郭萬民,白清順,竇昱昊,郭永博,杜云龍
石墨烯在不銹鋼材料應(yīng)用中的減摩和耐磨特性研究進展
郭萬民,白清順,竇昱昊,郭永博,杜云龍
(哈爾濱工業(yè)大學(xué) 機電工程學(xué)院,哈爾濱 150001)
材料間的摩擦和磨損會產(chǎn)生能源和經(jīng)濟上的損耗,高強度的石墨烯為提高材料的減摩和耐磨特性提供了新的途徑。不銹鋼材料已經(jīng)在工業(yè)領(lǐng)域獲得廣泛的應(yīng)用,根據(jù)石墨烯和不銹鋼材料的結(jié)合方式分類,總結(jié)了國內(nèi)外關(guān)于石墨烯應(yīng)用于不銹鋼材料減摩降損的研究進展,從不銹鋼材料的加工到應(yīng)用,揭示了石墨烯降低不銹鋼摩擦因數(shù)的規(guī)律。石墨烯納米顆粒作為切削液添加劑,可以極大降低不銹鋼和刀具摩擦界面的摩擦因數(shù),從而提高不銹鋼工件表面加工質(zhì)量。先制備后轉(zhuǎn)移仍是當(dāng)前石墨烯應(yīng)用于不銹鋼表面的主要方式,石墨烯以固體潤滑劑的形式作用于摩擦界面,不銹鋼表面的磨損率可以實現(xiàn)下降。激光熔化增材制造技術(shù)的不斷發(fā)展,為石墨烯增強不銹鋼復(fù)合材料提供有效途徑,極大地推動該材料的工程應(yīng)用進程,也為石墨烯降低不銹鋼材料的摩擦磨損提供了新的研究方向。最后,通過對石墨烯降低不銹鋼材料摩擦磨損的研究總結(jié),指出了當(dāng)前研究存在的部分問題并提出了解決措施,展望了該方向的應(yīng)用前景。
石墨烯;不銹鋼;摩擦磨損;機械性能;激光熔化增材制造
不銹鋼是一種具有高強度的低成本合金,而且不銹鋼材料軋制到0.01 mm仍能保持良好的性能,這些特性使得不銹鋼材料成功應(yīng)用于眾多領(lǐng)域,比如機械結(jié)構(gòu)的外殼、醫(yī)用手術(shù)刀以及電氣設(shè)備中的電極部分[1]。特別對于工業(yè)領(lǐng)域,不銹鋼材料是十分常見的應(yīng)用材料,然而摩擦和磨損一直都是機械故障和材料損傷的主要原因,如何最大程度地減少這一影響是當(dāng)前工業(yè)領(lǐng)域的重大挑戰(zhàn)之一,復(fù)合材料、涂層和潤滑油是解決這一問題的重要方法[2-3]。其中最為簡單有效的方法就是在滑動界面上使用固體和液體潤滑劑[4]。但是,隨著社會對環(huán)境的關(guān)注度不斷提高,綠色摩擦的定義被提出,如何實現(xiàn)降低材料磨損的同時對環(huán)境造成的污染最小,甚至不對環(huán)境產(chǎn)生污染,成為新的關(guān)注點。許多低維納米材料的出現(xiàn),由于其本身獨特的化學(xué)性質(zhì)和結(jié)構(gòu)特性,以及對環(huán)境污染較小的優(yōu)點,為降低摩擦磨損提供了新的解決方案[5]。
石墨烯材料作為二維材料的代表,自2004年被發(fā)現(xiàn)就因本身優(yōu)良的特性成為研究熱點[6]。石墨烯是一種由碳原子sp2雜化的蜂窩晶格結(jié)構(gòu)二維碳納米材料[7-8],由于其本身結(jié)構(gòu)的特殊性,石墨烯材料有著良好的機械性能[9],彈性模量、固有強度和摩擦特性更是遠優(yōu)于其他材料[10-13]。所以,將石墨烯材料與現(xiàn)有材料結(jié)合成為了新的研究熱點[14-18],進一步推動石墨烯材料研究的同時也拓展了現(xiàn)有材料的應(yīng)用領(lǐng)域。對于不銹鋼材料,摩擦磨損一直是限制其應(yīng)用的重要因素,為此,諸多學(xué)者對于石墨烯和不銹鋼材料的結(jié)合,特別是耐磨性的提高展開了許多研究[19]。
石墨烯用于不銹鋼材料減摩耐磨性提高,不僅體現(xiàn)在不銹鋼材料的應(yīng)用過程,而且在不銹鋼的生產(chǎn)制造過程中也十分有效。由于石墨烯的作用環(huán)節(jié)不同,與不銹鋼材料的結(jié)合方式也有所區(qū)別,為此根據(jù)兩者的結(jié)合方式對石墨烯提高不銹鋼減摩耐磨性進行闡述,為后續(xù)石墨烯用于不銹鋼材料耐磨性提高的研究提供一定的指導(dǎo)。
不銹鋼作為諸多機械零件的基體材料,常見的機械加工過程都會應(yīng)用于不銹鋼材料本身,由于對加工精度有較高要求,多數(shù)情況下都需要高速加工,然而加工區(qū)域產(chǎn)生大量熱會限制切削速度的提高,所以切削液在高速切削中起著重要作用[20]。但是隨著對環(huán)境問題的不斷關(guān)注,切削液的大量使用已不符合當(dāng)今的加工理念,所以最小量潤滑的概念被提出,并且在此基礎(chǔ)上提出了納米流體微量切削技術(shù)[21]。具有優(yōu)良機械性能和導(dǎo)熱性的石墨烯,成為了納米添加劑的理想材料。為此,Amrit等人[22]探究了添加石墨烯納米顆粒的植物油基切削液對于不銹鋼鉆削的影響規(guī)律,隨著石墨烯納米顆粒濃度的增加,鉆區(qū)內(nèi)潤滑膜的抗摩擦和承載能力有所增強,鉆頭與不銹鋼之間的摩擦因數(shù)越小,不銹鋼材料表面粗糙度有明顯的降低。圖1為納米石墨烯SEM(Scanning electron microscope)圖,納米石墨烯整體上為質(zhì)量較差的多層石墨烯結(jié)構(gòu),說明石墨烯納米流體切削液對于石墨烯本身的質(zhì)量要求較低。圖2為不同石墨烯濃度下摩擦因數(shù)以及工件鉆削加工表面粗糙度對比,具體的鉆削參數(shù)為:鉆頭直徑8 mm,鉆孔深度30 mm,切削速度7.91 m/min,進給量0.125 mm/r。
圖1 石墨烯納米顆粒形貌的掃描電子顯微鏡圖[22]
圖2 不同石墨烯濃度切削液作用下AISI321不銹鋼與M35高速鋼間摩擦因數(shù)的變化規(guī)律及加工后工件表面粗糙度的對比[22]
石墨烯納米流體切削液用于不銹鋼的其他加工工藝時[23],同樣可以觀察到摩擦力明顯降低,以及對不銹鋼加工表面質(zhì)量的提高。對于不銹鋼加工過程摩擦力的降低作用,不僅體現(xiàn)在石墨烯作為單一納米添加劑時,混合納米粒子中石墨烯的存在也展現(xiàn)出良好的性能。目前針對混合納米粒子添加的研究相對較少,特別是石墨烯作為混合納米粒子組成成分時,但現(xiàn)有的初步研究中仍表明石墨烯納米粒子良好的降低摩擦力能力[24]。圖3為氧化鋁/石墨烯復(fù)合納米流體切削液用于不銹鋼材料切削時摩擦因數(shù)的變化規(guī)律,相比于氧化鋁納米顆粒,石墨烯顆粒降低摩擦力的作用在切削穩(wěn)定后才得以體現(xiàn)。圖4為氧化鋁/石墨烯復(fù)合納米流體切削液作用下工件磨損圖像。
圖3 氧化鋁/石墨烯復(fù)合納米顆粒對切削過程摩擦因數(shù)的影響[24]
圖4 氧化鋁/石墨烯復(fù)合納米流體切削液作用下工件磨損圖像[24]
石墨烯納米顆粒添加到切削液中,導(dǎo)熱系數(shù)為3000 W/(m–1·K–1)的石墨烯材料提高了整體切削液的導(dǎo)熱能力,可以降低不銹鋼加工表面溫度,進而提高加工表面質(zhì)量。其次石墨烯納米顆粒在工件表面不均勻分布,石墨烯納米顆粒填充表面微坑,而凸起部分石墨烯納米顆粒分布密度較低,這樣形成的石墨烯納米膜降低了不銹鋼工件表面粗糙度,而且對不銹鋼材料起到了保護作用。圖5為石墨烯納米顆粒填充效應(yīng)示意圖。
圖5 石墨烯納米顆粒的填充效應(yīng)[22]
對于納米流體切削液的研究已有大量的報道[25],但是對于石墨烯作為納米添加劑的研究相對較少,特別是用于加工不銹鋼材料的研究更少。宏觀尺度的研究表明:石墨烯可以有效地降低不銹鋼加工過程中的摩擦力,而且對于不銹鋼表面質(zhì)量的提高也十分有利,雖然對于石墨烯納米顆粒如何降低摩擦力以及提高不銹鋼加工質(zhì)量的機理有所揭示,但是石墨烯和其他納米顆粒對于不銹鋼加工過程的復(fù)合作用仍需進一步研究,特別是納米尺度上機理的解釋有待研究。綜上所述,石墨烯納米切削液對于不銹鋼加工過程摩擦力的影響規(guī)律仍有待研究。
前文所述中,石墨烯是以添加劑的形式存在于切削液中,而且作用于不銹鋼材料的加工,切削液本身仍是降低摩擦力的主要因素。事實上,石墨烯作為主體材料直接作用不銹鋼工件摩擦表面時,無論是降低摩擦力還是對不銹鋼材料的保護,同樣展現(xiàn)出良好的效果。根據(jù)石墨烯的制備工藝以及和不銹鋼材料的結(jié)合形式,可以將不銹鋼表面的石墨烯分為兩類:一類是已經(jīng)制備好的石墨烯轉(zhuǎn)移到不銹鋼表面[26],另一類為直接在不銹鋼表面原位制備石墨烯。
事實上,自石墨烯被發(fā)現(xiàn)開始,石墨烯的制備工藝一直就是眾多科研人員關(guān)注的重點,因為保證高質(zhì)量和高產(chǎn)量石墨烯的獲取,才能保證石墨烯應(yīng)用的繼續(xù)研究。所以,根據(jù)石墨烯的結(jié)構(gòu)特點,常見的石墨烯制備工藝除了包括機械和化學(xué)剝離[6-7,27]以及SiC外延生長[28-30],化學(xué)氣相沉積法被認為是可以兼顧石墨烯質(zhì)量和尺寸的有效工藝手段[31-36]。在諸多石墨烯的制備工藝中,不銹鋼都不是理想的基底材料,特別是獲取大面積石墨烯的化學(xué)氣相沉積法中,表面質(zhì)量、晶格尺寸以及融碳度合適的銅成為理想制備基底材料[37-39]。
因此,不銹鋼表面的石墨烯主要通過轉(zhuǎn)移的方式實現(xiàn)。美國阿貢實驗室通過轉(zhuǎn)移石墨烯的方式,首先開展了石墨烯對于不銹鋼材料減摩耐磨性影響規(guī)律的研究[2]。由于實驗本身探究的是石墨烯降低不銹鋼表面磨損和摩擦的宏觀影響規(guī)律,對石墨烯的質(zhì)量和尺寸要求較低,所以選用高定向熱解石墨制備的石墨烯(SPG)[40],以乙醇為涂敷載體實現(xiàn)石墨烯和不銹鋼材料的結(jié)合。圖6和圖7為不銹鋼表面摩擦因數(shù)的變化規(guī)律以及不銹鋼表面磨損狀態(tài)對比。
圖6 不銹鋼摩擦副在不同溶液中和間歇供應(yīng)SPG時的摩擦因數(shù)以及有無初始SPG層的鋼的COF結(jié)果[2]
Berman的實驗結(jié)果表明,在不銹鋼摩擦界面添加石墨烯,可以使不銹鋼的磨損率最高下降3~4個數(shù)量級,摩擦因數(shù)的降低也很顯著,并且能夠抑制氧化鐵的形成[2]。所以,石墨烯的鈍化作用,不僅有助于不銹鋼表面摩擦磨損,而且對于不銹鋼耐腐蝕性的提高也十分有利。在此基礎(chǔ)上,研究人員認識到環(huán)境因素會影響石墨烯對不銹鋼的減摩效率,阿貢實驗室后續(xù)又探究了氣體氛圍下石墨烯對于不銹鋼減摩的規(guī)律[41-42]。實驗結(jié)果也證實了研究人員的猜想,不銹鋼表面石墨烯通過石墨烯乙醇分散液獲取(SPGF),不同氣體氛圍下不銹鋼表面石墨烯的損壞時間相差明顯,特別是氮氣氛圍中石墨烯對不銹鋼材料的保護時效相對較短,而氫氣氛圍中石墨烯對于不銹鋼材料的保護時效相對較長。理論計算中指出氫原子會與破損的石墨烯邊緣碳成鍵,進而對石墨烯破損處起一定程度的修補作用,對氣體環(huán)境的影響給出了解釋。圖8為氮氣氛圍下石墨烯對不銹鋼表面摩擦因數(shù)的影響規(guī)律。
圖7 磨損后不銹鋼表面磨損痕和軌跡光學(xué)顯微圖[2]
圖8 氮氣氛圍下不銹鋼摩擦副在有無石墨烯下摩擦因數(shù)對比[42]
先制備石墨烯后轉(zhuǎn)移的方式,簡化了石墨烯用于不銹鋼減摩的實驗流程,也擴展了石墨烯的應(yīng)用領(lǐng)域,但是這種方法的缺點是石墨烯的質(zhì)量難以保證[43]。對于尺寸較大的高質(zhì)量石墨烯,轉(zhuǎn)移過程會導(dǎo)致石墨烯的質(zhì)量下降[44-46],甚至引起石墨烯破損,導(dǎo)致微尺度上探究石墨烯對不銹鋼減摩耐磨影響規(guī)律十分不利。盡管石墨烯的轉(zhuǎn)移工藝在不斷進步,包括轉(zhuǎn)移支撐材料的不斷嘗試[47],但是石墨烯的轉(zhuǎn)移過程仍會對后續(xù)的摩擦實驗產(chǎn)生干擾。
因此,不銹鋼表面原位制備石墨烯不僅能夠排除轉(zhuǎn)移過程帶來的干擾,而且相比于轉(zhuǎn)移型石墨烯與不銹鋼之間通過范德華力維持,原位制備型石墨烯與不銹鋼結(jié)合更穩(wěn)定。但是由于不銹鋼材料本身性質(zhì)限制,傳統(tǒng)的化學(xué)氣相沉積法很難得到高質(zhì)量的石墨烯[1],所以為實現(xiàn)不銹鋼表面制備較高質(zhì)量石墨烯,研究人員對化學(xué)氣相沉積法進行了優(yōu)化[48-49]或者改變不銹鋼基底形貌[50]。E. C. Romani1等人[51]在此基礎(chǔ)上,探究了化學(xué)氣相沉積法在不銹鋼表面制備石墨烯的摩擦規(guī)律,實驗結(jié)果表明無石墨烯不銹鋼表面摩擦因數(shù)約為有石墨烯不銹鋼表面摩擦因數(shù)的3倍。圖9為不同載荷下有無石墨烯不銹鋼表面摩擦力的變化規(guī)律。
盡管直接在不銹鋼表面制備石墨烯的質(zhì)量相對較差,制備得到的石墨烯多為單層到3層的混合物,但摩擦曲線上依然保持了良好的平穩(wěn)性,這是轉(zhuǎn)移型石墨烯無法保證的結(jié)果。主要原因有兩點,第一,維持足夠的生長時間,可以實現(xiàn)石墨烯對不銹鋼基底的全覆蓋;第二,石墨烯與不銹鋼之間不僅有范德華力作用,甚至?xí)谐涉I。為了證實這一點,Xu等人[52]在不銹鋼球表面機械剝離原位制備石墨烯涂層,同樣證明了石墨烯可以有效降低不銹鋼表面摩擦力,也證實了Cr—C鍵的存在。圖10為制備樣品的拉曼光譜圖和XRD衍射圖。
圖9 不同摩擦表面摩擦因數(shù)變化規(guī)律[51]
圖10 Gr/SS樣品的拉曼光譜圖及SS 304和Gr/SS的XRD衍射圖[52]
不銹鋼材料磨損的形成是摩擦累計的結(jié)果,特別是出現(xiàn)局部磨損后會進一步加快材料磨損,石墨烯在摩擦表面的存在,會均勻地承載法向載荷,進而使得表面磨損分布均勻,對于整體材料的耐磨性提高十分有利。轉(zhuǎn)移型石墨烯與不銹鋼表面主要通過范德華力約束,摩擦過程中石墨烯和不銹鋼會發(fā)生相對滑動,而且石墨烯材料本身導(dǎo)熱系數(shù)較高,所以石墨烯在降低摩擦界面摩擦力的同時會減低摩擦界面溫度,抑制了氧化鐵的形成,對于不銹鋼表面起到了保護作用。在不銹鋼表面原位制備型石墨烯中,由于Cr—C鍵的存在,表面石墨烯與不銹鋼結(jié)合緊密,而且覆蓋率較高,無論是抑制氧化鐵的形成還是石墨烯的承載能力,都略高于轉(zhuǎn)移型石墨烯。圖11為有無石墨烯不銹鋼表面磨損軌跡輪廓高度對比。
圖11 不銹鋼表面磨損軌跡輪廓高度對比[2]
綜上所述,無論是轉(zhuǎn)移型石墨烯還是原位生長型石墨烯,對不銹鋼表面減摩耐磨性能的提高都十分有效,而且也為石墨烯在不銹鋼表面的應(yīng)用提供有效的指導(dǎo)。但是目前研究中,對于降低不銹鋼表面摩擦力所轉(zhuǎn)移的石墨烯存在低質(zhì)量碎片化問題,也就出現(xiàn)了實驗結(jié)果中摩擦曲線波動明顯的現(xiàn)象,這同樣也限制了從微尺度上對石墨烯降低不銹鋼表面摩擦力進行機理性研究。直接在不銹鋼表面制備石墨烯解決了石墨烯碎片化的問題,但高質(zhì)量的石墨烯仍很難獲取,而且由于制備工藝本身對溫度有較高的需求,這導(dǎo)致了不銹鋼材料發(fā)生滲碳和析碳[53],對不銹鋼材料本身的性能產(chǎn)生了較大的影響。所以,雖然兩種方法都證明了石墨烯可以有效降低不銹鋼表面摩擦力,但都因自身的工藝限制存在一定的局限性,對石墨烯降低不銹鋼表面摩擦的機理性解釋不充分。
無論是轉(zhuǎn)移型石墨烯還是原位制備型石墨烯,石墨烯僅存在于不銹鋼材料的表面,石墨烯也僅作用于不銹鋼發(fā)生摩擦的界面上,而且不銹鋼和石墨烯之間主要通過范德華力約束,由于這些條件的限制,石墨烯無法對不銹鋼進行長效保護。美國阿貢實驗室[2]也指出,間歇性添加石墨烯可以實現(xiàn)對不銹鋼減摩耐磨性的持續(xù)提高,但是在工程應(yīng)用的多種場合下,間歇性添加石墨烯材料很難實現(xiàn),所以此類的實驗研究仍存在一定的局限性。針對以上問題,國內(nèi)研究人員針對石墨烯增強不銹鋼復(fù)合材料進行了進一步研究。
粉末冶金是金屬材料和零件制備的常用方法[54-56],整個工藝過程已經(jīng)十分成熟和完善,針對各種金屬粉末原材料的冶金工藝都有大量研究[57-60]。對于不銹鋼材料,研究人員很早就認識到粉末冶金的優(yōu)點,同樣也開展了大量的研究[61-63]。然而,由于粉末冶金材料的相對密度較低,導(dǎo)致粉末冶金不銹鋼的機械強度和耐腐蝕性都低于鍛制不銹鋼[64],所以一直限制了粉末冶金不銹鋼材料的應(yīng)用。但隨著對粉末冶金以及各種材料性質(zhì)的研究,人們發(fā)現(xiàn)其他金屬、金屬化合物或陶瓷添加劑均可提高粉末冶金不銹鋼材料的相對密度[65-67]。所以,石墨烯作為添加劑增強粉末冶金不銹鋼材料的性能引起了研究人員的關(guān)注,同時伴隨著金屬3D打印技術(shù)的發(fā)展也為此提供了新途徑[68]。
石墨烯增強金屬基納米復(fù)合材料技術(shù)主要應(yīng)用于純金屬,對于不銹鋼材料的相關(guān)研究相對較少[69-70]。西安交通大學(xué)[71]開展了粉末冶金制備石墨烯納米片增強不銹鋼材料的相關(guān)工作,石墨烯的原材料也選用了相對經(jīng)濟的石墨紙,對制備的不銹鋼復(fù)合材料進行了基本機械性能的檢測,并指出石墨烯對不銹鋼復(fù)合材料摩擦性能有所改善。圖12為粉末冶金制備石墨烯納米片增強不銹鋼的實驗流程。
粉末冶金石墨烯納米片增強不銹鋼相比于粉末冶金不銹鋼,相對密度以及顯微硬度等有所提高,但是由于石墨烯和不銹鋼密度相差較大,所以石墨烯在不銹鋼中分布的均勻性較差,易產(chǎn)生石墨烯的團簇現(xiàn)象,降低了對材料摩擦性能的改善效果。武漢科技大學(xué)[72]針對石墨烯和不銹鋼密度相差大的問題提出了新的解決方案,通過引入銅顆粒和石墨烯結(jié)合,進而減少兩者之間的密度差,最終制備了Gr-Cu/SS復(fù)合材料。圖13為Gr-Cu/SS復(fù)合材料制備工藝過程。
圖12 粉末冶金制備石墨烯納米片增強不銹鋼[71]
圖13 Gr-Cu/SS復(fù)合材料制備工藝(a原始氧化石墨烯納米片,b氧化石墨烯-銅,c原始不銹鋼粉末,d石墨烯-銅,e石墨烯-銅/不銹鋼混合粉末,f石墨烯-銅/不銹鋼復(fù)合樣品)[72]
石墨烯質(zhì)量分數(shù)僅為0.2%的Gr-Cu/SS復(fù)合材料的抗拉強度和屈服強度約為之前的2倍,材料耐磨性能有所提高,但是對于摩擦因數(shù)沒有開展詳細的實驗。所以,對于該類材料的摩擦性能仍有待研究,而且由于銅的引入也對探究石墨烯減摩效果產(chǎn)生干擾[73],其摩擦學(xué)的內(nèi)在機理仍有待深入研究。
激光熔化增材制造技術(shù)出現(xiàn)之初,主要集中應(yīng)用于定制金屬部件生產(chǎn)上[74],但隨著技術(shù)的發(fā)展以及對材料性能要求的提高,研究人員認識到激光增材技術(shù)為金屬性能的改善提供了途徑。對于不銹鋼和不銹鋼復(fù)合材料,激光熔化增材制造在提高耐磨性和強度性能方面也取得了許多研究和發(fā)現(xiàn)[75-78]。石墨烯和不銹鋼密度相差明顯,粉末冶金難以克服這一個問題,由于激光熔化增材是多層堆疊方式加工,而且單層材料很薄,可以保證石墨烯的均勻分布,為石墨烯增強不銹鋼復(fù)合材料研究提供了新的途徑。
中科院寧波工業(yè)技術(shù)研究院[79]首先通過激光熔化增材制造技術(shù)開展了多層石墨烯增強不銹鋼復(fù)合材料的研究,探究了不同含量石墨烯對不銹鋼復(fù)合材料顯微組織和力學(xué)性能的影響。圖14為實驗所用不銹鋼復(fù)合材料的工藝流程。針對復(fù)合材料進行了機械性能的檢查,摩擦因數(shù)隨著石墨烯含量的增加而降低,而且特定含量石墨烯增強不銹鋼復(fù)合材料展現(xiàn)出極優(yōu)的機械性能。圖15為不同石墨烯含量下的摩擦因數(shù)變化規(guī)律。
圖14 石墨烯增強不銹鋼復(fù)合材料工藝流程[79]
圖15 不同石墨烯含量下復(fù)合材料的摩擦因數(shù)曲線(G0代表無Gr,G1代表含1%Gr,G2代表含2%Gr,G3代表含3%Gr)[79]
Ajay Mandal等人[80]在此基礎(chǔ)上,制備了尺寸更大的石墨烯增強不銹鋼復(fù)合材料柱體樣件,系統(tǒng)地研究了復(fù)合材料的顯微組織結(jié)構(gòu)以及機械性能,并在不同載荷和速度的條件下檢測了材料的摩擦因數(shù),證明了石墨烯能夠改善不銹鋼材料的減摩性和耐磨性。圖16為不同載荷條件下摩擦因數(shù)隨滑移速度的變化曲線。
不銹鋼材料的磨損機理主要是微犁耕,普通不銹鋼表面發(fā)生磨損時,會觀察到微小的磨損碎片,即滑移過程中材料被犁削并形成深溝。添加石墨烯的不銹鋼復(fù)合材料,石墨烯會在界面處形成墊狀結(jié)構(gòu),提供了更平滑的接觸表面,阻止了犁耕效應(yīng)的產(chǎn)生[75]。圖17為不同含量石墨烯增強的不銹鋼復(fù)合材料與普通不銹鋼磨損界面對比。
通過對材料顯微組織的分析,也證明通過激光熔化增材技術(shù)實現(xiàn)了石墨烯在不銹鋼中的均勻分布,同時由于激光能量較高,晶體表現(xiàn)為多層之間連續(xù)和隨機取向,保證了整體材料的均勻性,而且避免了碳化鉻的形成,石墨烯能夠充分發(fā)揮自身優(yōu)良的機械性能,顯著提高復(fù)合材料的力學(xué)性能。相比于粉末冶金,激光熔化增材制造解決了石墨烯和不銹鋼密度相差大導(dǎo)致的團簇現(xiàn)象,但是所制備的復(fù)合材料中,石墨烯缺陷明顯增加,石墨烯的力學(xué)性能下降明顯,實驗結(jié)果與理論計算之間存在較大誤差。綜上所述,雖然制備復(fù)合材料的機械性能有了一定的提升,石墨烯可以有效地提高不銹鋼的減摩性和耐磨性,但是由于對該復(fù)合材料的研究較少,未能對其機理獲得統(tǒng)一的認識,大量的實驗結(jié)論仍需探究。
圖16 法向載荷分別為6、8、10 kg時摩擦因數(shù)隨滑移速度的變化曲線[80]
圖17 8 kg法向載荷下不銹鋼石墨烯復(fù)合材料磨損界面形貌[80]
不銹鋼材料是工業(yè)領(lǐng)域的重要應(yīng)用材料,實現(xiàn)低摩擦條件下高精度加工不銹鋼零件是先進制造領(lǐng)域重要的發(fā)展方向。在最小潤滑量的條件下石墨烯納米流體切削液的使用,可以有效地提高不銹鋼零件的表面質(zhì)量。但是,包括石墨烯納米顆粒尺寸均勻度和分布均勻度的均勻性特征是影響不銹鋼工件整體加工質(zhì)量的關(guān)鍵,局部石墨烯納米顆粒尺寸過大或濃度過高會引起工件局部粗糙度值的增加。同樣,石墨烯作用于不銹鋼工作摩擦界面時,其分散均勻性也對不銹鋼減摩和耐磨特性的提高起到關(guān)鍵的作用。因此,無論對于石墨烯用于不銹鋼切削加工,還是石墨烯用于不銹鋼的界面材料,控制石墨烯納米顆?;蚣{米片的尺寸均勻性特征,實現(xiàn)穩(wěn)定的石墨烯減摩和耐磨,都是未來研究的重點。
創(chuàng)新的石墨烯制備工藝是石墨烯在不銹鋼材料應(yīng)用中實現(xiàn)長效的減摩和耐磨特性的基礎(chǔ)。不銹鋼表面制備石墨烯,提高了石墨烯和不銹鋼的結(jié)合程度,但卻帶來了表面石墨烯的缺陷增加以及層數(shù)均勻性下降的問題。石墨烯/不銹鋼復(fù)合材料是極大提高長效性的重要途徑,但是石墨烯和不銹鋼密度相差顯著以及石墨烯團簇現(xiàn)象的出現(xiàn),極大地限制了該材料的發(fā)展。增材制造工藝可以解決石墨烯和不銹鋼高密度差引起的分布不均問題,同時也減少了團簇現(xiàn)象的出現(xiàn),但是增材制造工藝本身會造成材料機械性能的下降。所以改善和發(fā)展不銹鋼表面制備石墨烯工藝仍是未來研究的關(guān)注點,石墨烯/不銹鋼復(fù)合材料的制備技術(shù)革新和工藝改進,是實現(xiàn)兩種材料工程應(yīng)用的關(guān)鍵所在。
由于石墨烯具有優(yōu)良的機械性能,充分利用石墨烯的機械性能對現(xiàn)有材料進行優(yōu)化成為材料學(xué)發(fā)展的新方向,而不銹鋼作為工業(yè)領(lǐng)域重要的應(yīng)用材料,減摩耐磨性提高會帶來巨大的經(jīng)濟效益,所以將石墨烯和不銹鋼結(jié)合實現(xiàn)這一目標(biāo)成為學(xué)術(shù)界和工業(yè)界共同的追求。經(jīng)過多次的實驗嘗試,石墨烯與不銹鋼兩個結(jié)合實現(xiàn)減摩和耐磨仍需在機理上開展深入研究,同時需要解決其工程應(yīng)用的技術(shù)難題。本文根據(jù)近年來石墨烯應(yīng)用于不銹鋼材料減摩耐磨性提高的研究進行總結(jié),證實了石墨烯對不銹鋼減摩耐磨性的提高十分有效,特別是激光熔化增材制造技術(shù)的應(yīng)用,為石墨烯增強不銹鋼復(fù)合材料的工程應(yīng)用提供了條件。
雖然已經(jīng)得到了許多石墨烯對不銹鋼摩擦力影響的規(guī)律,但是多數(shù)實驗仍處于宏觀領(lǐng)域,微尺度上開展的研究很少,微觀上的實驗結(jié)果還不能通過內(nèi)在的機理進行科學(xué)解釋。而且由于激光熔化增材制造技術(shù)應(yīng)用于石墨烯增強不銹鋼復(fù)合材料的研究尚處于初期,實驗結(jié)果和理論計算之間存在分歧,所以材料的工程應(yīng)用仍需進一步研究。高質(zhì)量石墨烯的獲取以及和不銹鋼材料的結(jié)合仍是關(guān)鍵問題,此類問題的解決才能進一步揭示微觀機理,因此基于原子和分子計算的理論仿真也將是解決當(dāng)前存在問題的有效途徑。
石墨烯和不銹鋼材料的結(jié)合是拓展兩種材料應(yīng)用的重要方式,提高不銹鋼材料減摩耐磨性對拓展新材料的應(yīng)用領(lǐng)域,提高不銹鋼零件的經(jīng)濟性,降低能量消耗具有重要的意義。本文總結(jié)了近年來石墨烯應(yīng)用于不銹鋼材料減摩耐磨性提高的研究,對于該方向的研究具有一定的指導(dǎo)意義。
[1] Ruammaitree A, Phokharatkul D, Nunta-wong N, et al. Improvement in corrosion resistance of stainless steel foil by graphene coating using thermal chemical vapor deposition[J]. Surface review and letters, 2018, 25: 1840003.
[2] Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces[J]. Carbon, 2013, 54: 454-459.
[3] Donnet C, Erdemir A. Solid lubricant coatings: Re-cent developments and future trends[J]. Tribology letters, 2004, 17(3): 389-397.
[4] Spikes H. The history and mechanisms of ZDDP[J]. Tribology letters, 2004, 17(3): 469-489.
[5] Zhang Si-wei. Recent developments of green tribology [J]. Surface topography: Metrology and properties, 2016, 4(2): 23004.
[6] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[7] Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials, 2007, 6(3): 183-191.
[8] Katsnelson M I. Graphene: Carbon in two dimen-sions[J]. Materials today, 2007, 10(1): 20-27.
[9] Gao Yuan-wen, Hao Peng. Mechanical properties of monolayer graphene under tensile and compressive loa-ding[J]. Physica E: Low-dimensional systems and nano-structures, 2009, 41(8): 1561-1566.
[10] ZHU Q R, LI H Q, LI N, et al. Nanotribological and wear properties of graphene[J]. Acta physico-chimica sinica, 2013, 29(7): 1582-1587.
[11] Deng Jian-feng, Li Hui-qin, Yu Fan, et al. Adhesion and nanotribological properties of folded graphene prepared by mechanical exfoliation[J]. Acta physica sinica, 2020, 69(7): 76802.
[12] Xu Liang, Ma Tian-bao, Hu Yuan-zhong, et al. Molecular dynamics simulation of the interlayer sliding behavior in few-layer graphene[J]. Carbon, 2012, 50(3): 1025-1032.
[13] Lee Chang-gu, Wei Xiao-ding, Kysar J W, et al. Measurement of the elastic properties and intrinsic strengthof monolayer graphene[J]. Science, 2008, 321(5887): 385- 388.
[14] Hu Zeng-rong, Tong Guo-quan, Lin Dong, et al. Laser sintered graphene nickel nanocomposites[J]. Journal of materials processing technology, 2016, 231: 143-150.
[15] Tian Wen-ming, Li Song-mei, Wang Bo, et al. Graphene- reinforced aluminum matrix composites prepared by spark plasma sintering[J]. International journal of minerals meta-llurgy and materials, 2016, 23(6): 723-729.
[16] Shin S E, Bae D H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene [J]. Composites part A—Applied science and manufac-turing, 2015, 78: 42-47.
[17] Chu Ke, Jia Cheng-chang. Enhanced strength in bulk graphene-copper composites[J]. Physica status solidi A—Applications and materials science, 2014, 211(1): 184-190.
[18] Hwang J, Yoon T, Jin S H, et al. Enhanced mecha-nical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Advanced materials, 2013, 25(46): 6724-6729.
[19] 張紅衛(wèi), 劉帥磊, 張?zhí)O. 石墨烯層間摩擦的面內(nèi)局部應(yīng)變調(diào)控[J]. 表面技術(shù), 2021, 50(3): 270-275. ZHANG Hong-wei, LIU Shuai-lei, ZHANG Ping. Inter-layer friction regulation of graphene by in-plane local strain engineering[J]. Surface technology, 2021, 50(3): 270-275.
[20] Nieslony P, Krolczyk G M, Zak K, et al. Com-parative assessment of the mechanical and electromagnetic surfaces of explosively clad Ti-steel plates after drilling process[J]. Precision engineering, 2017, 47: 104-110.
[21] Barczak L M, Batako A D L, Morgan M N. A study of plane surface grinding under minimum quantity lubrication (MQL) conditions[J]. International journal of machine tools and manufacture, 2010, 50(11): 977-985.
[22] Pal A, Chatha S S, Sidhu H S. Experimental inve-stigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable- oil-based cutting fluid[J]. Tribology international, 2020, 151: 893.
[23] Uysal A. Investigation of flank wear in MQL milling of ferritic stainless steel by using nano graphene reinforced vegetable cutting fluid[J]. Industrial lubrication and tribo-logy, 2016, 68(4): 446-451.
[24] Sharma A K, Tiwari A K, Dixit A R, et al. Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation[J]. Tribology international, 2018, 119: 99-111.
[25] Sidik N A C, Samion S, Ghaderian J, et al. Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review[J]. International journal of heat and mass transfer, 2017, 108: 79-89.
[26] 李澤民, 王勝民, 趙曉軍, 等. 石墨烯在涂鍍層防腐領(lǐng)域的應(yīng)用研究及進展[J]. 表面技術(shù), 2020, 49(1): 154- 162. LI Ze-min, WANG Sheng-min, ZHAO Xiao-jun, et al. Application and development of graphene in the field of coating-plating corrosion protection[J]. Surface techno-logy, 2020, 49(1): 154-162.
[27] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
[28] Randviir E P, Brownson D A C, Banks C E. A decade of graphene research: Production, applications and outlook[J]. Materials today, 2014, 17(9): 426-432.
[29] Berger C, Song Zhi-min, Li Xue-bin, et al. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science, 2006, 312(5777): 1191-1196.
[30] Berger C, Song Zhi-min, Li Tian-bo, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The journal of physical chemistry B, 2004, 108(52): 19912-19916.
[31] Faggio G, Messina G, Lofaro C, et al. Recent advancements on the CVD of Graphene on copper from ethanol vapor[J]. Journal of carbon research, 2020, 6(1): 578.
[32] Saeed M, Alshammari Y, Majeed S A, et al. Chemical vapour deposition of graphene-synthesis, chara-cterisation, and applications: A review[J]. Molecules, 2020, 25(17): 540.
[33] Wang Jia-bin, Ren Zhuang, Hou Ying, et al. A review of graphene synthesis at low temperatures by CVD me-thods[J]. New carbon materials, 2020, 35(3): 193-207.
[34] Xu Kun, Duan Xiang-yang, Li Yan, et al. Research on rapid growth of monolayer graphene by vertical cold-wall CVD method[J]. Journal of experimental nanoscience, 2020, 15(1): 417-426.
[35] Nagai Y, Sugime H, Noda S. 1.5 minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions[J]. Chemical engi-neering science, 2019, 201: 319-324.
[36] Eres Z, Hrabar S. Low-cost synthesis of high-quality graphene in do-it-yourself CVD reactor[J]. Automatika, 2018, 59(3-4): 254-260.
[37] Fidanova T, Petrov S, Napoleonov B, et al. Single and multilayer graphene grown by CVD technique: Characterization for electro-optical applications[J]. Acc chem res, 2020, 53(4): 800-811.
[38] Liu Wei, Li Hong, Xu Chuan, et al. Synthesis of high- quality monolayer and bilayer graphene on copper using chemical vapor deposition[J]. Carbon, 2011, 49(13): 4122- 4130.
[39] Li Xue-song, Cai Wei-wei, An Jin-bo, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
[40] Qian Min, Zhou Yun-shen, Gao Yang, et al. Production of few-layer graphene through liquid-phase pulsed laser exfoliation of highly ordered pyrolytic graphite[J]. Applied surface science, 2012, 258(22): 9092-9095.
[41] Berman D, Deshmukh S A, Sankaranaraya-nan S K R S, et al. Extraordinary macroscale wear resistance of one atom thick graphene layer[J]. Advanced functional materials, 2014, 24(42): 6640-6646.
[42] Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen[J]. Carbon, 2013, 59: 167- 175.
[43] 張學(xué)薇, 鄒振興, 趙沛, 等. 雙層石墨烯的化學(xué)氣相沉積制備研究綜述[J]. 表面技術(shù), 2019, 48(6): 1-19. ZHANG Xue-wei, ZOU Zhen-xing, ZHAO Pei, et al. Review on preparation of double-layer graphene by che-mical vapor deposition[J]. Surface technology, 2019, 48(6): 1-19.
[44] Fechine G J M, Martin-Fernandez I, Yiapanis G, et al. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates[J]. Carbon, 2015, 83: 224-231.
[45] Ma Lai-peng, Ren Wen-cai, Cheng Hui-ming. Transfer methods of graphene from metal substrates: A review[J]. Small methods, 2019, 3(7): 325.
[46] Qing Fang-zhu, Zhang Yu-feng, Niu Yu-ting, et al. Towards large-scale graphene transfer[J]. Nanoscale, 2020, 12(20): 10890-10911.
[47] Leong Wei-sun, Wang Hao-zhe, Yeo Jing-jie, et al. Paraffin-enabled graphene transfer[J]. Nature communica-tions, 2019, 10: 245.
[48] John R, Ashokreddy A, Vijayan C, et al. Single- and few-layer graphene growth on stainless steel sub-strates by direct thermal chemical vapor deposition[J]. Nanotechnology, 2011, 22(16): 351.
[49] Yuan G D, Zhang W J, Yang Y, et al. Graphene sheets via microwave chemical vapor deposition[J]. Che-mical physics letters, 2009, 467(4-6): 361-364.
[50] Ghaemi F, Abdullah L C, Tahir P M, et al. Synthesis of different layers of graphene on stainless steel using the CVD method[J]. Nanoscale research letters, 2016, 11(1): 506.
[51] Romani E C, Larrude D G, Nachez L, et al. Graphene grown by chemical vapour deposition on steel substrates: Friction behaviour[J]. Tribology letters, 2017, 65(3): 54.
[52] Xu Han-qing, Zang Jian-bing, Yuan Yun-gang, et al. In-situ preparation of graphene coating bonded to stainlesssteel substrate via Cr-C bonding for excellent anticorrosion and wear resistant[J]. Applied surface science, 2019, 492: 199-208.
[53] Gullapalli H, Mohana Reddy A L, KilpatrickS, et al. Graphene growth via carburization of stainless steel and application in energy storage[J]. Small, 2011, 7(12): 1697-1700.
[54] Upadhyaya G S. A brief history of major powder metallurgy research centres[J]. Powder metallurgy, 2016, 59(1): 2-8.
[55] Levina D A, Chernyshev L I, Mikhailovskaya N V. Contemporary powder metallurgy: Achievements and problems[J]. Powder metallurgy and metal ceramics, 2007, 46(3-4): 202-205.
[56] Kryachek V M, Levina D A, Chernyshev L I. Developmental trends in European powder metallurgy[J]. Powder metallurgy and metal ceramics, 2007, 46(11-12): 608-612.
[57] Shard A, Deepshik h a, Gupta V, et al. Material removal rate during powder metallurgy Cu-Ti electrodes in electrical discharge machining of EN9 steel[J]. Acc chem res, 2020, 53(6): 222.
[58] Sluzalec A. Stochastic characteristics of powder meta-llurgy processing[J]. Applied mathematical modelling, 2015, 39(23-24): 7303-7308.
[59] Gokce A, Findik F, Kurt A O. Microstructural exa-mination and properties of premixed Al-Cu-Mg powder metallurgy alloy[J]. Materials characterization, 2011, 62(7): 730-735.
[60] GONZALEZCARRASCO J L, GARCIACANO F, CA-RUANA G, et al. Aluminum Ni3Al composites processed by powder-metallurgy[J]. Materials science and engineering A—Structural materials properties microstructure and processing, 1994, 183(1-2): 5-8.
[61] Oke S R, Ige O O, Falodun O E, et al. Powder metallurgy of stainless steels and composites: A review of mechanical alloying and spark plasma sintering[J]. The international journal of advanced manufacturing techno-logy, 2019, 102(9-12): 3271-3290.
[62] Kale A B, Bag A, Hwang J H, et al. The deformation and fracture behaviors of 316L stainless steels fabricated by spark plasma sintering technique under uniaxial tension [J]. Materials science and engineering: A, 2017, 707: 362- 372.
[63] Dudek A, W?odarczyk R. Effect of sintering atmo-sphere on properties of porous stainless steel for biome-dical applications[J]. Materials science & engineering C—Materials for biological applications, 2013, 33(1): 434-439.
[64] Oke S R, Ige O O, Falodun O E, et al. Powder metallurgy of stainless steels and composites: A review of mechanical alloying and spark plasma sintering[J]. The international journal of advanced manufacturing techno-logy, 2019, 102(9-12): 3271-3290.
[65] Serafini F L, Peruzzo M, Krindges I, et al. Microstructure and mechanical behavior of 316L liquid phase sintered stainless steel with boron addition[J]. Materials characterization, 2019, 152: 253-264.
[66] Lin Shao-jiang, Xiong Wei-hao. Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering[J]. Advanced powder technology, 2012, 23(3): 419-425.
[67] Abenojar J. Atmosphere influence in sintering process of stainless steels matrix composites reinforced with hard particles[J]. Composites science and technology, 2003, 63(1): 69-79.
[68] 洪機劍, 何小玲, 傅楚嫻, 等. 石墨烯增強復(fù)合材料研究進展[J]. 化學(xué)推進劑與高分子材料, 2020, 18(6): 11-17. HONG Ji-jian, HE Xiao-ling, FU Chu-xian, et al. Rese-arch progress of graphene-reinforced composites[J]. Che-mical propellants & polymeric materials, 2020, 18(6): 11-17.
[69] Hu Z, Tong G, Lin D, et al. Graphene-reinforced metal matrix nanocomposites—A review[J]. Materials science and technology, 2016, 32(9): 930-953.
[70] 余杰, 曾洪亮, 溫業(yè)成, 等. 石墨烯增強銅基復(fù)合材料的研究進展[J]. 材料科學(xué)與工程學(xué)報, 2021, 39(1): 167- 173. YU Jie, ZENG Hong-liang, WEN Ye-cheng, et al. Research progress of graphene reinforced copper matrix composites [J]. Journal of materials science and engineering, 2021, 39(1): 167-173.
[71] Ren Wei-jia, Li Ang, Zhang Wei, et al. A facile and cost-effective approach to fabricate in-situ synthesized graphene nanosheet reinforced 316L stainless steel[J]. JOM, 2020, 72(12): 4514-4521.
[72] Li Zhi-qiang, Ni Hong-wei, Chen Zhong, et al. Enha-nced tensile properties and corrosion resistance of stain-less steel with copper-coated graphene fillers[J]. Journal of materials research and technology, 2020, 9(1): 404-412.
[73] 馮孟奇, 賈淑果, 李韶林, 等. 銅/碳復(fù)合材料的研究進展[J]. 材料熱處理學(xué)報, 2020, 41(12): 25-36. FENG Meng-qi, JIA Shu-guo, LI Shao-lin, et al. Research progress of copper/carbon composites[J]. Transactions of materials and heat treatment, 2020, 41(12): 25-36.
[74] 蒲以松, 王寶奇, 張連貴. 金屬3D打印技術(shù)的研究[J]. 表面技術(shù), 2018, 47(3): 78-84. PU Yi-song, WANG Bao-qi, ZHANG Lian-gui. Metal 3D printing technology[J]. Surface technology, 2018, 47(3): 78-84.
[75] Liu Zhan-qi, Xu Guo-jian, Ma Rui-xin, et al. Properties of TiAl alloy prepared by additive manufacturing with laser coaxial powder feeding[J]. Chinese journal of lasers, 2019, 46(3): 56.
[76] Adeyemi A, Akinlabi E T, Mahamood R M. Powder bed based laser additive manufacturing process of stainless steel: A review[J]. Materials today: Proceedings, 2018, 5(9): 18510-18517.
[77] Mikler C V, Chaudhary V, Borkar T, et al. Laser additive processing of Ni-Fe-V and Ni-Fe-Mo per-malloys: Microstructure and magnetic properties[J]. Materials letters, 2017, 192: 9-11.
[78] Xi Lian-yun, Chen Sui-yuan, Liang Jing, et al. The study on thermodynamics of martensitic transformation in laser additive manufacturing alloy steel[C]// 2017 inter-national conference on materials science and biological engineering. Qinghai: Computer Science and Electronic Technology International Society, 2017: 111-115.
[79] Ouyang Wen-tai, Xu Zi-fa, Jia Shao-hui, et al. Multilayer-graphene reinforced 316L matrix composites preparation by laser deposited additive manufacturing: Microstructure and mechanical property analysis[J]. Ma-terials research express, 2019, 6(9): 96557.
[80] Mandal A, Tiwari J K, AlMangour B, et al. Tribological behavior of graphene-reinforced 316L stainless- steel composite prepared via selective laser melting[J]. Tribology international, 2020, 151: 687.
Research Progress in Friction Reduction and Wear Resistance of Graphene in Stainless Steel Applications
,,,,
(School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China)
Friction and wear of stainless-steel materials is a great waste of economy and energy. Graphene with high strength provides a new way, to improve the wear resistance of stainless-steel materials. The combination of the two materials is of great significance to the industrial field. According to the combination mode of graphene and stainless-steel materials, the research progress on the application of graphene in the friction and wear of stainless-steel materials was summarized. From the processing to the application of stainless-steel materials, the law of graphene reducing the friction coefficient of stainless steel was revealed. As a cutting fluid additive, graphene nanoparticles can greatly reduce the friction coefficient of the friction interface between stainless steel and the tool, thus improving the surface quality of stainless-steel workpiece. Preparation followed by transfer is still the main way for graphene to be applied to stainless steel surface. Graphene acts on the friction interface in the form of solid lubricant, and the wear rate of stainless-steel surface can be reduced by an order of magnitude. The continuous development of laser melting additive manufacturing technology provides an effective way for graphene reinforced stainless steel composites, greatly promotes the process of engineering application of the material, and provides a new research direction for graphene to reduce the friction and wear of stainless-steel materials. Finally, through the research on the reduction of friction and wear of stainless-steel materials by graphene, some problems existing in the current research are pointed out and possible solutions are proposed, and the application prospect of this direction is prospected.
graphene; stainless steel; friction and wear; mechanical properties; selective laser melting
2021-03-31;
2021-04-13
GUO Wan-min(1994—),Male, Ph. D. candidate, Research focus: carbon nanomaterials.
白清順(1974—),男,博士,教授,主要研究方向為超精密加工與微納制造。郵箱:Qshbai@hit.edu.cn
Corresponding author:BAI Qing-shun(1974—), Male, Doctor, Professor, Research focus: ultra-precision machining and micro/nano manufacturing technology. E-mail: Qshbai@hit.edu.cn
郭萬民, 白清順, 竇昱昊, 等. 石墨烯在不銹鋼材料應(yīng)用中的減摩和耐磨特性研究進展[J]. 表面技術(shù), 2021, 50(4): 43-55.
TH117
A
1001-3660(2021)04-0043-13
10.16490/j.cnki.issn.1001-3660.2021.04.003
2021-03-31;
2021-04-13
國家自然科學(xué)基金項目(51775146,51535003,52075129)
Fund:Supported by the National Natural Science Foundation of China (51775146, 51535003, 52075129)
郭萬民(1994—),男,博士生,主要研究方向為碳納米材料。
GUO Wan-min, BAI Qing-shun, DOU Yu-hao, et al. Research progress in friction reduction and wear resistance of graphene in stainless steel applications[J]. Surface technology, 2021, 50(4): 43-55.