宮亮,金丹丹,牛世偉,王娜,徐嘉翼,隋世江
遼寧省水稻主產(chǎn)區(qū)化肥減施潛力分析
宮亮,金丹丹,牛世偉,王娜,徐嘉翼,隋世江
遼寧省農(nóng)業(yè)科學(xué)院植物營養(yǎng)與環(huán)境資源研究所,沈陽 110161
【】遼寧省水稻種植面積約50萬hm2,較10年前下降了近1/5,但由于單產(chǎn)持續(xù)增加,年產(chǎn)量始終穩(wěn)定在400萬t以上。作為單產(chǎn)最高的粳稻主產(chǎn)區(qū)之一,在化肥零增長的背景條件下,兼顧土壤肥力和水稻產(chǎn)量的化肥減施潛力有待研究。2020年對遼河三角洲、東南部沿黃海和遼寧中北部3個(gè)水稻主產(chǎn)區(qū)進(jìn)行農(nóng)戶施肥調(diào)研,每個(gè)稻作區(qū)分別選擇高、中、低產(chǎn)代表鄉(xiāng)鎮(zhèn)為調(diào)研點(diǎn),每個(gè)調(diào)研點(diǎn)選擇2—5個(gè)村,每個(gè)村選擇10戶進(jìn)行調(diào)研,共計(jì)590份調(diào)查問卷。各稻作區(qū)氮肥推薦用量基于前期研究基礎(chǔ)確定。依據(jù)作物養(yǎng)分需求量和稻田土壤養(yǎng)分狀況,采用磷鉀衡量監(jiān)控方法,估算稻田磷、鉀肥適宜施用量?;诖朔治鲞|寧省水稻化肥減肥潛力。遼河三角洲、東南部沿黃海和遼寧中北部稻區(qū)農(nóng)戶平均產(chǎn)量分別為10.4、7.7和8.7 t·hm-2,差異較大,同一稻作區(qū)高低相差約4 t·hm-2,不同稻作區(qū)間高低相差約2.7 t·hm-2。遼寧省稻田N、P2O5和K2O平均習(xí)慣用量分別為229.4、102.8 和91.1 kg·hm-2,氮肥用量較2004—2017年降低了12%—32%,磷鉀肥用量有所增加,氮磷鉀肥比例約為2.2﹕1﹕1;3個(gè)稻作區(qū)農(nóng)戶習(xí)慣氮肥和磷肥施用量變異較大,純氮和P2O5平均用量高低相差分別為79.5 kg·hm-2和35.4 kg·hm-2;農(nóng)戶純氮施用量高低相差約4倍,有2.5%農(nóng)戶不施鉀肥,個(gè)別農(nóng)戶不施磷肥,P2O5和K2O最高用量分別為294.5和225.0 kg·hm-2,盲目施肥現(xiàn)象依然存在。以各稻作區(qū)近3年平均產(chǎn)量增產(chǎn)5%為目標(biāo)產(chǎn)量計(jì)算推薦施肥量,遼河三角洲稻作區(qū)目標(biāo)產(chǎn)量為10 000 kg·hm-2,N、P2O5和K2O的推薦用量分別為234、111和101 kg·hm-2,有82.1% 的農(nóng)戶氮肥效率較低,過量施氮問題突出,其中有21.7% 的農(nóng)戶具有較大減氮潛力,可節(jié)約氮肥13.7%;9.6%的農(nóng)戶具有較大磷肥減施潛力,可節(jié)約磷肥5.1%;鉀肥需要適量補(bǔ)充。東南部沿黃海稻作區(qū)目標(biāo)產(chǎn)量為7 500 kg·hm-2,N、P2O5和K2O的推薦用量分別為179、83和76 kg·hm-2,68.0% 的農(nóng)戶磷肥效率較低,過量施磷現(xiàn)象普遍,其中有28.0% 的農(nóng)戶具有較大節(jié)磷潛力,可降低18.6%的投入量;約20% 的農(nóng)戶處于氮、鉀肥低產(chǎn)低效水平,能減施7%左右。遼寧中北部稻作區(qū)目標(biāo)產(chǎn)量為9 000 kg·hm-2,N、P2O5和K2O的推薦用量分別為210、80和91 kg·hm-2;約有30%的農(nóng)戶氮、磷、鉀肥具有較大減施潛力,其中氮、磷肥可減施約1%,鉀肥減施約4%。遼河三角洲稻作區(qū)氮肥過量施用問題突出,有21.7%的農(nóng)戶可減施氮肥13.7%;東南部沿黃海稻作區(qū)磷肥過量施用現(xiàn)象普遍,有28.0%的農(nóng)戶可降低18.6%的投入量;遼寧中北部稻作區(qū)約有30%的農(nóng)戶具有化肥減施潛力,氮、磷肥減施約1%,鉀肥減施約4%。
水稻;化肥減施;化肥閾值;肥料偏生產(chǎn)力;遼寧省
【研究意義】化肥對糧食的增產(chǎn)貢獻(xiàn)率可達(dá)20% —60%[1-2],對保障糧食安全具有不可替代的作用。但化肥過量使用則造成資源浪費(fèi)[3],嚴(yán)重過量時(shí)甚至?xí)?dǎo)致作物減產(chǎn)和一系列生態(tài)環(huán)境問題[4-8]。中國是目前世界上最大的化肥生產(chǎn)國和消費(fèi)國,2014 年我國糧食產(chǎn)量達(dá)到6.1億t,較1970年增加了2.5倍,同期化肥用量增加了17.1倍[9],化肥增幅遠(yuǎn)超過糧食增幅。為此,農(nóng)業(yè)農(nóng)村部2015年制定了《到2020年化肥使用零增長行動(dòng)方案》,明確了化肥減施任務(wù)目標(biāo)和技術(shù)途徑。遼寧省是北方粳稻主產(chǎn)區(qū)之一,水稻單產(chǎn)在8.5 t·hm-2以上,高于全國平均水平,對保障我國口糧安全具有重要作用。在化肥減施的背景下,作為單產(chǎn)最高的粳稻主產(chǎn)區(qū),兼顧土壤肥力和水稻產(chǎn)量的適宜化肥施肥量是多少,現(xiàn)行施肥制度下的化肥減施潛力如何是本文研究的重點(diǎn)?!厩叭搜芯窟M(jìn)展】中國化肥消費(fèi)量約占世界化肥總消費(fèi)量的1/3,其中,稻田氮肥用量占我國氮肥總消費(fèi)量的30%以上[10],水稻平均氮肥施用量180 kg·hm-2,比世界水稻氮肥平均施用量高出75%[11]。史常亮等[12]調(diào)查2004—2013年我國玉米、水稻和小麥三種糧食作物單位面積化肥用量表明,水稻化肥折純平均用量為377.54 kg·hm-2,施用強(qiáng)度最高。其中,東北稻作區(qū)的化肥折純平均施用量為311.22 kg·hm-2,超過國際公認(rèn)的化肥安全施用量上限,有消減潛力。彭顯龍[13]基于農(nóng)戶施肥和土壤肥力研究結(jié)果表明,黑龍江作為全國水稻施肥量最低的省份,依然可減施26%—30%。張燦強(qiáng)等[14]研究認(rèn)為,東北單季稻區(qū)化肥減施潛力較大,遼寧地區(qū)水稻生產(chǎn)化肥施用量可以減少94.5 kg·hm-2,其中氮肥可減施26.3%。王穎[15]調(diào)查結(jié)果顯示,2004—2015年遼寧省水稻化肥折純平均施肥量為391.5 kg·hm-2,農(nóng)戶間施肥量差異較大,7 500—9 000 kg·hm-2產(chǎn)量水平氮肥和施肥總量較高,是控肥減肥的重點(diǎn)?!颈狙芯壳腥朦c(diǎn)】已有的研究指出了遼寧省水稻生產(chǎn)化肥減施潛力和控肥減肥重點(diǎn)對象,但省內(nèi)不同稻作區(qū)間氣候和土壤條件差異很大,差異化的氮、磷、鉀肥適宜用量缺乏系統(tǒng)報(bào)道,“化肥使用量零增長行動(dòng)”實(shí)施5年后,水稻施肥現(xiàn)狀如何,是否還有減施潛力尚未明確?!緮M解決的關(guān)鍵問題】為此,利用本課題組前期研究成果[16],確定了各稻作區(qū)化學(xué)氮肥推薦用量,利用衡量監(jiān)控法[17]估算了各稻作區(qū)化學(xué)磷、鉀肥推薦用量,并調(diào)查分析了目前遼寧省水稻主產(chǎn)區(qū)農(nóng)戶習(xí)慣施肥現(xiàn)狀和存在的問題,以期明確當(dāng)前遼寧省水稻主產(chǎn)區(qū)化肥減施潛力,為水稻合理施肥提供理論依據(jù)。
遼寧省位于東北地區(qū)南部,地處北緯38°43′—43°26′,東經(jīng)118°53′—125°46′,屬溫帶季風(fēng)氣候。年日照時(shí)數(shù)2 100—2 600 h,全年平均氣溫在7—11℃之間,無霜期在150 d以上,年降水量在600—1 100 mm。水稻是第二大糧食作物,全部為粳稻,年產(chǎn)量穩(wěn)定在400萬t以上。按照氣候特點(diǎn)和土壤類型可以分為遼河三角洲、東南部沿黃海和遼寧中北部3個(gè)稻作區(qū)。遼河三角洲稻作區(qū)位于遼河平原的南端,包括盤山縣、大洼縣和大石橋市等地,屬暖溫帶半濕潤季風(fēng)氣候,年均氣溫8.3℃,年均降雨量為610 mm,無霜期165—170 d,主要為鹽漬型水稻土。東南部沿黃海稻作區(qū)包括東港市、瓦房店市和普蘭店市的沿海地區(qū),屬暖溫帶大陸性季風(fēng)氣候區(qū),年平均氣溫9.3℃,平均降水量580 mm,無霜期165—185 d,主要為鹽漬型水稻土。遼寧中北部稻作區(qū)包括鐵嶺市、開原市和沈陽市、遼陽市及周邊地區(qū),屬中溫帶季風(fēng)型大陸性氣候,年平均氣溫6.3℃,年平均降雨量為700 mm,無霜期127—162 d,主要為草甸型水稻土。
課題組2020年對遼河三角洲、東南部沿黃海和遼寧中北部3個(gè)水稻主產(chǎn)區(qū)進(jìn)行了農(nóng)戶施肥調(diào)研,每個(gè)稻作區(qū)分別選擇高、中、低產(chǎn)代表鄉(xiāng)鎮(zhèn)為調(diào)研點(diǎn),每個(gè)調(diào)研點(diǎn)選擇2—5個(gè)村,每個(gè)村選擇10戶進(jìn)行調(diào)研(圖1),共計(jì)590份調(diào)查問卷。參考農(nóng)業(yè)農(nóng)村部《小麥、玉米、水稻三大糧食作物區(qū)域大配方與施肥建議(2013)》,結(jié)合調(diào)查情況確定各稻作區(qū)高、中、低產(chǎn)標(biāo)準(zhǔn),其中,遼河三角洲稻作區(qū)高產(chǎn)標(biāo)準(zhǔn)為產(chǎn)量10.5 t·hm-2以上,低產(chǎn)標(biāo)準(zhǔn)為產(chǎn)量9.0 t·hm-2以下,調(diào)研點(diǎn)包括營口市、大石橋市、盤山縣、大洼縣和海城市,共計(jì)240份調(diào)查問卷;東南部沿黃海稻作區(qū)高產(chǎn)標(biāo)準(zhǔn)為產(chǎn)量7.5 t·hm-2以上,低產(chǎn)標(biāo)準(zhǔn)為產(chǎn)量6.5 t·hm-2以下,調(diào)研點(diǎn)包括東港市、瓦房店市和普蘭店市,共計(jì)200份調(diào)查問卷;遼寧中北部稻作區(qū)高產(chǎn)標(biāo)準(zhǔn)為產(chǎn)量9.0 t·hm-2以上,低產(chǎn)標(biāo)準(zhǔn)為產(chǎn)量7.5 t·hm-2以下,調(diào)研點(diǎn)包括開原市、鐵嶺市、沈北新區(qū)、沈陽市東陵區(qū)、遼中縣、燈塔市和遼陽市,共計(jì)150份調(diào)查問卷。
圖1 遼寧省水稻主產(chǎn)區(qū)及調(diào)研點(diǎn)分布圖
2009—2018年全省水稻種植面積、產(chǎn)量數(shù)據(jù)來源于《遼寧省統(tǒng)計(jì)年鑒》。
二次項(xiàng)、指數(shù)、直線及線性加平臺等肥料效應(yīng)函數(shù)分別適用于不同條件下計(jì)算肥料用量和作物產(chǎn)量的相關(guān)性。函數(shù)統(tǒng)計(jì)檢驗(yàn)的擬合程度、同一產(chǎn)量水平下推薦施肥量的節(jié)省程度和穩(wěn)定性是選擇函數(shù)模型的3個(gè)重要條件[18]。近年來,隨著育種水平的不斷提高,高產(chǎn)作物品種通常具有基礎(chǔ)產(chǎn)量高,耐肥水,抗倒伏等特點(diǎn),在某一產(chǎn)量范圍內(nèi),施肥量與作物產(chǎn)量無顯著相關(guān)性,產(chǎn)量和施氮量曲線在適宜施氮量附近已相當(dāng)平緩,少量增加或減少氮肥的施用量對產(chǎn)量的影響很小[19-20],因此,可應(yīng)用線性加平臺函數(shù)擬合作物產(chǎn)量與施氮量的相關(guān)性[21],計(jì)算作物目標(biāo)產(chǎn)量的推薦施氮量。本文以各稻作區(qū)近3年平均產(chǎn)量增產(chǎn)5%為目標(biāo)產(chǎn)量,即遼河三角洲、東南沿黃海和遼寧中北部稻區(qū)分別為10 000、7 500和9 000 kg·hm-2,根據(jù)課題組多年多點(diǎn)試驗(yàn)利用線性加平臺函數(shù)模型計(jì)算確定各稻作區(qū)推薦施氮量[16,22-23]。
磷鉀肥根據(jù)國際普遍應(yīng)用的衡量監(jiān)控法確定用量[17],當(dāng)土壤肥力中等時(shí),施肥量等于水稻收獲帶走養(yǎng)分量,校正系數(shù)為 1.0;當(dāng)土壤肥力較高時(shí),施肥量低于養(yǎng)分帶走量,校正系數(shù)為0.5—0.75;當(dāng)土壤肥力較低時(shí),施肥量高于養(yǎng)分帶走量,校正系數(shù)為 1.25。遼寧省100 kg水稻籽粒P2O5和K2O需求量分別為0.89 kg和2.69 kg[24],本文以此為依據(jù)計(jì)算磷鉀攜出量。遼寧省稻田速效磷平均含量為20.24 mg·kg-1,整體稍高于第二次全國土壤普查規(guī)定的中等水平[25],其中,遼河三角洲和東南沿黃海稻區(qū)為分別處于中等和稍缺水平[26-27],且均為鹽漬型水稻土,pH在8左右,磷肥有效性較低[28],故校正系數(shù)均按1.25計(jì)算;遼寧中北部稻區(qū)土壤速效磷處于中等水平[29-32],校正系數(shù)按1計(jì)算。稻田速效鉀平均含量為163.9 mg·kg-1,屬于豐富水平,但存在含量下降問題[25],且已有部分地區(qū)速效鉀含量降至中等或缺乏水平[30-33]。為保持土壤速效鉀含量處于穩(wěn)定水平,校正系數(shù)按1.25計(jì)算。水稻吸收的鉀80%存在于莖稈中,是一種重要的速效性鉀素資源,可與傳統(tǒng)鉀肥起到相同作用[34]。北方水稻主產(chǎn)區(qū)約有10%秸稈被移除作燃料使用[35],因此,水稻地上部吸收的鉀約70% 歸還土壤。本文以此為依據(jù),計(jì)算鉀攜出量。
施鉀量=鉀攜出量=產(chǎn)量/100×100 kg籽粒養(yǎng)分需鉀量×(1-0.7)×校正系數(shù)。
秸稈氮主要對維持和培育土壤有機(jī)碳、氮庫有利,對推薦施氮量的影響不大[36]。水稻秸稈還田后釋放的氮磷養(yǎng)分不足推薦施肥的1%[37],因此,不考慮秸稈還田對氮、磷肥用量的影響[13]。
以各稻作區(qū)目標(biāo)產(chǎn)量為標(biāo)準(zhǔn),當(dāng)農(nóng)戶產(chǎn)量高于此標(biāo)準(zhǔn)定義為高產(chǎn),反之為低產(chǎn);以目標(biāo)產(chǎn)量條件下推薦的N、P2O5和K2O 用量為肥料合理用量,與之相對應(yīng)的肥料偏生產(chǎn)力為標(biāo)準(zhǔn)偏生產(chǎn)力,農(nóng)戶施肥的偏生產(chǎn)力高于標(biāo)準(zhǔn)偏生產(chǎn)力則為養(yǎng)分高效,反之為養(yǎng)分低效。高產(chǎn)高效為合理施肥,高產(chǎn)低效和低產(chǎn)低效為過量施肥,低產(chǎn)高效為肥料用量不足[13]。
氮磷鉀肥偏生產(chǎn)力=水稻產(chǎn)量/(N、P2O5、K2O)施用量。
試驗(yàn)數(shù)據(jù)均采用Microsoft Excel 2007、SigmaPlot 12進(jìn)行統(tǒng)計(jì)分析和圖表處理。
2009—2018年全省水稻種植面積由63.4萬hm2(2010)下降到49.2萬hm2左右(2014),呈現(xiàn)出先下降再趨于穩(wěn)定的趨勢(圖2-a),截止到2018年,遼寧省水稻種植面積占北方粳稻總面積的7.33%。水稻單產(chǎn)呈現(xiàn)出先逐年上升再保持穩(wěn)定的趨勢,由7.68 t·hm-2(2009)上升到8.58 t·hm-2(2015)左右,高于全國平均水平。2020年調(diào)研數(shù)據(jù)表明(圖2-b),遼河三角洲稻區(qū)平均產(chǎn)量10.4 t·hm-2,是遼寧省水稻高產(chǎn)區(qū);東南部沿黃海稻區(qū)平均產(chǎn)量7.7 t·hm-2,是遼寧省水稻低產(chǎn)區(qū);遼寧中北部稻區(qū)平均產(chǎn)量8.7 t·hm-2。同一稻作區(qū)農(nóng)戶產(chǎn)量高低相差約4 t·hm-2,不同稻作區(qū)間農(nóng)戶平均產(chǎn)量高低相差約2.7 t·hm-2,農(nóng)戶間產(chǎn)量差異較大。
目前遼寧省化肥折純平均施用量為423.3 kg·hm-2,N、P2O5和K2O平均用量分別為229.4、102.8和91.1 kg·hm-2。不同稻作區(qū)間氮肥和磷肥施用量變異均較大(圖3-a、3-b),遼河三角洲稻作區(qū)純氮用量明顯高于其他兩個(gè)稻作區(qū),平均施氮量高低相差79.5 kg·hm-2;遼寧中北部稻作區(qū)P2O5用量明顯低于其他兩個(gè)稻作區(qū),平均施磷量高低相差35.4 kg·hm-2;K2O用量變異較?。▓D3-c)。調(diào)查中農(nóng)戶最小施氮量90.0 kg·hm-2,最大施氮量358.5 kg·hm-2,兩者相差約4倍;東南沿黃海稻作區(qū)有個(gè)別農(nóng)戶不施磷肥;3個(gè)稻作區(qū)均有農(nóng)戶不施鉀肥,占調(diào)查總量的2.5%;磷肥和鉀肥施用量最高,分別為294.5和225.0 kg·hm-2;農(nóng)民盲目施肥現(xiàn)象依然存在。
圖2 2009-2018年遼寧省水稻種植面積、單產(chǎn)(a)和農(nóng)戶調(diào)研水稻產(chǎn)量(b)
圖3 不同區(qū)域農(nóng)戶氮磷鉀肥施用量
遼河三角洲稻作區(qū)有11.3% 的農(nóng)戶實(shí)現(xiàn)了氮肥高產(chǎn)高效,82.1% 的農(nóng)戶氮肥效率較低,其中21.7% 的農(nóng)戶處于低產(chǎn)低效水平,氮肥減施潛力較大(圖4-a1),可減施氮肥13.7%,氮肥偏生產(chǎn)力可提高5.8 kg·kg-1(表1);約40%農(nóng)戶實(shí)現(xiàn)了磷肥和鉀肥高產(chǎn)高效,磷肥和鉀肥處于低產(chǎn)低效水平的農(nóng)戶比例分別為9.6%和7.1%,具有減施潛力(圖4-a2、a3),可減施磷肥5.1%,偏生產(chǎn)力可提高4.6 kg·kg-1(表1);農(nóng)民平均習(xí)慣施鉀量低于推薦施鉀量,且有個(gè)別農(nóng)戶不施鉀肥,鉀肥需要適量補(bǔ)充。與推薦施肥量接近的農(nóng)戶的平均產(chǎn)量達(dá)到10 033 kg·hm-2,達(dá)到了目標(biāo)產(chǎn)量。
東南部沿黃海稻作區(qū)有13.5% 和27.0% 的農(nóng)戶實(shí)現(xiàn)了氮、鉀高產(chǎn)高效,約20% 的農(nóng)戶處于低產(chǎn)低效水平,氮、鉀肥減施潛力較大(圖4-b1、4-b3),可減施約7%,偏生產(chǎn)力可分別提高2.8和7.2 kg·kg-1(表1);有23.0% 的農(nóng)戶實(shí)現(xiàn)了磷肥高效高產(chǎn),約68.0% 的農(nóng)戶磷肥效率較低,其中28.0% 的農(nóng)戶處于低產(chǎn)低效水平,磷肥減施潛力較大(圖4-b2),可降低18.6%的投入量,偏生產(chǎn)力可提高14 kg·kg-1(表1)。與推薦肥量接近的農(nóng)戶平均產(chǎn)量為7 683 kg·hm-2,達(dá)到了目標(biāo)產(chǎn)量。
遼寧中北部稻作區(qū)有17%的農(nóng)戶實(shí)現(xiàn)了氮高效高產(chǎn),約30%的農(nóng)戶實(shí)現(xiàn)了磷、鉀肥高產(chǎn)高效,約30%的農(nóng)戶氮、磷、鉀肥處于低產(chǎn)低效水平,減施潛力較大(圖4-c1、c2、c3),氮、磷肥減施約1%,鉀肥減施約4%(表1)。與推薦施肥量接近的農(nóng)戶平均產(chǎn)量為9 225 kg·hm-2,達(dá)到了目標(biāo)產(chǎn)量。
表1 不同稻作區(qū)化肥偏生產(chǎn)力及減肥潛力
孫麗惠[38]調(diào)查結(jié)果表明,2006—2008年期間遼河三角洲稻作區(qū)純N用量為400—442 kg·hm-2,遼寧中北部純N用量261 kg·hm-2,P2O5用量約為78 kg·hm-2,K2O用量約在85 kg·hm-2。常俊彥[39]調(diào)查結(jié)果顯示,2017年遼寧省東南沿黃海稻作區(qū)N、P2O5和K2O平均用量分別為219.49、97.32和76.67 kg·hm-2。與前人調(diào)查結(jié)果相比,目前遼河三角洲、東南沿黃海和遼寧中北部稻作區(qū)氮肥用量分別降低了32%、12%和15%,磷鉀肥用量有所增加。王穎[15]2004—2015年對遼寧省10個(gè)市22個(gè)縣(區(qū))14 829農(nóng)戶施肥調(diào)查結(jié)果表明,全省N、P2O5和K2O平均用量分別為241.5、84.0和66.0 kg·hm-2,比例約為3﹕1﹕1。本次調(diào)查結(jié)果表明,目前遼寧省N、P2O5和K2O平均用量分別為229.4、102.8和91.1 kg·hm-2,比例約為2.2﹕1﹕1。說明實(shí)施“測土配方施肥”和開展“化肥零增長行動(dòng)”以來,遼寧省水稻生產(chǎn)氮肥投入量顯著降低,化肥施用情況明顯得到改善,氮磷鉀養(yǎng)分配比趨于合理,為水稻高產(chǎn)穩(wěn)產(chǎn)奠定了基礎(chǔ)。
王永歡等[40]利用一元二次方程函數(shù)模型計(jì)算得到盤錦地區(qū)水稻目標(biāo)產(chǎn)量在8 250—9 750 kg·hm-2時(shí)的最佳純N用量為270—315 kg·hm-2。本研究則利用線性加平臺函數(shù)模型計(jì)算目標(biāo)產(chǎn)量最佳施肥量為234 kg·hm-2,顯著降低了推薦施氮量。尹傳龍[41]建議遼寧東南沿海稻區(qū)在目標(biāo)產(chǎn)量為9 000 kg·hm-2時(shí),純N用量為195 kg·hm-2,本文則以近3年平均產(chǎn)量增產(chǎn)5%為目標(biāo)產(chǎn)量(7 500 kg·hm-2)確定推薦施氮量為179 kg·hm-2,因此兩種推薦施氮量結(jié)果差異較大。巨曉棠[36]應(yīng)用“作物理論施氮量”計(jì)算得到水稻產(chǎn)量在9 000—10 000 kg·hm-2,氮肥推薦用量為216—240 kg·hm-2,李波等[42]利用肥料效應(yīng)函數(shù)法計(jì)算遼河三角洲稻作區(qū)合理施氮量為221—235 kg·hm-2,均與本研究推薦施氮量非常接近。尿素、氯化銨和硫酸銨等是水稻生產(chǎn)中普遍應(yīng)用的氮肥,價(jià)格低廉,增產(chǎn)效果明顯,過量施用問題突出。遼河三角洲稻作區(qū)作為遼寧省水稻產(chǎn)量最高的地區(qū),有82.1%的農(nóng)戶氮肥效率較低,可減施13.7%,選擇適宜的氮肥種類并優(yōu)化施用方法,是未來該地區(qū)控氮減氮的重點(diǎn)。東南部沿黃海和遼寧中北部稻作區(qū)氮肥減施雖然僅7%和1%,但仍有20%—30%的農(nóng)戶具有較大減施潛力,因此,優(yōu)化施肥方法,利用有機(jī)氮肥替代化學(xué)氮肥,將是這兩個(gè)地區(qū)今后氮肥調(diào)控的重點(diǎn)。
孫洪仁等[43]研究結(jié)果表明,目標(biāo)產(chǎn)量為7 500、 9 000和10 500 kg·hm-2條件下,磷肥適宜用量分別為68、81和95 kg·hm-2,本文對遼寧中北部稻作區(qū)目標(biāo)產(chǎn)量為9 000 kg·hm-2時(shí)磷肥推薦量為80 kg·hm-2,與其研究結(jié)果相近,而遼河三角洲和東南部沿黃海稻作區(qū)在目標(biāo)產(chǎn)量分別為10 000 和7 500 kg·hm-2時(shí)磷肥推薦量分別為111 和83 kg·hm-2,高于其推薦量,主要是筆者考慮到遼河三角洲和東南部沿黃海稻作區(qū)主要為鹽漬型水稻土,磷肥有效性較低,因此提高了用量。付立東等[44]研究認(rèn)為,濱海鹽堿型稻田P2O5用量與水稻產(chǎn)量的關(guān)系符合函數(shù)方程:=-0.49622+ 7.3718+10494,通過此方程計(jì)算遼河三角洲稻作區(qū)P2O5用量達(dá)111.45 kg·hm-2時(shí),能獲得10 905 kg·hm-2的高產(chǎn),P2O5用量為85.46 kg·hm-2時(shí),可達(dá)到東南部沿黃海稻作區(qū)7 500 kg·hm-2的目標(biāo)產(chǎn)量,與本文推薦施磷量接近。磷酸二銨是水稻生產(chǎn)應(yīng)用最廣泛的磷肥之一,價(jià)格一般在3 600元/噸以上,因價(jià)格較高,農(nóng)民通常不會(huì)過量施用,基于本文目標(biāo)產(chǎn)量和推薦施磷量條件下,遼河三角洲和遼寧中北部稻作區(qū)磷肥減施分別約為5%和1%,但東南沿黃海稻作區(qū)約有70% 的農(nóng)戶磷肥效率較低,30%的農(nóng)戶磷肥減施潛力較大,減施量約18%。導(dǎo)致這一問題的原因可能是,一方面,該地區(qū)受暖溫帶大陸性季風(fēng)氣候影響,陰雨天較多,空氣濕度大,增施氮肥易導(dǎo)致稻瘟病和穗瘟病加重[45],農(nóng)民習(xí)慣通過投入磷肥增加水稻分蘗和籽粒結(jié)實(shí)率以保證稻米品質(zhì)和產(chǎn)量[39]。另一方面,該地區(qū)土壤pH在8.0以上,磷肥有效性較低,因此,農(nóng)民常常通過增加磷肥施用量來提高有效磷供應(yīng)量,從而加劇了過量施磷??傊?,磷肥在土壤中較易被固定而導(dǎo)致利用率較低,因此,加強(qiáng)土壤中磷素的活化和利用,是未來控磷減磷的重點(diǎn)。
索巍巍等[46]研究表明,遼河三角洲稻區(qū)目標(biāo)產(chǎn)量為9 750 kg·hm-2,合理施鉀量為90 kg·hm-2;王永歡等[40]則認(rèn)為K2O用量為75 kg·hm-2即可達(dá)到這一目標(biāo)產(chǎn)量,上述推薦施鉀量均低于本文推薦量。主要是因?yàn)樯鲜鲅芯拷Y(jié)果的目標(biāo)產(chǎn)量低于本文,且本文考慮到遼寧稻田鉀素含量處于下降的趨勢,因此,提高了推薦施用量以維持土壤鉀持續(xù)供應(yīng)能力。孫洪仁等[43]研究結(jié)果表明,目標(biāo)產(chǎn)量為7 500、9 000和10 500 kg·hm-2條件下,K2O適宜用量分別為72、86和101 kg·hm-2,孫杉杉等[47]研究認(rèn)為,遼河三角洲地區(qū)鉀肥最佳施用量為102.2 kg·hm-2,均與本文推薦施鉀量相近。氯化鉀是水稻生產(chǎn)中普遍應(yīng)用的鉀肥,近年來價(jià)格一直穩(wěn)定在3 000元/噸以上,且鉀肥增產(chǎn)作用不如氮磷肥效果明顯,因此,農(nóng)民習(xí)慣施鉀量通常低于推薦施鉀量,甚至有個(gè)別農(nóng)戶不施鉀肥以降低生產(chǎn)成本,因此遼寧省鉀肥雖然減施潛力在20%—30%,但減施量僅4%—7%,減施空間有限。此外,遼寧省土壤鉀素含量處于下降趨勢也限制了鉀肥減施。鉀肥是不可再生礦產(chǎn)資源,但作物秸稈中的鉀是較好的鉀肥來源,基于土壤有效鉀含量,確定秸稈還田替代鉀肥比例,是遼寧省水稻生產(chǎn)中優(yōu)化施鉀的重要措施。
目前遼寧省稻田N、P2O5和K2O平均用量分別為229.4、102.8和91.1 kg·hm-2,養(yǎng)分配比總體趨于合理,但不同稻作區(qū)間差異較大,遼河三角洲稻作區(qū)氮肥過量問題突出,有21.7%的農(nóng)戶具有減施潛力,減施量約14%;東南部沿黃海稻作區(qū)磷肥過量現(xiàn)象普遍,有28.0%的農(nóng)戶具有減施潛力,可降低18.6%的投入量;遼寧中北部稻作區(qū)化肥施用量相對合理,雖然有30%的農(nóng)戶具有減施潛力,但氮、磷、鉀肥僅可減施1%—4%。遼寧省作為單產(chǎn)最高的粳稻主產(chǎn)區(qū),采取差異化的減施措施,才能實(shí)現(xiàn)兼顧土壤肥力和水稻產(chǎn)量的化肥減施目標(biāo)。
[1] 房麗萍, 孟軍. 化肥施用對中國糧食產(chǎn)量的貢獻(xiàn)率分析——基于主成分回歸C-D生產(chǎn)函數(shù)模型的實(shí)證研究. 中國農(nóng)學(xué)通報(bào), 2013, 29(17): 156-160.
FANG L P, MENG J. Application of chemical fertilizer on grain yield in china analysis of contribution rate:Based on principal component regression C-D production function model and its empirical study. Chinese Agricultural Science Bulletin, 2013, 29(17): 156-160. (in Chinese)
[2] 王祖力, 肖海峰. 化肥施用對糧食產(chǎn)量增長的作用分析. 農(nóng)業(yè)經(jīng)濟(jì)問題, 2008(8): 65-68.
WANG Z L, XIAO H F. Analysis of fertilizer impact on crop production. Issues in Agricultural Economy, 2008(8): 65-68. (in Chinese)
[3] 趙志堅(jiān), 胡小娟, 彭翠婷, 姚均榮. 湖南省化肥投入與糧食產(chǎn)出變化對環(huán)境成本的影響分析. 生態(tài)環(huán)境學(xué)報(bào), 2012, 21(12): 2007-2012.
ZHAO Z J, HU X J, PENG C T, YAO J R. The effect of fertilizer usage on grain output and environmental cost -an empirical study in Hunan province. Ecology and Environmental Sciences, 2012, 21(12): 2007-2012. (in Chinese)
[4] 朱兆良, 金繼運(yùn). 保障我國糧食安全的肥料問題. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(2): 259-273.
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese)
[5] 俞巧鋼, 葉靜, 楊梢娜, 符建榮, 馬軍偉, 孫萬春, 姜麗娜, 王強(qiáng), 汪建妹. 不同施氮量對單季稻養(yǎng)分吸收及氨揮發(fā)損失的影響. 中國水稻科學(xué), 2012, 26(4): 487-494.
YU Q G, YE J,YANG S N, FU J R, MA J W, SUN W C, JIANG L N, WANG Q , WANG J M. Effects of different nitrogen application levels on rice nutrient uptake and ammonium volatilization. Chinese Journal of Rice Science, 2012, 26(4): 487-494. (in Chinese)
[6] COVER H, LAL H, GROSS C M, SHAFFER M J, DELGADO J A, MCKINNEY S P. Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT). Computers and Electronics in Agriculture, 2008, 63(2): 193-206.
[7] 尹娟, 費(fèi)良軍, 田軍倉, 王艷芳, 韓丙芳, 張學(xué)科, 勉韶平. 水稻田中氮肥損失研究進(jìn)展. 農(nóng)業(yè)工程學(xué)報(bào), 2005, 21(6): 189-191.
YIN J, FEI L J, TIAN J C, WANG Y F, HAN B F, ZHANG X K, MIAN S P. Research advance of nitrogen fertilizer losses from paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(6): 189-191. (in Chinese)
[8] 郭騰飛, 梁國慶, 周衛(wèi), 劉東海, 王秀斌, 孫靜文, 李雙來, 胡誠. 施肥對稻田溫室氣體排放及土壤養(yǎng)分的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2016, 22(2): 337-345.
GUO T F, LIANG G Q, ZHOU W, LIU D H, WANG X B, SUN J W, LI S L, HU C. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 337-345. (in Chinese)
[9] 國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒. 北京: 中國統(tǒng)計(jì)出版社, 2016.
NBS. China Statistical Yearbook. Beijing: China Statistical Press, 2016. (in Chinese)
[10] 賀帆, 黃見良, 崔克輝, 王強(qiáng), 湯蕾蕾, 龔偉華, 徐波, 彭少兵. 實(shí)時(shí)實(shí)地氮肥管理對不同雜交水稻氮肥利用率的影響. 中國農(nóng)業(yè)科學(xué), 2008, 41(2): 470-479.
HE F, HUANG J L, CUI K H, WANG Q, TANG L L, GONG W H, XU B, PENG S B. Effect of real-time and site-specific nitrogen management on various hybrid rice. Scientia Agricultura Sinica, 2008, 41(2): 470-479. (in Chinese)
[11] 馬漢云, 王青林, 祁玉良, 扶定, 霍二偉, 沈光輝, 郭桂英.水稻氮素利用基因型鑒定篩選及其響應(yīng)研究. 廣東農(nóng)業(yè)科學(xué), 2011, 38(21): 31-34,46.
MA H Y, WANG Q L, QI Y L, FU D, HUO E W, SHEN G H, GUO G Y. Genotype identification and screening of Nitrogen use in rice and its response study. Guangdong Agricultural Sciences, 2011, 38(21): 31-34, 46. (in Chinese)
[12] 史常亮, 郭焱, 朱俊峰. 中國糧食生產(chǎn)中化肥過量施用評價(jià)及影響因素研究. 農(nóng)業(yè)現(xiàn)代化研究, 2016, 37(4): 671-679.
SHI C L, GUO Y, ZHU J F. Evaluation of over fertilization in China and its influencing factors. Research of Agricultural Modernization, 2016, 37(4): 671-679. (in Chinese)
[13] 彭顯龍, 王偉, 周娜, 劉海洋, 李鵬飛, 劉智蕾, 于彩蓮. 基于農(nóng)戶施肥和土壤肥力的黑龍江水稻減肥潛力分析. 中國農(nóng)業(yè)科學(xué), 2019, 52(12): 2092-2100.
PENG X L, WANG W, ZHOU N, LIU H Y, LI P F, LIU Z L, YU C L. Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100. (in Chinese)
[14] 張燦強(qiáng), 王莉, 華春林, 金書秦, 劉鵬濤. 中國主要糧食生產(chǎn)的化肥削減潛力及其碳減排效應(yīng). 資源科學(xué), 2016, 38(4): 790-797.
ZHANG C Q, WANG L, HUA C L, JIN S Q, LIU P T. Potentialities of fertilizer reduction for grain produce and effects on carbon emissions. Resources Science, 2016, 38(4): 790-797. (in Chinese)
[15] 王穎. 遼寧省習(xí)慣施肥下的水稻產(chǎn)量及肥料利用率分析. 中國農(nóng)技推廣, 2017(12): 36-39.
WANG Y. Analysis of rice yield and fertilizer utilization rate under conventional fertilization in Liaoning Province. China Agricultural Technology Extension, 2017(12): 36-39. (in Chinese)
[16] 孫文濤, 宮亮, 雋英華, 劉艷, 陳曉云, 陳叢斌, 徐冰, 王建忠, 李波, 邢月華, 趙念力. 水稻高產(chǎn)高效養(yǎng)分管理關(guān)鍵技術(shù)研究與應(yīng)用. 中國科技成果, 2015(4): 63-64.
SUN W T, GONG L, JUAN Y H, LIU Y, CHEN X Y, CHEN C B, XU B, WANG J Z, LI B, XING Y H, ZHAO N L. Research and application of key technologies for high yield and efficient nutrient management in rice. China Science and Technology Achievements, 2015(4): 63-64. (in Chinese)
[17] 張福鎖, 陳新平, 陳清. 中國主要作物施肥指南. 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2009: 3-4.
ZHANG F S, CHEN X P, CHEN Q. China's Main Crop Fertilization Guidelines. Beijing: China Agricultural University Press, 2009: 3-4. (in Chinese)
[18] 陳新平, 周金池, 王興仁, 張福鎖, 寶德俊, 賈曉紅. 小麥-玉米輪作制中氮肥效應(yīng)模型的選擇——經(jīng)濟(jì)、環(huán)境效益分析. 土壤學(xué)報(bào), 2000, 37(3): 346-354.
CHEN X P, ZHOU J C, WANG X R, ZHANG F S, BAO D J, JIA X H. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. Acta Pedologica Sinica, 2000, 37(3): 346-354. (in Chinese)
[19] 朱兆良. 推薦氮肥適宜施用量的方法論芻議. 植物營養(yǎng)與肥料學(xué)報(bào), 2006, 12(1): 1-4.
ZHU Z L. On the methodology of recommendation for the application rate of chemical fertilizer nitrogen to crops. Plant Nutrition and Fertilizer Science, 2006, 12(1): 1-4. (in Chinese)
[20] 賈良良, 陳新平, 張福鎖, 劉宏斌, 吳健繁. 北京市冬小麥氮肥適宜用量評價(jià)方法的研究. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 6(3): 67-73.
JIA L L, CHEN X P, ZHANG F S, LIU H B,WU J F. Study of optimum N supplying rate in winter wheat in Beijing area. Journal of China Agricultural University, 2001, 6(3): 67-73. (in Chinese)
[21] 崔振嶺. 華北平原冬小麥-夏玉米輪作體系優(yōu)化氮肥管理——從田塊到區(qū)域尺度[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2005.
CUI Z L. Optimization of the nitrogen fertilizer management for a winter wheat-summer maize rotation system in the north China plant—From field to regional scale[D]. Beijing: China Agricultural University, 2005. (in Chinese)
[22] 宮亮, 曲航, 劉艷, 雋英華, 孫文濤. 遼河三角洲地區(qū)高產(chǎn)水稻氮肥投入閾值及利用率.中國土壤與肥料, 2017(5): 23-28.
GONG L, QU H, LIU Y, JUAN Y H, SUN W T. Nitrogen threshold and nitrogen use efficiency of high yield rice in the Liaohe River Delta. Soil and Fertilizer Sciences in China, 2017(5): 23-28. (in Chinese)
[23] 宮亮, 雋英華, 王建忠, 劉艷, 孫文濤. 盤錦地區(qū)稻田田面水氮素動(dòng)態(tài)變化及化學(xué)氮肥投入閾值研究. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2013, 30(6): 96-100.
GONG L, JUAN Y H, WANG J Z, LIU Y, SUN W T. Variations of nitrogen in surface water body of a paddy field and input threshold of chemical N fertilizer in Panjin City, China. Journal of Agricultural Resources and Environment, 2013, 30(6): 96-100. (in Chinese)
[24] 張宇, 劉小虎, 姜文婷, 韓曉日, 王穎, 包啟平, 柳迪. 利用 QUEFTS 模型估算遼寧省水稻氮、磷和鉀養(yǎng)分需求量. 中國土壤與肥料, 2019(2): 91-97.
ZHANG Y, LIU X H, JIANG W T, HAN X R, WANG Y, BAO Q P, LIU D. Estimation of nitrogen, phosphorus and potassium nutrient requirements of rice in Liaoning Province by QUEFTS model. Soil and Fertilizer Sciences in China, 2019(2): 91-97 (in Chinese).
[25] 徐志強(qiáng). 遼寧省耕地土壤肥力狀況及變化趨勢. 遼寧農(nóng)業(yè)科學(xué), 2012(2): 29-33.
XU Z Q. Status and change trend of cultivated soil fertility in Liaoning Province. Liaoning Agricultural Sciences, 2012(2): 29-33. (in Chinese)
[26] 吳春龍. 不同產(chǎn)量水平遼寧濱海鹽漬型水稻土耕層氮磷鉀養(yǎng)分狀況分析[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2016.
WU C L. Nutrient characteristics of nitrogen, phosphorus and potassium in arable layer of Liaoning coastal saline paddy soil with different yield levels[D]. Shengyang: Shenyang Agricultural University, 2016. (in Chinese)
[27] 李柱. 東港市水稻產(chǎn)量與測土配方施肥的關(guān)系. 現(xiàn)代農(nóng)業(yè)科技, 2016(14): 58-59.
LI Z. Relationship between rice yield and soil formula fertilization in Donggang City. Modern Agricultural Science and Technology, 2016(14): 58-59. (in Chinese)
[28] 王慶仁, 李繼云, 李振聲. 植物高效利用土壤難溶態(tài)磷研究動(dòng)態(tài)及展望. 植物營養(yǎng)與肥料學(xué)報(bào), 1998, 4(2): 107-116.
WANG Q R, LI J Y, LI Z S. Dynamics and prospect on studies of high acquisition of soil unavailable phosphorus by plants. Plant Nutrition and Fertilizer Science,1998, 4(2): 107-116. (in Chinese)
[29] 孫嘉興, 楊雙, 劉延斌, 李雪, 王敬亞. 沈陽水稻種植區(qū)土壤養(yǎng)分肥力狀況調(diào)查報(bào)告. 中國農(nóng)業(yè)信息, 2017, 11(21): 46-47, 72.
SUN J X, YANG S, LIU Y B, LI X, WANG J Y. Investigation report on soil nutrient fertility in rice growing area of Shenyang. China Agricultural Information, 2017, 11(21): 46-47, 72. (in Chinese)
[30] 崔占文, 黃寶福. 臺安縣水稻田養(yǎng)分含量現(xiàn)狀及改良措施. 北方水稻, 2009, 40(2): 29-30.
CUI Z W, HUANG B F. Current status of nutrition content in paddy field of Taian County and amelioration measures. North Rice, 2009, 40(2): 29-30. (in Chinese)
[31] 崔鵬. 臺安縣稻田土壤養(yǎng)分狀況及改良措施. 遼寧農(nóng)業(yè)科學(xué), 2011(4): 70-71.
CUI P. Current status of nutrition content in paddy field of Taian County and amelioration measures.Liaoning Agricultural Sciences, 2011(4): 70-71. (in Chinese)
[32] 王福全. 新民市耕地土壤養(yǎng)分變化分析. 現(xiàn)代農(nóng)業(yè)科技, 2014(7): 244-245.
WANG F Q. Analysis of soil nutrient change in cultivated land in Xinmin City. Modern Agricultural Science and Technology, 2014(7): 244-245. (in Chinese)
[33] 徐志強(qiáng), 劉順國, 何琳, 王雅維, 賈振文, 閆新軼. 昌圖縣土壤肥力狀況分析. 墾殖與稻作, 2006(6): 63-65.
XU Z Q, LIU S G, HE L, WANG Y W, JIA Z W, YAN X Y. The analysis on soil fertility at Changtu County. Reclaiming and Rice Cultivation, 2006(6): 63-65. (in Chinese)
[34] YU C J, QIN J G, XU J, NIE H, LUO Z, CEN K F. Straw combustion in circulating fluidized bed at low-temperature: Transformation and distribution of potassium. Canadian Journal of Chemical Engineering, 2010, 88(5): 874-880.
[35] 高利偉, 馬林, 張衛(wèi)峰, 王方浩, 馬文奇, 張福鎖. 中國作物秸稈養(yǎng)分資源數(shù)量估算及其利用狀況. 農(nóng)業(yè)工程學(xué)報(bào), 2009, 25(7): 173-179.
GAO L W, MA L, ZHANG W F, WANG F H, MA W Q, ZHANG F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 173-179. (in Chinese)
[36] 巨曉棠. 理論施氮量的改進(jìn)及驗(yàn)證—兼論確定作物氮肥推薦量的方法. 土壤學(xué)報(bào), 2015, 52(2): 249-260.
JU X T. Improvement and validation of theoretical N rate (TNR)- Discussing the methods for N fertilizer recommendation. Acta Pedologica Sinica, 2015, 52(2): 249-260. (in Chinese)
[37] 戴志剛, 魯劍巍, 李小坤, 魯明星, 楊文兵, 高祥照. 不同作物還田秸稈的養(yǎng)分釋放特征試驗(yàn). 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(6): 272-276.
DAI Z G, LU J W, LI X K, LU M X, YANG W B, GAO X Z. Nutrient release characteristic of different crop straws manure. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6): 272-276. (in Chinese)
[38] 孫麗惠. 遼寧水稻生產(chǎn)主要問題分析[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2011.
SUN L H. Analysis of major problems in rice production in Liaoning Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[39] ??? 遼寧地區(qū)水稻生產(chǎn)的生態(tài)環(huán)境影響研究[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2018.
CHANG J Y. Study on ecological environmental impact of rice production in Liaoning Province[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[40] 王永歡, 韓曉日, 王麗, 于向華. 盤錦地區(qū)水稻肥料效應(yīng)函數(shù)法推薦施肥模型研究. 土壤通報(bào), 2010, 41(2): 373-378.
WANG Y H, HAN X R, WANG L, YU X H. Study of fertilizers effect on rice and function models of fertilizer recommendation in the Panjin district of China. Chinese Journal of Soil Science, 2010, 41(2): 373-378. (in Chinese)
[41] 尹傳龍. 東港市水稻產(chǎn)量的主要制約因素與對策. 現(xiàn)代農(nóng)業(yè)科技, 2017(15): 59-60.
YIN C L. Major constraints on rice yield in Donggang City and countermeasures. Modern Agricultural Science and Technology, 2017(15): 59-60. (in Chinese)
[42] 李波, 宮亮, 曲航, 金丹丹, 孫文濤. 遼河三角洲稻區(qū)施氮水平對水稻生長發(fā)育及產(chǎn)量的影響. 作物雜志, 2020(1): 173-178.
LI B, GONG L, QU H, JIN D D, SUN W T. Effects of nitrogen application rate on rice growth and yield in Liaohe Delta. Crops, 2020(1): 173-178. (in Chinese)
[43] 孫洪仁, 張吉萍, 冮麗華, 呂玉才, 王應(yīng)海. 我國水稻土壤有效磷和速效鉀豐缺指標(biāo)與適宜磷鉀施用量研究. 中國稻米, 2018, 24(5): 1-10.
SUN H R, ZHANG J P, GANG L H, Lü Y C, WANG Y H. Study on the abundance-deficiency index of soil available P and K and appropriate nutrient application rates of P and K for rice in China. China Rice, 2018, 24(5): 1-10. (in Chinese)
[44] 付立東, 王宇, 李旭, 隋鑫, 任海, 李寶軍. 磷肥不同施用量對水稻產(chǎn)量及磷肥利用率的影響. 北方水稻, 2011, 41(4): 20-24.
FU L D, WANG Y, LI X, SUI X, REN H, LI B J. Effects of different phosphorus fertilizer amount on yield and utilization efficiency. North Rice, 2011, 41(4): 20-24. (in Chinese)
[45] 任金平, 王繼春, 郭曉莉, 劉小梅, 張金花, 韓潤亭. 不同氮肥水平及施藥次數(shù)控制稻瘟病的研究. 吉林農(nóng)業(yè)科學(xué), 2005, 30(3): 34-35.
REN J P, WANG J C, GUO X L, LIU X M, ZHANG J H, HAN R T. Studies on effect of level of nitrogen fertilizer and spraying times on the controlling of rice blight. Journal of Jilin Agricultural Sciences, 2005, 30(3): 34-35. (in Chinese)
[46] 索巍巍, 付立東, 王宇, 李旭, 隋鑫, 任海. 鉀肥對水稻產(chǎn)量及鉀肥利用率的影響. 北方水稻, 2014, 44(2): 18-25.
SUO W W, FUN L D, WANG Y, LI X, SUI X, REN H. Effect of potash fertilizer on rice yield and ratio of potash fertilizer utilization. North Rice, 2014, 44(2): 18-25. (in Chinese)
[47] 孫杉杉, 韓曉日, 王穎, 王帥, 楊勁峰. 盤錦地區(qū)水稻平衡施肥技術(shù)研究. 北方水稻, 2008, 38(3): 47-49, 64.
SUN S S, HAN X R, WANG Y, WANG S, YANG J F. Balanced fertilization technique of nitrogen, phosphorus and potassium for rice in Panjin Area. North Rice, 2008, 38(3): 47-49, 64. (in Chinese)
Analysis of Chemical Fertilizer Application Reduction Potential for Paddy Rice in Liaoning Province
GONG Liang, JIN DanDan, NIU ShiWei, WANG Na, XU JiaYi, SUI ShiJiang
Institute of Plant Nutrition and Environmental Resource, Liaoning Academy of Agricultural Sciences, Shenyang 110161
【】The rice planting area in Liaoning Province is approximately 500 000 hm2, decreasing by one fifth from the size it was 10 years ago. However, due to the continuous increase in unit production, the annual output has been stable at over 4 million tons. As the main producing area with the highest unit yield forrice in Liaoning Province, the potential and space remains to be further studied in the context of zero growth of chemical fertilizer, at the same time, both soil fertility and rice yield should be taken into consideration for chemical fertilizer application reduction. 【】Three major rice producing areas were investigated in 2020, including the Liaohe Delta, the Southeastern Area along the Yellow Sea, and the North-central Area of Liaoning. In each rice planting area, the representative towns with high, medium and low yields were selected as research spots. In each research spot, two to five villages (ten households per village) were selected to carry out the investigation, counting up to 590 questionnaires. The recommended amount of nitrogen (N) fertilizer for each rice growing area was determined on the basis of previous studies. According to crop nutrient requirement and soil nutrient status in paddy fields, the suitable amount of phosphate (P) and potassium (K) fertilizer was estimated by the measurement and monitoring method of P and K. Based on this analysis, the potential of chemical fertilizer reduction for paddy rice in Liaoning Province was calculated. 【】Average yields in the Liao River Delta, the southeastern area along the Yellow Sea and the north-central area of Liaoning were 10.4, 7.7 and 8.7 t·hm-2, respectively. The difference within the same rice planting area was about 4 t·hm-2, while the difference between different rice planting areas was about 2.7 t·hm-2. The average amount of N, P2O5and K2O for the different paddy rice fields in Liaoning Province were 229.4, 102.8 and 91.1 kg·hm-2, respectively. Compared with the amount of fertilizer application before 2004-2017 year, the N fertilizer was reduced by 12%-32% and the P and K fertilizer was increased to some extent. The ratio of N, P and K fertilizer was 2.2﹕1﹕1. The average amounts of N and P fertilizer application varied greatly. The difference of the average amount between the maximum and the minimum is 79.5 kg·hm-2for nitrogen and 35.4 kg·hm-2for P2O5. The difference between the amounts of pure N application by farmers was about 4-fold. About 2.5% of the farmers did not apply K fertilizer, and some farmers did not apply P fertilizer. The maximum application of P2O5and K2O were 294.5 and 225.0 kg·hm-2, respectively. The phenomenon of unscientific fertilization still existed in these regions. Taking the average yield increase of 5% in the last three years as the target yield, the recommended fertilizer amount was calculated. The target yield in the rice planting area of the Liaohe Delta was 10 000 kg·hm-2. The recommended application of N, P2O5and K2O were 234, 111 and 101 kg·hm-2, respectively. About 82.1% of the farmers had low N fertilizer efficiency. This excessive N fertilizer application was a serious problem. About 21.7% of the farmers could potentially reduce N fertilization by 13.7%, about 9.6% of farmers could potentially reduce P fertilizer by 5.1%, and K fertilizer needed to be supplemented appropriately. Target yield in the Southeastern Area along the Yellow Sea was 7 500 kg·hm-2. The recommended application of N, P2O5and K2O were 179, 83 and 76 kg·hm-2, respectively. About 68.0% of the farmers had low P fertilizer efficiency with a generally excessive P fertilizer application phenomenon. 28.0% of the farmers could potentially reduce the amount of P fertilizer by 18.6%. About 20% of farmers fell in the low-yield and low-efficiency levels of N and K fertilizer. The application reduction potential was around 7%. The target yield in the North-central Area of Liaoning was 9 000 kg·hm-2. The recommended application of N, P2O5and K2O were 210, 80 and 91 kg·hm-2, respectively. About 30% of farmers had the potential to reduce the application of N, P and K fertilizers. The application reduction potential for N, P and K fertilizer was approximately 1%, 1% and 4%, respectively. 【】After the implementation of a five year ‘zero growth in fertilizer use’ policy, the situation of fertilizer application in the paddy fields of Liaoning Province has be drastically improved, but the phenomenon of unscientific fertilization by farmers still exists. In the Liaohe Delta, the excessive application of N fertilizer was prominent. About 21.7% of the farmers could reduce the application of N fertilizer by 13.7%. In the Southeastern Area along the Yellow Sea, the phenomenon of excessive application of P fertilizer is common. About 28.0% of the farmers could reduce P fertilizer input by 18.6%. In the north-central area of Liaoning Province, about 30% of farmers in rice planting areas have the potential to reduce the application of chemical fertilizers. The percentage for potential application reduction of N and P fertilizer was about 1%, while that of K fertilizer was about 4%.
rice; application reduction of chemical fertilizer; threshold of chemical fertilizer; partial factor productivity; Liaoning Province
10.3864/j.issn.0578-1752.2021.09.010
2020-07-04;
2020-11-30
國家重點(diǎn)研發(fā)計(jì)劃(2018YFD0200200)
宮亮,Tel:13889123476;E-mail:gongliang1900@sina.com
(責(zé)任編輯 李云霞)