zhu S L, Zhang Q, et al. Numerical simulation on effects of gate-pump joint operation on water environment in tidal river network [J]. Journal of Hydraulic Engineering, 2011,42(4):388-395.
[14] 何民輝,舒 展.感潮河網(wǎng)地區(qū)引水增流改善水環(huán)境實(shí)踐探討 [J]. 南昌工程學(xué)院學(xué)報(bào), 2013,32(3):64-67. He M H, Shu Z. Improving water environment by water diversion and flow strengthening in tidal river networks [J]. Journal of Nanchang Institute of Technology, 2013,32(3):64-67.
[15] 賀新春,黃芬芬,汝向文,等.珠江三角洲典型河網(wǎng)區(qū)水資源調(diào)度策略與技術(shù)研究 [J]. 華北水利水電大學(xué)學(xué)報(bào):自然科學(xué)版, 2016,6:55- 60. He X C, Huang F F, Ru X W, et al. Study on water resources dispatching strategy and technology in typical river network area of the Pearl River [J]. Journal of North China University of Water Resources and Electric Power, 2016,6:55-60.
[16] 樓少華,呂權(quán)偉,任珂君,等.從深圳治水歷程研究高密度建成區(qū)排水系統(tǒng)的選擇與改造 [J]. 中國(guó)給水排水, 2018,34(18):28-31. Lou S H, Lyu Q W, Ren K J, et al. Study on the selection and reconstruction of urban drainage system in high density construction area from the course of water control in Shenzhen [J]. China Water & Wastewater, 2018,34(18):28-31.
[17] 何振強(qiáng),方詩(shī)標(biāo),陳永明,等.錢塘江感潮河段污染物遷移擴(kuò)散數(shù)值分析 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2017,37(5):1668-1673. He Z Q, Fang S B, Chen Y M, et al. Numerical analysis of pollutant transport and diffusion in the tidal reach of Qiantang River [J]. Acta Scientiae Circumstantiae, 2017,37(5):1668-1673.
[18] 季榮耀,陸永軍,詹小磊,等.伶仃洋茅洲河口動(dòng)力地貌演變過(guò)程 [J]. 水科學(xué)進(jìn)展, 2019,30(6):781-788. Ji R Y, Lu Y J, Zhan X L, et al. Study on the morphodynamic evolution processes in the Maozhou Estuary of the Lingding Bay [J]. Advances in Water Science, 2019,30(6):781-788.
[19] 徐 群,莫思平,季榮耀,等.港珠澳大橋?qū)α尕暄蠛涌诔绷鳝h(huán)境的影響 [J]. 水利水運(yùn)工程學(xué)報(bào), 2012,2:79-83. Xu Q, Mo S P, Ji R Y, et al. Impacts of the Hong Kong-Zhuhai-Macao Bridge on flow environment of Lingdingyang estuary [J]. Hydro- Science and Engineering, 2012,2:79-83.
[20] 趙彥軍,徐宗學(xué),譚秋陽(yáng),等.深圳市降水特征時(shí)空演變規(guī)律分析 [J]. 北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019,5:564-571. Zhao Y J, Xu Z X, Tan Q Y, et al. Spatiotemporal variations in precipitation in Shenzhen [J]. Journal of Beijing Normal University (Natural Science), 2019,5:564-571.
[21] 馮存岸,于金珍,馮依蕾,等.陸海統(tǒng)籌下的陸源排放口聚類分析[J]. 水動(dòng)力學(xué)研究與進(jìn)展(A輯), 2020,35(3):42-48. Feng C A, Yu J Z, Feng Y L, et al. Cluster analysis of land-sourced sewage outlets based on Jaccard similarity [J]. Chinese Journal of Hydrodynamics, 2020,35(3):42-48.
[22] 鄒永福,田 檢,黃曉航.因子分析和聚類分析在長(zhǎng)江水污染綜合評(píng)價(jià)中的應(yīng)用 [J]. 科技信息, 2009,19:728-729. Zou Y F, Tian J, Huang X H. Application of factor analysis and ouster analysis to water quality comprehensive evaluation on Yangtze River [J]. Science & technology information, 2009,19:728- 729.
[23] 沈迅?jìng)?袁春偉.基于模糊聚類分析的水污染評(píng)價(jià) [J]. 南京化工大學(xué)學(xué)報(bào), 1998,20:30-34. Shen X W, Yuan C W. Water pollution assessment based on fuzzy cluster analysis [J]. Journal of Nanjing University of chemical technology, 1998,20:30-34.
[24] 馬曉艷,唐 雁.層次聚類算法研究 [A]//2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集 [C]. 重慶:重慶計(jì)算機(jī)學(xué)會(huì), 2008. Ma X Y, Tang Y. Research on hierarchical clustering algorithm [A]//Proceedings of 2008computer application technology exchange conference [C]. Chongqing: Chongqing Computer federation, 2008.
[25] 尉景輝,何丕廉,孫越恒.基于K-Means的文本層次聚類算法研究 [J]. 計(jì)算機(jī)應(yīng)用, 2005,10:111-112. Yu J H, He P L, Sun Y H. Research on text hierarchical clustering algorithm based on K-Means [J]. Journal of computer applications, 2005,10:111-112.
[26] Rossman L A, Storm water management model user’s manual version 5.0 [R].USA: United States Environmental Protection Agency, 2009.
[27] Danish Hydraulic Institute. Water and environment. MIKE11Reference Manual [Z]. Denmark: DHI, 2014.
[28] 黃國(guó)如,聶鐵鋒.廣州城區(qū)雨水徑流非點(diǎn)源污染特性及污染負(fù)荷 [J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版, 2012,40(2):146-152. Huang G R, Nie T F. Characteristics and load of non-point source pollution of urban rainfall runoff in Guangzhou, China [J]. Journal of South China University of Technology (Natural Science Edition), 2012,40(2):146-152.
[29] 羅鴻兵,羅 麟,黃 鵠,等.城市入河徑流排放口總污染特征研究 [J]. 環(huán)境科學(xué), 2009,30(11):109-117. Luo H B, Luo L, Huang G, et al. Total pollution features of urban runoff outlet for urban river [J]. Environmental Science, 2009,30(11): 109-117.
[30] 深圳市水務(wù)局.深圳市面源污染整治管控技術(shù)路線及技術(shù)指南(試行) [Z]. 深圳:深圳市水務(wù)局, 2018. Shenzhen Water Affairs Bureau: Shenzhen non point source pollution control technology route and technical guidelines [Z]. Shenzhen: Shenzhen Water Affairs Bureau, 2018.
[31] 林希晨,倪紅珍,王 琳.東南沿海平原河網(wǎng)區(qū)域水質(zhì)水量模型研究 [J]. 水利水電技術(shù), 2019,50(6):150-157. Lin X C, Ni H Z, Wang L. Application of hydrodynamic and water quality model in the river network of southeast coastal plain area [J]. Water Resources and Hydropower Engineering, 2019,50(6):150-157.
[32] 熊鴻斌,陳 雪,張斯思.基于MIKE11模型提高污染河流水質(zhì)改善效果的方法 [J]. 環(huán)境科學(xué), 2017,38(12):5063-5073. Xiong H B, Chen X, Zhang S S. Method of Improving the Water Quality of Polluted Rivers Based on the MIKE11Model [J]. Environmental Science, 2017,38(12):5063-5073.
[33] 樓少華,唐穎棟,陶 明,等.深圳市茅洲河流域水環(huán)境綜合治理方法與實(shí)踐 [J]. 中國(guó)給水排水, 2020,36(10):1-6. Lou S H, Tang Y D, Tao M, et al. Methods and practice of comprehensive improvement of Maozhou River water environment in Shenzhen [J]. China Water & Wastewater, 2020,36(10):1-6.
致謝:感謝深圳市寶安區(qū)水務(wù)局提供的部分?jǐn)?shù)據(jù).
Spatial analysis and simulation study of rainfall runoff pollution for a tidal river network.
ZHANG Feng-shan, SHANG Ming-zhu, ZHAO Peng-xiao, CHENG Kai-yu, TANG Ying-dong, WEI Jun*
(Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China)., 2021,41(4):1834~1841
To explore the spatial distribution characteristics and pollution pattern of non-point source pollution of the tidal river network in the Maozhouhe River basin, the river network water quality under typical rainfall scenarios was simulated and analysed based on spatial analysis, statistical analysis and hydrodynamic-water quality coupling simulation method. An ecological water supply optimization strategy based on the target of water quality improvement was proposed. The results showed that the combination of hierarchical clustering aggregation algorithm and K-means can preferably distinguish the level and class of non-point source pollution. The water quality of the Shiyanqu River and the middle and upper reaches of the Songganghe River recovered slowly after rain fall due to the high non-point source pollution load and the lack of ecological water supply. A local optimized ecological water supply scheme was proposed based on the principle of constant amount of water replenishment. The recovery speed of water quality in key polluted rivers after rainfall was doubled by the optimized results, and the overall stability of river water quality in the basin was improved. The research conclusions provide support to the further understanding on the water pollution characteristics of the Maozhouhe River basin and the delicacy management of watershed water environment.
tidal river networks;non-point source pollution;numerical modelling;Maozhouhe River
X522
A
1000-6923(2021)04-1834-08
張鳳山(1992-),男,內(nèi)蒙古豐鎮(zhèn)人,工程師,碩士,主要從事水環(huán)境數(shù)值模擬研究.發(fā)表論文8篇.
2020-08-23
廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃“污染防治與修復(fù)”重點(diǎn)專項(xiàng)(2019B110205005)
* 責(zé)任作者, 正高級(jí)工程師, wei_j@ecidi.com