国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

果蔬中農(nóng)藥殘留檢測(cè)分析研究進(jìn)展

2021-05-06 03:16李俊霞馬麗雅林河通
江蘇農(nóng)業(yè)科學(xué) 2021年6期
關(guān)鍵詞:前處理農(nóng)藥殘留果蔬

李俊霞 馬麗雅 林河通

摘要:果蔬中殘留農(nóng)藥對(duì)人類的健康造成威脅,因此檢測(cè)果蔬中農(nóng)藥殘留具有重要意義。本文綜述了果蔬中農(nóng)藥殘留檢測(cè)分析方法的原理及應(yīng)用,包括前處理方法和檢測(cè)技術(shù)??偨Y(jié)了應(yīng)用較廣的前處理技術(shù):液液萃取、固相萃取、QuEChERS、分析比較色譜法、色譜-質(zhì)譜聯(lián)用法、酶聯(lián)免疫法及生物傳感器等檢測(cè)技術(shù)。另外,介紹了納米材料在果蔬農(nóng)藥殘留分析中的應(yīng)用。

關(guān)鍵詞:果蔬;農(nóng)藥殘留;前處理;檢測(cè)

水果和蔬菜中含有豐富的維生素、礦物質(zhì)和膳食纖維,合理攝入果蔬不僅能夠減少中風(fēng)和缺血性心臟病的風(fēng)險(xiǎn),而且還可以降低腸胃的患癌率[1],是現(xiàn)代生活中不可或缺的部分。但是果蔬生長(zhǎng)周期長(zhǎng),存在極大的病蟲害隱患,而農(nóng)藥或復(fù)合農(nóng)藥的施用在確保果蔬產(chǎn)量和質(zhì)量的過程中發(fā)揮著重要作用[2-4]。同時(shí),農(nóng)藥種類和劑量的不合理施用,會(huì)造成果蔬中農(nóng)藥殘留甚至超標(biāo)現(xiàn)象,影響果蔬的出口貿(mào)易和人類健康[5-8]。近年來,食品安全問題已經(jīng)成為全球熱點(diǎn),加強(qiáng)果蔬中農(nóng)藥殘留檢測(cè)具有重大意義。

由圖1可知,果蔬中農(nóng)藥殘留檢測(cè)所涉及的主要步驟包括樣品前處理(提取、凈化及富集),檢測(cè)(測(cè)定目標(biāo)物)及數(shù)據(jù)分析(評(píng)估可靠性)[9]。農(nóng)藥殘留種類多、樣品基質(zhì)復(fù)雜、干擾物多等是目前果蔬中農(nóng)藥殘留檢測(cè)面臨的挑戰(zhàn)[10-12],因此,須要選擇合適的前處理和檢測(cè)技術(shù),以提高果蔬中農(nóng)藥殘留檢測(cè)的精確度和靈敏度[13]。本文綜述了近年來國(guó)內(nèi)外在果蔬中農(nóng)藥殘留的前處理及檢測(cè)技術(shù),并分析比較優(yōu)劣,以期為相關(guān)領(lǐng)域工作者提供借鑒。

1 農(nóng)藥殘留前處理技術(shù)

目前多種前處理技術(shù)已經(jīng)在果蔬中農(nóng)藥殘留檢測(cè)方面得以應(yīng)用,樣品前處理是農(nóng)藥殘留檢測(cè)過程中至關(guān)重要的步驟。針對(duì)基質(zhì)的差異性和目標(biāo)物的多樣性,果蔬中農(nóng)藥殘留前處理技術(shù)應(yīng)具有差異性,應(yīng)結(jié)合果蔬種類、數(shù)據(jù)分析要求、檢測(cè)儀器等確定合適的前處理技術(shù)[14]。

1.1 液液萃取法

液液萃?。╨iquid-liquid extraction,簡(jiǎn)稱LLE)也稱溶劑萃取和分離,它主要根據(jù)化合物在特殊不混溶液體中的相對(duì)溶解度來分離化合物[15]。LLE要使用不同的單一或者混合提取溶劑,例如乙腈[16]、二氯甲烷/丙酮[17]及氯仿/二氯甲烷[18]等溶劑。該技術(shù)適應(yīng)性強(qiáng)并且與大多數(shù)儀器兼容,過去10年來,LLE方法已作為常規(guī)技術(shù)在果蔬農(nóng)藥殘留檢測(cè)中廣泛應(yīng)用[19-20]。但LLE技術(shù)耗時(shí),難以自動(dòng)化,毒性溶劑如氯仿等消耗大,大量有毒的有機(jī)溶劑可能對(duì)人類和環(huán)境構(gòu)成潛在威脅。同時(shí),該技術(shù)對(duì)極性農(nóng)藥的提取效果較差[15]。

針對(duì)液液萃取的弊端,目前該技術(shù)已經(jīng)衍生出大量的改進(jìn)技術(shù),如分散液-液微萃?。╠ispersive liquid-liquid micro-extraction,簡(jiǎn)稱DLLME)、空氣輔助液-液微萃?。╝ir-assisted liquid-liquid microextraction,簡(jiǎn)稱AALLME)、加糖液液萃?。╯ugaring-out liquid-liquid extraction,簡(jiǎn)稱SULLE)、鹽析輔助均相液液萃?。╯alting-out homogenous liquid-liquid extraction,簡(jiǎn)稱SHLLE)等,這些技術(shù)在果蔬農(nóng)藥殘留檢測(cè)中的應(yīng)用見表1。

1.2 固相萃取法

固相萃?。╯olid-phase extraction,簡(jiǎn)稱SPE)是一種柱色譜分離過程,以固體吸附劑作為固定相,將樣品中目標(biāo)化合物選擇性吸附,分離樣品的基體和干擾物,然后再通過合適的洗脫液進(jìn)行洗脫,達(dá)到分離和富集目標(biāo)化合物的效果[25]。與LLE相比,SPE消耗有機(jī)溶劑更少,分析時(shí)間更短,方法回收率更高,同時(shí)還能更有效地去除干擾化合物,在樣品預(yù)處理中起著越來越重要的作用[26]。但基于SPE技術(shù)是將分析物吸附到固體吸附劑上的特質(zhì),因此選擇合適的吸附劑非常重要,SPE應(yīng)用于農(nóng)藥殘留的幾種常見商業(yè)吸附劑的類型及適用范圍見圖2,另外氨基固相吸附劑(—NH2)、復(fù)合吸附劑等也常用于果蔬樣品前處理[25,27-29]。

在固相萃取的原理上,SPE技術(shù)不斷發(fā)展,主要包括以下6種SPE:固相萃取、固相分散萃取(dispersive solid-phase extraction,簡(jiǎn)稱DSPE)、固相微萃?。╯olid-phase microextraction,簡(jiǎn)稱SPME)、磁固相萃?。╩agnetic solid-phase extraction,簡(jiǎn)稱MSPE)、基質(zhì)固相分散萃?。╩atrix solid-phase dispersion,簡(jiǎn)稱MSPD)、攪拌棒吸附萃?。╯tir bar sorptive extraction,簡(jiǎn)稱SBSE),這6種主要SPE模式的原理及優(yōu)缺點(diǎn)見表2。

近年來,大量的學(xué)者在果蔬農(nóng)藥殘留檢測(cè)過程中展開基于固相萃取技術(shù)的研究。Guan等利用基質(zhì)固相分散萃取快速濃縮,然后結(jié)合液相色譜-串聯(lián)質(zhì)譜同時(shí)分離檢測(cè)8種不同果蔬中的9種有機(jī)磷農(nóng)藥[30]。Zuin等比較了攪拌棒吸附萃取和膜輔助溶劑萃?。∕ASE)前處理技術(shù)在測(cè)定甘蔗汁中農(nóng)藥殘留的效果,2種前處理技術(shù)結(jié)合GC-MS,檢出限均可達(dá)到1 μg/L,但SBSE前處理具有更高的靈敏度和重復(fù)性[31]。Kin等在氣相色譜儀(電子捕獲檢測(cè)器,ECD)檢測(cè)前,選用固相微萃取法進(jìn)行前處理,評(píng)估了草莓和黃瓜中有機(jī)磷和有機(jī)氯農(nóng)藥殘留水平,具有較低的檢出限(0.01~1.00 μg/L)[32]。

1.3 QuEChERS法

QuEChERS(quick,easy,cheap,effective,rugged,safe)技術(shù)分為提取和凈化2個(gè)部分,第1個(gè)部分是用乙腈和鹽的混合物通過分配進(jìn)行萃取,第2個(gè)部分是通過包含1種或幾種吸附劑的分散固相萃?。╠-SPE)進(jìn)行凈化,去除潛在的干擾化合物,包括有機(jī)酸、色素、糖等,具體操作見圖3[33]。該方法因省時(shí)、安全、操作簡(jiǎn)單、成本低、可去除多種雜質(zhì)對(duì)分析物的干擾而在果蔬農(nóng)藥殘留分析中得以廣泛應(yīng)用[34-36]。盡管原始的QuEChERS法在大多數(shù)果蔬基質(zhì)中農(nóng)藥殘留提取十分有效,但針對(duì)特殊基質(zhì)或特殊農(nóng)藥,須對(duì)QuEChERS方法不斷完善發(fā)展。近年來,大量的學(xué)者針對(duì)QuEChERS方法的提取和凈化部分進(jìn)行不同程度的改進(jìn),主要包括pH值、提取溶劑、凈化的優(yōu)化。

QuEChERS方法最初使用無緩沖液條件下進(jìn)行,在應(yīng)用過程中發(fā)現(xiàn)在高或低pH值下降解的敏感化合物的回收率差。為了克服局限性,歐洲標(biāo)準(zhǔn)委員會(huì)(CEN)[37]和美國(guó)分析化學(xué)家協(xié)會(huì)(AOAC)[38]制定了官方方法: 在提取過程中引入檸檬酸鹽緩沖液(相對(duì)較低的緩沖能力)或乙酸鹽緩沖液(較強(qiáng)的緩沖能力)。通過添加緩沖溶液,2種方法均出現(xiàn)pH值為5左右的萃取溶劑,有利于萃取pH值依賴性農(nóng)藥。Lehotay等在果蔬農(nóng)藥殘留檢測(cè)中添加醋酸鈉形成緩沖萃取劑,測(cè)定了32種農(nóng)藥殘留,回收率為 (95±10)%,包括百菌清等pH值敏感農(nóng)藥[39]。

目前大量的有機(jī)溶劑,如丙酮、乙腈、乙酸乙酯等,廣泛用于果蔬中農(nóng)藥殘留分析[40],而乙腈(醋酸或甲酸酸化的乙腈)是最常見的萃取溶劑[37,40],不僅在水果和蔬菜等含水量高的基質(zhì)中提取農(nóng)藥回收率高[41-42],同時(shí)可以穿透樣品基體的水相,添加鹽后可以實(shí)現(xiàn)兩相分離[43]。隨著基質(zhì)的復(fù)雜化以及農(nóng)藥的多樣化,混合萃取溶劑在QuEChERS提取過程中不斷發(fā)展。Sivaperumal等用乙腈、乙酸乙酯(體積比為25 ∶ 75)混合溶液萃取,經(jīng)d-SPE凈化后采用超高效液相色譜串聯(lián)飛行質(zhì)譜(UHPLC-Q-TOF/MS)技術(shù)對(duì)芒果中68種殘留農(nóng)藥進(jìn)行測(cè)定,3種濃度水平(10、50、100 μg/kg)的回收率都在70%~122%之間,檢出限和定量限范圍分別為 0.5~7.0 μg/kg、2~25 μg/kg[44]。

凈化是QuEChERS法的關(guān)鍵步驟,可以極大程度地影響農(nóng)藥殘留檢測(cè)的定量限和檢出限,其中最常見的凈化劑為MgSO4、石墨化碳黑(GCB)、十八烷基硅烷(C18)等。根據(jù)這些傳統(tǒng)凈化劑的優(yōu)缺點(diǎn)[45],可將果蔬分為3類,一般的果蔬、高色素的果蔬和高色素及脂肪的果蔬。在QuEChERS法中選擇合適的吸附劑組合很大程度上取決于果蔬的類別。一般的果蔬采用N-丙基乙二胺(PSA)+MgSO4進(jìn)行去除有機(jī)酸、部分糖[44,46],高色素的果蔬則一般以PSA、石墨化碳(GCB)+MgSO4的組合去除有機(jī)酸、部分糖以及色素[47-48],而對(duì)于高色素及脂肪的果蔬,會(huì)利用C18可以消除脂肪等非極性雜質(zhì)的優(yōu)勢(shì),在此基礎(chǔ)上添加C18凈化劑進(jìn)行除雜[49]。

1.4 其他前處理技術(shù)

除以上幾種比較常用的前處理技術(shù)外,凝膠滲透色譜法(gel permeation chromatography,簡(jiǎn)稱GPC),超聲波輔助萃?。╱ltrasound assisted extraction,簡(jiǎn)稱UAE),濁點(diǎn)萃取法(cloud point extraction,簡(jiǎn)稱CPE)等在果蔬農(nóng)藥殘留前處理過程中也有所應(yīng)用。Ramos等開發(fā)了超聲輔助基質(zhì)固相分散法,用于提取和凈化水果中的15種有機(jī)磷農(nóng)藥和9種三嗪類農(nóng)藥,超聲反應(yīng)器在50%振幅下進(jìn)行 1 min 的超聲處理前處理效果最佳,基本沒有基質(zhì)效應(yīng)[50]。周璐等建立了濁點(diǎn)萃取-正己烷反萃取氣相色譜(FPD)聯(lián)用法對(duì)蘋果汁中5種有機(jī)磷農(nóng)藥的殘留進(jìn)行測(cè)定[51]。5種目標(biāo)物在0.05~2.00 mg/L范圍內(nèi)線性相關(guān)系數(shù)范圍為0.998 6~0.999 6,方法的檢出限為0.13~1.50 μg/kg。

2 農(nóng)藥殘留檢測(cè)技術(shù)

在過去的幾十年中,已經(jīng)開發(fā)出許多檢測(cè)技術(shù)來測(cè)定果蔬中的農(nóng)藥殘留,其中色譜法和色譜質(zhì)譜聯(lián)用法是檢測(cè)的主要手段。基于其靈敏度、分離和鑒定能力,氣相色譜和液相色譜通常是農(nóng)藥殘留檢測(cè)的首選。但是色譜法對(duì)復(fù)雜樣品的農(nóng)藥殘留檢測(cè)有一定的限制,針對(duì)這一局限性,色譜-質(zhì)譜聯(lián)用法(氣相色譜-質(zhì)譜聯(lián)用技術(shù)、液相色譜-質(zhì)譜聯(lián)用技術(shù))得到了廣泛應(yīng)用。近年來,為了滿足快速、簡(jiǎn)單及選擇性高的農(nóng)藥檢測(cè)需求,酶聯(lián)免疫分析技術(shù)、生物傳感器等檢測(cè)技術(shù)不斷發(fā)展。表3總結(jié)了幾種檢測(cè)技術(shù)在果蔬農(nóng)藥殘留中的應(yīng)用。

2.1 色譜法

氣相色譜法(gas chromatography,GC)適用于以氣體和可揮發(fā)物質(zhì)作為分析對(duì)象,是一種經(jīng)典分析方法。其原理是將前處理后的樣品注入氣相色譜柱,升溫汽化固相分離檢測(cè),通過物質(zhì)的保留時(shí)間進(jìn)行定性,峰高和標(biāo)準(zhǔn)曲線進(jìn)行定量。通過GC進(jìn)行農(nóng)藥殘留分析通常與特定的檢測(cè)器結(jié)合使用,例如電子捕獲檢測(cè)器(ECD)[52]、火焰光度檢測(cè)器(FPD)[8,53]、氮磷檢測(cè)器(NPD)[55]和火焰電離檢測(cè)器(FID)[22-23]。然而,隨著持久性和毒性較低的極性農(nóng)藥的使用增加,由于其熱穩(wěn)定性差和高沸點(diǎn)的特質(zhì),GC檢測(cè)方法的弊端顯現(xiàn),使用有所減少[15]。

液相色譜法(liquid chromatography,簡(jiǎn)稱LC)廣泛應(yīng)用于農(nóng)藥殘留分析,絕大部分采用了光電二極管陳列檢測(cè)器(PDA)、紫外檢測(cè)器(UV)、二極管陣列檢測(cè)器(DAD)[26]。高效液相色譜法(HPLC)是液相色譜法中最常用的方法,適用于相對(duì)分子量較大、極性較強(qiáng)、沸點(diǎn)較高及熱穩(wěn)定性較差的農(nóng)藥的分離檢測(cè),彌補(bǔ)了氣相色譜不能分離熱穩(wěn)定性和揮發(fā)性差的農(nóng)藥的局限[67]。同時(shí),HPLC因其快速、高效、準(zhǔn)確性高等優(yōu)勢(shì)在果蔬農(nóng)藥殘留檢測(cè)中廣泛應(yīng)用(表3)。

2.2 色譜-質(zhì)譜聯(lián)用法

色譜-質(zhì)譜聯(lián)用技術(shù)是結(jié)合色譜法和質(zhì)譜(MS)的新檢測(cè)技術(shù),常用在果蔬農(nóng)藥多殘留分析領(lǐng)域。質(zhì)譜的引入可以克服結(jié)構(gòu)干擾,有效分離復(fù)雜樣品中的農(nóng)藥,檢測(cè)多殘留農(nóng)藥及其代謝物,還可同時(shí)對(duì)其進(jìn)行定量、定性分析,并提供來自精準(zhǔn)分子質(zhì)量和裂解模式的結(jié)構(gòu)信息。質(zhì)譜分析器種類很多,其中四級(jí)桿分析器(quadrupole,簡(jiǎn)稱Q)、離子阱分析器(ion trap,簡(jiǎn)稱IT)和飛行時(shí)間分析器(time of flight mass,簡(jiǎn)稱TOF)最為常用。為了達(dá)到增加結(jié)構(gòu)信息的目的,大多數(shù)情況下選用具有串聯(lián)質(zhì)譜功能的質(zhì)量分析器,如Q-TOF、Q-Q-Q[15]。在色譜-質(zhì)譜聯(lián)用系統(tǒng)中,被分析的樣品先在色譜系統(tǒng)中分離,然后從色譜柱中洗脫出來的餾分進(jìn)行電離并進(jìn)入質(zhì)量分析器進(jìn)行測(cè)定。農(nóng)藥覆蓋范圍廣、樣品制備簡(jiǎn)便、無需衍生化、靈敏度高、選擇性強(qiáng)等優(yōu)點(diǎn)[26,68-70]是色譜-質(zhì)譜聯(lián)用技術(shù)廣泛應(yīng)用于農(nóng)藥檢測(cè)、鑒定和定量分析的重要原因。表3總結(jié)了色譜-質(zhì)譜聯(lián)用在果蔬農(nóng)藥殘留檢測(cè)的研究。

2.3 其他檢測(cè)方法

近年來,酶聯(lián)免疫分析技術(shù)及生物傳感器法在果蔬農(nóng)藥殘留檢測(cè)中的應(yīng)用頻頻被報(bào)道。酶聯(lián)免疫法(ELISA)在免疫分析中使用最為廣泛,是根據(jù)抗原與抗體相互作用原理來確定農(nóng)藥的含量[71]。該技術(shù)的缺點(diǎn)是抗體不穩(wěn)定,會(huì)導(dǎo)致實(shí)驗(yàn)結(jié)果有偏差,且不能同時(shí)準(zhǔn)確分析多種農(nóng)藥成分,只能作為輔助方法進(jìn)行監(jiān)測(cè)[15],但基于具有簡(jiǎn)易快捷的特點(diǎn)以及較高的靈敏度和選擇性,應(yīng)用在果蔬農(nóng)藥殘留快速檢測(cè)中具有很大的發(fā)展?jié)摿?。Navarro等使用雙酶聯(lián)免疫吸附法檢測(cè)了柑橘汁中氯吡硫磷和倍硫磷的殘留量,該方法測(cè)得氯吡硫磷的檢出限為(0.20±0.04) μg/L,倍硫磷檢出限為(0.50±006) μg/L,且二者的回收率均為95%~106%[62]。Sun等建立了一種多酶示蹤劑形式的ElISA法測(cè)定蔬菜和果汁中西維因和速滅威含量,2種農(nóng)藥回收率均超過70%,檢出限為0.15 μg/L(西維因)和1.2 μg/L(速滅威)[63]。

生物傳感器通過生物功能物質(zhì)與合適的轉(zhuǎn)換元件充分結(jié)合,對(duì)特定類別的化合物、生物活性物質(zhì)進(jìn)行選擇性分析。與傳統(tǒng)檢測(cè)技術(shù)相比,生物傳感器檢測(cè)法具有檢樣微量、成本低、靈敏度高、分析速度快等優(yōu)點(diǎn)[72],其中壓電生物傳感器、光學(xué)生物傳感器、電化學(xué)生物傳感器等是果蔬農(nóng)藥殘留檢測(cè)的主要生物傳感器類型[15]。Caetano等構(gòu)建了基于抑制乙酰膽堿酯酶(AchE)活性的電化學(xué)生物傳感器,用于測(cè)定番茄中西維因的殘留量,該方法檢出限為3.2 μg/L[64]。

3 納米材料在果蔬農(nóng)藥殘留檢測(cè)的應(yīng)用

隨著納米材料的不斷發(fā)展,研究者們不斷開發(fā)基于納米材料的農(nóng)藥前處理技術(shù)和快速檢測(cè)方法。納米材料是一種三維空間中至少有一維在納米尺度范圍內(nèi)(1~100 nm)的材料。近年來,碳納米材料(碳納米管、石墨烯)、半導(dǎo)體納米材料(量子點(diǎn))及納米氧化物(二氧化鈦、四氧化三鐵)等在果蔬農(nóng)藥殘留檢測(cè)中成為不可或缺的一部分[73-74]。

納米級(jí)別的材料具有塊狀材料所不具備的表面效應(yīng)及強(qiáng)吸附能力[75]。為實(shí)現(xiàn)檢出限低、分離和富集一體化的凈化效果,納米材料在固相微萃取、磁固相萃取、基質(zhì)固相萃取和QuEChERS等果蔬農(nóng)藥殘留前處理技術(shù)中應(yīng)用廣泛。Chatzimitakos等在基質(zhì)固相萃取時(shí)使用磁性氧化石墨烯進(jìn)行凈化后,利用GC-MS分離檢測(cè)了從蔬菜(白菜、韭菜、菊苣)提取的45種多類農(nóng)藥[73]。磁性氧化石墨烯具有親水性和強(qiáng)吸附性,可以與高含水量蔬菜有效混合,在3種蔬菜中檢出率均為89%~106%,定量限更是達(dá)到0.4~4.0 μg/kg。多壁碳納米管(MWCNT)結(jié)合其大表面積和獨(dú)特結(jié)構(gòu),具有強(qiáng)吸附性,是一種固相微萃取的可替代凈化劑。Han等建立了QuEChERS-HPLC-MS/MS法測(cè)定韭菜、萵苣和花環(huán)菊花中70種農(nóng)藥殘留,前處理分別采用MWCNT、GCB、PSA作為凈化劑,結(jié)果表明,MWCNT的凈化性能優(yōu)于GCB和PSA,回收率較高,范圍為74%~119%,同時(shí)70種農(nóng)藥的檢出限(0.1~2.4 μg/kg)和定量限(0.3~7.9 μg/kg)都較低[76]。

金屬半導(dǎo)晶體納米材料量子點(diǎn)(quantum dot,簡(jiǎn)稱QD)擁有獨(dú)特的光學(xué)性質(zhì),量子點(diǎn)與目標(biāo)分析物發(fā)生物理或化學(xué)反應(yīng),能夠?qū)е掳l(fā)光增強(qiáng)或猝滅,以此來測(cè)定目標(biāo)物的濃度[77]。量子點(diǎn)表面易進(jìn)行功能修飾的特點(diǎn)以及光學(xué)性質(zhì),促進(jìn)了其在農(nóng)藥殘留檢測(cè)中的應(yīng)用。Luan等以建立了CdTe量子點(diǎn)為信號(hào)傳感器、乙酰膽堿酯酶(AchE)為識(shí)別分子的生物傳感器,已經(jīng)應(yīng)用于蘋果中有機(jī)磷農(nóng)藥的測(cè)定[78]。有機(jī)磷農(nóng)藥抑制了AchE活力,從而改變CdTe/AchE的熒光強(qiáng)度,可以衡量有機(jī)磷農(nóng)藥含量。在最佳條件下,對(duì)硫磷和對(duì)氧磷的線性范圍為5~100 μg/L,檢測(cè)限為10 μg/L。為實(shí)現(xiàn)特異性檢測(cè)果蔬中農(nóng)藥殘留,Huang等用O,O-二甲基-(2,2-二氯乙烯基)磷酸酯的分子印跡聚合物(MIPs)包覆混合量子點(diǎn),選擇性吸附測(cè)定敵敵畏,而量子點(diǎn)的加入大大提高了測(cè)定敵敵畏的靈敏度,檢出限達(dá)到1.27 μg/L,并成功應(yīng)用于白菜中敵敵畏的測(cè)定,回收率為87.4%~101.0%[79]。

4 總結(jié)與展望

隨著人們食品安全意識(shí)的不斷增強(qiáng),果蔬的農(nóng)藥殘留問題越來越受重視。果蔬基質(zhì)的復(fù)雜性、農(nóng)藥的多樣性,對(duì)果蔬農(nóng)藥殘留分析技術(shù)的發(fā)展起了推動(dòng)作用。近年來,樣品前處理過程已進(jìn)行了很大改進(jìn),這些改進(jìn)技術(shù)具有提高靈敏度,減少樣品量、有機(jī)試劑、分析時(shí)間、基質(zhì)干擾的發(fā)展趨勢(shì)。而檢測(cè)技術(shù)也逐漸從色譜技術(shù)向色譜-質(zhì)譜聯(lián)用技術(shù)轉(zhuǎn)移,同時(shí),生物傳感器法和免疫技術(shù)近年來在果蔬農(nóng)藥殘留檢測(cè)中不斷開發(fā)應(yīng)用。不同的前處理和檢測(cè)技術(shù)都具有各自的適用范圍和優(yōu)缺點(diǎn),在實(shí)際檢測(cè)中,需要結(jié)合果蔬的種類、農(nóng)藥的種類和限度,選擇適當(dāng)?shù)那疤幚砗蜋z測(cè)技術(shù),來提高果蔬中農(nóng)藥殘留檢測(cè)的準(zhǔn)確度。

最近幾年,農(nóng)藥產(chǎn)業(yè)迅速發(fā)展,出現(xiàn)了不少新型農(nóng)藥,新型農(nóng)藥正朝著復(fù)合農(nóng)藥的方向發(fā)展,農(nóng)藥殘留檢測(cè)也逐漸向多種組分同時(shí)檢測(cè)分析的趨勢(shì)發(fā)展。農(nóng)藥殘留檢測(cè)需要生物技術(shù)與多種現(xiàn)代儀器分析技術(shù)相結(jié)合來提高檢測(cè)的準(zhǔn)確性和靈敏度。未來的農(nóng)藥殘留分析將與新材料結(jié)合,朝著安全化、微型化和自動(dòng)化分析的方向發(fā)展。研發(fā)高效快捷、高靈敏、高通量及自動(dòng)化的新型農(nóng)藥殘留檢測(cè)技術(shù)并將其應(yīng)用到實(shí)踐,將是未來研究熱門方向之一,將為我國(guó)農(nóng)藥殘留檢測(cè)打開一個(gè)多元化局面。

參考文獻(xiàn):

[1]World Health Organization. World health statistics 2016:monitoring health for the SDGs,sustainable development goals[M]. Geneva:WHO Press,2016.

[2]Chen F,Zeng L Q,Zhang Y Y,et al. Degradation behaviour of methamidophos and chlorpyrifos in apple juice treated with pulsed electric fields[J]. Food Chemistry,2009,112(4):956-961.

[3]Li R,Wei W,He L,et al. Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing[J]. Journal of Agricultural and Food Chemistry,2014,62(42):10215-10221.

[4]Azam S M R,Ma H,Xu B,et al. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables:a review[J]. Trends in Food Science & Technology,2020,97:417-432.

[5]何麗芳,王芳宇,鄒征歐,等. 衡陽(yáng)市蔬菜水果農(nóng)藥殘留現(xiàn)狀、原因與對(duì)策[J]. 衡陽(yáng)師范學(xué)院學(xué)報(bào),2012,33(3):82-85.

[6]易承學(xué),徐 虹,蒲彥利,等. 2014年鎮(zhèn)江市夏季蔬菜農(nóng)藥殘留監(jiān)測(cè)分析[J]. 職業(yè)與健康,2015,31(3):326-328.

[7]韋江峰,李 翔,胡支向,等. 柑橘中有機(jī)磷類農(nóng)藥使用調(diào)查初探[J]. 農(nóng)業(yè)與技術(shù),2015,35(5):36-37.

[8]Blankson G K,Osei-Fosu P,Adeendze E A,et al. Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra,Ghana[J]. Food Control,2016,68:174-180.

[9]Samsidar A,Siddiquee S,Shaarani S M. A review of extraction,analytical and advanced methods for determination of pesticides in environment and foodstuffs[J]. Trends in Food Science & Technology,2018,71:188-201.

[10]董亞蕾,劉文婧,曹 進(jìn),等. 國(guó)內(nèi)食品中農(nóng)藥多殘留檢測(cè)技術(shù)的研究進(jìn)展[J]. 分析試驗(yàn)室,2017,36(2):241-248.

[11]Golge O,Kabak B. Determination of 115 pesticide residues in oranges by high-performance liquid chromatography-triple-quadrupole mass spectrometry in combination with QuEChERS method[J]. Journal of Food Composition & Analysis,2015,41:86-97.

[12]Pang G F,Chang Q Y,Bai R B,et al. Simultaneous screening of 733 pesticide residues in fruits and vegetables by a GC/LC-Q-TOFMS combination technique[J]. Engineering,2019,6(4):375-489.

[13]王新雄,成秀娟,徐偉松,等. 農(nóng)產(chǎn)品農(nóng)藥殘留檢測(cè)技術(shù)的研究進(jìn)展[J]. 廣西農(nóng)業(yè)科學(xué),2008,39(5):700-704.

[14]張人允,曲 瑩,徐佳佳. 食品農(nóng)藥殘留檢測(cè)中樣品前處理技術(shù)分析[J]. 食品安全導(dǎo)刊,2019(15):82-83.

[15]Narenderan S T,Meyyanathan S N,Babu B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment,extraction and detection techniques[J]. Food Research International,2020,133:109141.

[16]李 曄,袁 佗. 濃縮果汁中擬除蟲菊酯類農(nóng)藥殘留檢測(cè)[J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志,2008(9):1774-1775.

[17]Pose-Juan E,Cancho-Grande B,Rial-Otero R,et al. The dissipation rates of cyprodinil,fludioxonil,procymidone and vinclozoline during storage of grape juice[J]. Food Control,2006,17,1012-1017.

[18]Sannino A,Bolzoni L,Bandini M. Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables[J]. Journal of Chromatography A,2004,1036(2):161-169.

[19]Wang P,Yang X,Wang J,et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography[J]. Food Chemistry,2012,134(3):1691-1698.

[20]Grimalt S,Sancho J V,Pozo O J,et al. Quantification,confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis[J]. Journal of Mass Spectrometry,2010,45(4):421-436.

[21]Ho Y M,Tsoi Y K,Leung K S. Highly sensitive and selective organophosphate screening in twelve commodities of fruits,vegetables and herbal medicines by dispersive liquid-liquid microextraction[J]. Analytica Chimica Acta,2013,77(5):58-66.

[22]Farajzadeh M A,Khoshmaram L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection:a fast and simple method for the assessment of triazole pesticides residues in surface water,cucumber,tomato and grape juices samples[J]. Food Chemistry,2013,141(3):1881-1887.

[23]Farajzadeh M A,F(xiàn)eriduni B,Afshar M M. Development of counter current salting-out homogenous liquid-liquid extraction for isolation and preconcentration of some pesticides from aqueous samples[J]. Analytica Chimica Acta,2015,88 (5):122-131.

[24]Timofeeva I,Shishov A,Kanashina D,et al. On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices[J]. Talanta,2017,16 (7):761-767.

[25]王慶齡,裘鈞陶,詹越城,等. 復(fù)合小柱結(jié)合HPLC-MS/MS法快速測(cè)定果蔬及茶葉和大米中34種農(nóng)藥殘留[J]. 農(nóng)產(chǎn)品加工,2019(6):56-60.

[26]Jin B H,Xie L Q,Guo Y F,et al. Multi-residue detection of pesticides in juice and fruit wine:a review of extraction and detection methods[J]. Food Research International,2012,46(1):399-409.

[27]Bakrc G T,Acay D B Y,Bakrc F,et al. Pesticide residues in fruits and vegetables from the Aegean region,Turkey[J]. Food chemistry,2014,160:379-392.

[28]Ravelo-Pérez L M,Hernández-Borges J,Rodríguez-Delgado M A. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple,grape,orange and pineapple fruit juices[J]. Journal of Chromatography A,2008,1211(1/2):33-42.

[29]Fan S,Zhao P,Yu C,et al. Simultaneous determination of 36 pesticide residues in spinach and cauliflower by LC-MS/MS using multi-walled carbon nanotubes-based dispersive solid-phase clean-up[J]. Food Additives & Contaminants,2014,31(1):73-82.

[30]Guan S X,Yu Z G,Yu H N,et al. Multi-Walled carbon nanotubes as matrix Solid-Phase dispersion extraction adsorbent for simultaneous analysis of residues of nine organophosphorus pesticides in fruit and vegetables by rapid resolution LC-MS-MS[J]. Chromatographia,2011,73(1):33-41.

[31]Zuin V G,Schellin M,Montero L,et al. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction as enrichment techniques for the determination of pesticide and benzo[a]pyrene residues in Brazilian sugarcane juice[J]. Journal of Chromatography A,2006,1114(2):180-187.

[32]Kin C M,Huat T G. Headspace solid-phase microextraction for the evaluation of pesticide residue contents in cucumber and strawberry after washing treatment[J]. Food Chemistry,2010,123(3):760-764.

[33]Anastassiades M,Lehotay S J,Stajnbaher D,et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce[J]. Journal of AOAC International,2003,86(2):412-431.

[34]Biziuk M,Stocka J. Multiresidue methods for determination of currently used pesticides in fruits and vegetables using QuEChERS technique[J]. International Journal of Environmental Science and Development,2015,6(1):18-22.

[35]Dankyi E,Carboo D,Gordon C,et al. Application of the QuEChERS procedure and LC-MS/MS for the assessment of neonicotinoid insecticide residues in cocoa beans and shells[J]. Journal of Food Composition and Analysis,2015,44:149-157.

[36]Prodhan M D H,Papadakis E N,Papadopoulou-Mourkidou E. Analysis of pesticide residues and their variability in cabbage using QuEChERS extraction in combination with LC-MS/MS[J]. Food Analytical Methods,2016,9(12):3470-3478.

[37]Alexandre P. European Committee for Standardization[C]. Amman:Franco Jordanian Forum on Water Sustainability,2014.

[38]Lehotay S J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate:collaborative study[J]. Journal of AOAC International,2007,90(2):485-520.

[39]Lehotay S J,Mastovská K,Lightfield A R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables[J]. Journal of AOAC International,2005,88(2):615-629.

[40]Kim L,Lee D,Cho H K,et al. Review of the QuEChERS method for the analysis of organic pollutants:persistent organic pollutants,polycyclic aromatic hydrocarbons,and pharmaceuticals[J]. Trends in Environmental Analytical Chemistry,2019,22:e00063.

[41]González-Curbelo M ,Socas-Rodríguez B,Herrera-Herrera A V,et al. Evolution and applications of the QuEChERS method[J]. TrAC Trends in Analytical Chemistry,2015,71:169-185.

[42]Grimalt S,Dehouck P. Review of analytical methods for the determination of pesticide residues in grapes[J]. Journal of Chromatography A,2016,1433:1-23.

[43]Schenck F J,Callery P,Gannett P M,et al. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods[J]. Journal of AOAC International,2002,85(5):1177-1180.

[44]Sivaperumal P,Salauddin A,Kumar A R,et al. Determination of pesticide residues in mango matrices by ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Food Analytical Methods,2017,10(7):2346-2357.

[45]Alcntara D B,F(xiàn)ernandes T S M,Nascimento H O,et al. Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits:an overview from the last decade[J]. Food Chemistry,2019,298:124958.

[46]Suganthi A,Bhuvaneswari K,Ramya M. Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS[J]. Food Chemistry,2018,241:275-280.

[47]Chen K,Liu X,Wu X,et al. Simultaneous determination of afidopyropen and its metabolite in vegetables,fruit and soil using UHPLC-MS/MS[J]. Food Additives & Contaminants,2018,35(4):716-723.

[48]Malhat F,Boulangé J,Abdelraheem E,et al. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography-flame photometric detector:decline pattern and risk assessment[J]. Food Chemistry,2017,229:814-819.

[49]Lin X Y,Mou R X,Cao Z Y,et al. Analysis of pyrethroid pesticides in Chinese vegetables and fruits by GC-MS/MS[J]. Chemical Papers,2018,72(8):1953-1962.

[50]Ramos J J,Rial-Otero R,Ramos L,et al. Ultrasonic-assisted matrix solid-phase dispersion as an improved methodology for the determination of pesticides in fruits[J]. Journal of Chromatography A,2008,1212(1/2):145-149.

[51]周 璐,陳 敏,張 凱,等. 濁點(diǎn)萃取-正己烷反萃取氣相色譜法測(cè)定蘋果汁中5種有機(jī)磷農(nóng)藥殘留[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,42(4):492-498.

[52]董 娟,羅小玲,謝 勇,等. 胡蘿卜及胡蘿卜汁中百菌清和擬除蟲菊酯類農(nóng)藥的分析研究[J]. 現(xiàn)代食品科技,2009,25(1):108-110.

[53]Xiao Q,Hu B,Yu C H,et al. Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography-flame photometric detection[J]. Talanta,2006,69(4):848-855.

[54]Liu X,Mitrevski B,Li D,et al. Comprehensive two-dimensional gas chromatography with flame photometric detection applied to organophosphorus pesticides in food matrices[J]. Microchemical Journal,2013,111:25-31.

[55]Mahpishanian S,Sereshti H,Baghdadi M. Superparamagnetic core-shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit,vegetable and water samples[J]. Journal of Chromatography A,2015,140 (6):48-58.

[56]Wang X L,Tang Q H,Wang Q Q,et al. Study of a molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for simultaneous determination of trace trichlorfon and monocrotophos residues in vegetables[J]. Journal of the Science of Food and Agriculture,2014,94(7):1409-1415.

[57]Topuz S,zhan G,Alpertunga B. Simultaneous determination of various pesticides in fruit juices by HPLC-DAD[J]. Food Control,2005,16(1):87-92.

[58]Tian F J,Qiao C K,Luo J,et al. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS[J]. Food Chemistry,2020,333:127468.

[59]Cervera M I,Portolés T,Pitarch E,et al. Application of gas chromatography time-of-flight mass spectrometry for target and non-target analysis of pesticide residues in fruits and vegetables[J]. Journal of Chromatography A,2012,1244:168-177.

[60]張偉軍. HPLC-MS/MS法同時(shí)測(cè)定蔬菜中38種農(nóng)藥殘留[J]. 湖南農(nóng)業(yè)科學(xué),2018(6):91-95.

[61]Lima V G,Campos V P,Santana T C,et al. Determination of agrochemical multi-residues in grapes. Identification and confirmation by gas chromatography-mass spectrometry[J]. Analytical Methods,2017,9(40):5880-5889.

[62]Navarro P,Pérez A J,Gabaldón J A,et al. Detection of chemical residues in tangerine juices by a duplex immunoassay[J]. Talanta,2013,11(6):33-38.

[63]Sun J,Dong T,Zhang Y,et al. Development of enzyme linked immunoassay for the simultaneous detection of carbaryl and metolcarb in different agricultural products[J]. Analytica Chimica Acta,2010,666(1/2):76-82.

[64]Caetano J,Machado S A. Determination of carbaryl in tomato“in natura”using an amperometric biosensor based on the inhibition of acetylcholinesterase activity[J]. Sensors and Actuators B,2008,129(1):40-46.

[65]Tan X,Hu Q,Wu J,et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran[J]. Sensors and Actuators B,2015,220:216-221.

[66]Miao S S,Wu M S,Ma L Y,et al. Electrochemiluminescence biosensor for determination of organophosphorous pesticides based on bimetallic Pt-Au/multi-walled carbon nanotubes modified electrode[J]. Talanta,2016,158:142-151.

[67]Seebunrueng K,Santaladchaiyakit Y,Srijaranai S. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples[J]. Chemosphere,2014,103:51-58.

[68]Kujawski M W,Namie s'nik J. Levels of 13 multi-class pesticide residues in Polish honeys determined by LC-ESI-MS/MS[J]. Food Control,2011,22(6):914-919.

[69]Machado I,Gérez N,Pistón M,et al. Determination of pesticide residues in globe artichoke leaves and fruits by GC-MS and LC-MS/MS using the same QuEChERS procedure[J]. Food Chemistry,2017,227:227-236.

[70]趙 麗,農(nóng)蕊瑜,師 真,等. 分散固相萃取-氣相色譜-質(zhì)譜聯(lián)用測(cè)定茶葉中的28種農(nóng)藥殘留[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(12):208-215.

[71]Qian G L,Wang L M,Wu Y R,et al. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay(ELISA)for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J]. Food Chemistry,2009,117(2):364-370.

[72]Patel H,Rawtani D,Agrawal Y. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using acetylcholinesterase-a review[J]. Trends in food science & technology,2019,85:78-91.

[73]Chatzimitakos T G,Karali K K,Stalikas C D. Magnetic graphene oxide as a convenient nanosorbent to streamline matrix solid-phase dispersion towards the extraction of pesticides from vegetables and their determination by GC-MS[J]. Microchemical Journal,2019,151:104247.

[74]Dabbagh M S,F(xiàn)arajzadeh M A. Introduction of a new procedure for the synthesis of polysulfone magnetic nanoparticles and their application in magnetic solid phase extraction for the extraction of some pesticides from fruit and vegetable juices[J]. Microchemical Journal,2020,158:105238.

[75]Kaur R,Hasan A,Iqbal N,et al. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis:a review[J]. Journal of Separation Science,2014,37(14):1805-1825.

[76]Han Y,Zou N,Song L,et al. Simultaneous determination of 70 pesticide residues in leek,leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials[J]. Journal of Chromatography B,2015,1005:56-64.

[77]趙 芳,李為琴,段江蓮,等. 量子點(diǎn)傳感器在農(nóng)藥殘留檢測(cè)中的應(yīng)用研究進(jìn)展[J]. 食品研究與開發(fā),2020,41(9):213-220.

[78]Luan E X,Zheng Z Z,Li X Y,et al. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides[J]. Analytica Chimica Acta,2016,916:77-83.

[79]Huang S Y,Tan L,Zhang L,et al. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr3 quantum dots for the fluorescence sensing of 2,2-dichlorovinyl dimethyl phosphate[J]. Sensors and Actuators B,2020,325:128751. 許洪高,周琪樂,魯 緋,等. 螺旋藻養(yǎng)殖加工和安全性研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué),2021,49(6):10-19.

猜你喜歡
前處理農(nóng)藥殘留果蔬
奇思妙想的果蔬們
清洗果蔬農(nóng)殘 你做對(duì)了嗎
這些果蔬能保護(hù)呼吸道
蔬菜中農(nóng)藥殘留檢測(cè)前處理方法對(duì)比研究
我國(guó)農(nóng)產(chǎn)品農(nóng)藥殘留的困境
果蔬大作戰(zhàn)
枯草芽孢桿菌代謝組樣品前處理方法的比較研究
聂拉木县| 迁安市| 天津市| 沈阳市| 收藏| 威远县| 双鸭山市| 蚌埠市| 耿马| 漳浦县| 云浮市| 商都县| 怀远县| 随州市| 永善县| 肥乡县| 乌审旗| 昆山市| 喀喇沁旗| 洮南市| 五大连池市| 郧西县| 东乡县| 柘城县| 朔州市| 衡水市| 永善县| 泰安市| 姜堰市| 白河县| 磐安县| 通渭县| 宝应县| 玉溪市| 广宗县| 河津市| 冷水江市| 乌鲁木齐市| 永泰县| 炉霍县| 卢氏县|