張寧波,韓照清,金太花,莊桂玉,李炯奎,鄭全勝,李永洙
瑯琊雞及其配套系蛋殼質(zhì)量、鈣代謝生化指標(biāo)和鈣結(jié)合蛋白mRNA表達(dá)的比較
1臨沂大學(xué)農(nóng)林科學(xué)學(xué)院,山東臨沂 276005;2青島西海岸新區(qū)農(nóng)業(yè)農(nóng)村局,山東青島 266400;3山東瑯琊雞種業(yè)有限公司,山東臨沂 276000
【】探討影響瑯琊雞及其配套系蛋殼質(zhì)量和鈣代謝的差異因素,為瑯琊雞品種資源保護(hù)及開發(fā)提供理論依據(jù)。選取240日齡瑯琊雞及其淺麻羽色、深麻羽色配套系各180只,各品系隨機(jī)分為6個(gè)重復(fù),每個(gè)重復(fù)30只,在相同飼養(yǎng)條件下飼養(yǎng)至300日齡時(shí)各重復(fù)隨機(jī)收集雞蛋30枚,各重復(fù)隨機(jī)選取6只,翅下靜脈采集血樣、屠宰后收集左腿脛骨及十二指腸、蛋殼腺、腎臟等組織樣,用于檢測(cè)蛋殼質(zhì)量、鈣、磷相關(guān)指標(biāo)及鈣結(jié)合蛋白mRNA的表達(dá)量。淺麻羽色配套系的蛋重顯著低于深麻羽色配套系(<0.05),而蛋殼重低于其他品系(>0.05);另外,蛋殼厚度和蛋殼比率顯著高于深麻羽色配套系(<0.05),蛋殼強(qiáng)度顯著高于其他品系(<0.05);淺麻羽色配套系的蛋黃、蛋殼、脛骨中鈣含量顯著高于深麻羽色配套系(<0.05),蛋殼、脛骨中磷含量顯著高于其他品系(<0.05);蛋殼中灰分含量淺麻羽色配套系最高,其次為瑯琊雞、深麻羽色配套系,而脛骨中灰分含量和脛骨重淺麻羽色配套系最高,其次為瑯琊雞、深麻羽色配套系,品系間均差異顯著(<0.05);淺麻羽色配套系的體重、脛骨長(zhǎng)度顯著低于深麻羽色配套系(<0.05);淺麻羽色配套系的血鈣、降鈣素含量顯著低于其他品系,而淺麻羽色配套系的血磷、堿性磷酸酶、甲狀旁腺素含量顯著高于其他品系,且品系間均差異顯著(<0.05);淺麻羽色配套系的鈣結(jié)合蛋白含量顯著低于深麻羽色配套系(<0.05),而兩個(gè)配套系的骨鈣素顯著高于瑯琊雞(<0.05);淺麻羽色配套系的十二指腸部位鈣結(jié)合蛋白mRNA表達(dá)量顯著高于其他品系(<0.05),而蛋殼腺部位表達(dá)量顯著高于深麻羽色配套系(<0.05),腎臟部位鈣結(jié)合蛋白表達(dá)量顯著高于瑯琊雞(<0.05)。在240—300日齡產(chǎn)蛋期,淺麻羽色配套系的血磷、堿性磷酸酶、甲狀旁腺素、骨鈣素等相關(guān)活性物質(zhì)及十二指腸、腎臟、蛋殼腺部位鈣結(jié)合蛋白mRNA表達(dá)水平高于其他品系,可能促進(jìn)其小腸上段對(duì)鈣磷的吸收和骨鈣的釋放、轉(zhuǎn)運(yùn)能力,影響蛋黃、蛋殼中礦物質(zhì)的沉積和改善蛋殼、脛骨質(zhì)量。
瑯琊雞;配套系;蛋品質(zhì);營(yíng)養(yǎng)成分;鈣結(jié)合蛋白
【研究意義】礦物元素中鈣磷是動(dòng)物骨骼發(fā)育密切相關(guān)的必需元素,飼糧中適宜的鈣磷元素含量對(duì)家禽的生長(zhǎng)發(fā)育、產(chǎn)蛋、蛋殼質(zhì)量及骨骼正常發(fā)育起到重要作用[1],過(guò)量或缺乏會(huì)導(dǎo)致機(jī)體鈣磷代謝紊亂,進(jìn)而引起生長(zhǎng)滯留、生產(chǎn)性能下降、蛋殼質(zhì)量降低以及骨質(zhì)疏松癥等現(xiàn)象[2]。蛋殼質(zhì)量直接影響鮮蛋的保存以及孵化期間熱濕傳遞、破殼等環(huán)節(jié)。蛋殼強(qiáng)度受到品種、日齡、日糧營(yíng)養(yǎng)水平、光照、疾病等因素的影響[3-5]。優(yōu)良的蛋殼質(zhì)量不僅便于保存和運(yùn)輸,而且提高種蛋孵化率。【前人研究進(jìn)展】由于遺傳基礎(chǔ)不同,不同品種的蛋殼品質(zhì)往往有一定差異。在相同飼養(yǎng)管理?xiàng)l件下蛋殼質(zhì)量主要受到機(jī)體的礦物質(zhì)代謝水平的影響,而機(jī)體的鈣調(diào)節(jié)主要受激素及其他些活性因子的協(xié)同作用影響[5-7]。研究報(bào)道,動(dòng)物機(jī)體的合成代謝基因表達(dá)與外部環(huán)境變化節(jié)律同步,影響著體內(nèi)的生物過(guò)程和機(jī)體功能[8],腸道內(nèi)鈣離子的吸收、轉(zhuǎn)運(yùn)、沉積是一個(gè)復(fù)雜的生理反應(yīng)過(guò)程。日糧中的鈣不僅維持機(jī)體組織細(xì)胞的正?;顒?dòng)和血鈣水平,而且形成骨組織和蛋殼的主要成分。鈣代謝過(guò)程中需要VD和鈣結(jié)合蛋白(CaBP-D28k)的調(diào)節(jié),而鈣吸收主要部位在十二指腸和腎臟。其中,鈣結(jié)合蛋白在十二指腸部位的鈣吸收和蛋殼腺中游離鈣的沉積以及蛋殼的形成中發(fā)揮重要作用[9]?!颈狙芯壳腥朦c(diǎn)】瑯琊雞作為山東省地方品種,具有體格小、抗病力強(qiáng)、適應(yīng)性好、飼料報(bào)酬率高等優(yōu)點(diǎn)[10]。清遠(yuǎn)麻雞的蛋黃色澤較深、蛋殼厚度、蛋殼強(qiáng)度等方面優(yōu)于其他品種[11]。南丹瑤雞具有蛋大小適中,蛋黃顏色深,蛋清黏稠,口感好等特點(diǎn)[12]。而瑯琊雞存在蛋重小、產(chǎn)蛋量低、蛋殼質(zhì)量差等方面的缺陷,為改善產(chǎn)蛋性能,以瑯琊雞為父本,與蛋重大、蛋殼質(zhì)量較好的清遠(yuǎn)麻雞、南丹瑤雞為母本進(jìn)行雜交,經(jīng)過(guò)橫交、測(cè)交后3個(gè)世代的選育,培育出淺、深麻羽色配套系?!緮M解決的關(guān)鍵問(wèn)題】本試驗(yàn)通過(guò)測(cè)定瑯琊雞及其配套系蛋殼質(zhì)量、生化指標(biāo)和相關(guān)基因表達(dá)量變化規(guī)律進(jìn)行比較分析,旨在為瑯琊雞保種、育種工作提供理論依據(jù)。
試驗(yàn)與2019年3月15日開始分組預(yù)試驗(yàn),3月25日正式開始試驗(yàn),240日齡淺麻羽色配套系、深麻羽色配套系和瑯琊雞商品代母雞3種品系各180只,隨機(jī)分為6個(gè)重復(fù),每個(gè)重復(fù)30只,試驗(yàn)至300日齡為止,試驗(yàn)在山東瑯琊雞種禽有限公司保種場(chǎng)進(jìn)行。
瑯琊雞以及配套系飼糧營(yíng)養(yǎng)水平參考普通黃羽雞的營(yíng)養(yǎng)需要[13]。基礎(chǔ)飼糧組成及營(yíng)養(yǎng)水平見表1。各組雞群在全封閉式雞舍立體三層階梯籠養(yǎng)條件下飼養(yǎng),自由飲水和每日喂3次飼糧,每日光照16 h。
表1 試驗(yàn)日糧中主要組成及營(yíng)養(yǎng)水平(風(fēng)干基礎(chǔ))
1)預(yù)混料為每千克飼糧提供:VA1000 IU,VD33500 IU,VE20 IU,VK32 mg,硫胺素1 mg,核黃素5 mg,泛酸鈣6 mg,煙酸30 mg,吡哆醇6 mg,生物素1.5 mg,葉酸2.5 mg,VB122 mg,膽堿500 mg,Mn 65 mg,I 0.8 mg,F(xiàn)e 60 mg,Cu 8 mg,Zn 80 mg,Se 0.3 mg
2)代謝能為計(jì)算值,其余為實(shí)測(cè)值
3)飼料表觀消化率方法測(cè)定有效磷含量
1)The premix provided the following per kg of diets:VA1000 IU, VD33500 IU, VE20 IU, VK32 mg, thiamine 1 mg, riboflavin 5 mg, calcium pantothenate 6 mg, nicotinic acid 30 mg, pyridoxine 6 mg, biotin 1.5 mg, folic acid 2.5 mg, VB122 mg, Chline 500 mg, Mn 65 mg, I 0.8 mg, Fe 60 mg, Cu 8 mg, Zn 80 mg, Se 0.3 mg
2)ME was a calculated value, while the others were measured values
3)The content of available phosphorus was determined by apparent digestibility method
1.3.1 生產(chǎn)性能測(cè)定 測(cè)定瑯琊雞及其配套系5%開產(chǎn)體重、300日齡時(shí)蛋重以及240—300日齡期間產(chǎn)蛋率。
1.3.2 樣品的采集 300日齡時(shí)瑯琊雞及其淺、深麻羽色配套系,每個(gè)重復(fù)每天6枚,連續(xù)收集5 d,各重復(fù)30枚雞蛋中隨機(jī)取5枚蛋。試驗(yàn)結(jié)束后禁食空腹,于第二天7:00—8:30時(shí)各重復(fù)組中隨機(jī)選取5只雞翅下靜脈采集血樣,3 000 r/min離心15 min,分離血漿于-20℃凍存,以備測(cè)定血液相關(guān)指標(biāo);采血后屠宰取出左腿脛骨、十二指腸黏膜、蛋殼腺和腎臟等組織樣,迅速放入液氮中,并在-80℃超低溫保存?zhèn)溆谩?/p>
1.3.3 雞蛋品質(zhì)分析 按照雞蛋品質(zhì)的測(cè)定及計(jì)算方法[14],分析蛋重、蛋黃比例、蛋殼比例、蛋殼厚度(蛋殼厚度計(jì)PEACOCK MODEL P-1)、蛋殼強(qiáng)度(蛋殼強(qiáng)度測(cè)定儀KQ-1A)等指標(biāo)。
1.3.4 蛋殼和脛骨中礦物質(zhì)含量以及脛骨強(qiáng)度、密度、指數(shù)測(cè)定 雞蛋破殼后,小心去掉蛋殼和蛋清部分,蛋黃表面附著的蛋清剩余液用吸水紙清理后可食蛋黃部分用打蛋器混勻后,取蛋黃混合樣中150 g于65℃烘干測(cè)定初水分并粉制風(fēng)干樣,之后105℃下烘干24 h;左側(cè)脛骨完全剔凈之后在乙醚脫脂12 h,用游標(biāo)卡尺測(cè)量脛骨長(zhǎng)度,在105℃下把脛骨和蛋殼烘干24 h?;曳趾肯涤米茻?、稱重后計(jì)算得出(GB 5009.4-2016),鈣含量的檢測(cè)采用EDTA滴定法(GB 5009.92-2016),磷含量檢測(cè)采用鉬藍(lán)分光光度法(GB 5009.87-2016)進(jìn)行測(cè)定。取瑯琊雞及配套系的完整左脛骨,采用三點(diǎn)彎曲法,用TAXT-Plus 質(zhì)構(gòu)儀(Stable Micro Systems Corp,英國(guó))測(cè)定脛骨強(qiáng)度;骨礦物質(zhì)的含量采用單光子吸收測(cè)定法(骨礦測(cè)定儀SD200)進(jìn)行測(cè)定,脛骨面積取脛骨骺端處。脛骨密度(kg/cm2)=骨礦含量(g)/[測(cè)定面積(cm2)×1000];脛骨指數(shù)=脛骨重(g)/體重(g)×100%。
1.3.5 血液生化指標(biāo)分析 血漿鈣(Ca)、磷(P)和堿性磷酸酶(ALP)采用比色法(可見分光光度計(jì)V-5600)測(cè)定[15];鈣結(jié)合蛋白D28k(CaBP- D28k)[16]、骨鈣素(BGP)[17]、甲狀旁腺素(PTH)[17]含量測(cè)定采用放免法(全自動(dòng)放免計(jì)數(shù)儀XH-6020);降鈣素(CT)[17]含量采用酶聯(lián)免疫吸附(酶標(biāo)儀ELX808)試劑盒測(cè)定,試劑盒均購(gòu)自武漢基因美科技有限公司。
1.3.6 鈣結(jié)合蛋白mRNA表達(dá)量檢測(cè) 用Trizol(Invitrogen)法提取十二指腸、蛋殼腺、腎臟樣品總RNA,反轉(zhuǎn)錄為cDNA后-20℃保存待測(cè)。用Primer 5.0軟件設(shè)計(jì)和特異性引物,由上海生工生物技術(shù)有限公司合成,引物序列見表2。
參照Taverniers等[18]方法,提取陽(yáng)性克隆質(zhì)粒,用紫外分光光度儀測(cè)定質(zhì)粒濃度,將此定量模板倍比稀釋得到7個(gè)不同濃度的標(biāo)準(zhǔn)模板,采用優(yōu)化好的PCR條件進(jìn)行熒光定量PCR,以Ct值為縱坐標(biāo),以稀釋倍數(shù)的對(duì)數(shù)為橫坐標(biāo),建立相對(duì)定量標(biāo)準(zhǔn)曲線。以作為內(nèi)標(biāo),使用Real-Time PCR檢測(cè)十二指腸、蛋殼腺、腎臟中mRNA的表達(dá)量。用SYBR Green I染色,在熒光定量?jī)x(Light Cycler,Rotor-Gene)上進(jìn)行擴(kuò)增和數(shù)據(jù)分析。
試驗(yàn)數(shù)據(jù)采用SPSS 18.0軟件進(jìn)行統(tǒng)計(jì)分析,并處理數(shù)據(jù),組間差異用LSD法分析,結(jié)果以(平均數(shù)±標(biāo)準(zhǔn)差)表示。mRNA表達(dá)量使用Bio-Rad CFX Manager軟件分析,其相對(duì)表達(dá)量以2-△△Ct形式表示。
表2 Real-Time PCR引物序列
表3數(shù)據(jù)顯示,淺麻羽色配套系產(chǎn)蛋率、蛋殼厚度和蛋殼比例顯著高于深麻羽色配套系(<0.05);淺麻羽色配套系蛋重顯著低于深麻羽色配套系(<0.05),蛋殼重差異不顯著(>0.05);另外,淺麻羽色配套系蛋殼強(qiáng)度顯著高于其他品系(<0.05),而蛋黃比例高于其他品系,但差異不顯著(>0.05)。
淺麻羽色配套系蛋黃中鈣含量顯著高于深麻羽色配套系(<0.05),而配套系間磷和灰分含量差異不顯著(>0.05);淺麻羽色配套系蛋殼中鈣含量顯著高于深麻羽色配套系(<0.05),磷含量顯著高于其他品系(>0.05),并且灰分含量最高,其次為瑯琊雞、深麻羽色配套系,且品系間均差異顯著(<0.05);淺麻羽色配套系的脛骨中鈣、磷含量顯著高于深麻羽色配套系、瑯琊雞,且品系間均差異顯著(<0.05),而淺麻羽色配套系的灰分含量最高,其次為瑯琊雞、深麻羽色配套系,且品系間均差異顯著(<0.05,表4)。
表3 瑯琊雞及其配套系產(chǎn)蛋性能和蛋殼質(zhì)量分析
同行數(shù)據(jù)標(biāo)不同小寫字母表示差異極顯著(<0.05),相同字母或無(wú)字母表示差異不顯著(>0.05)。下同。n=6,產(chǎn)蛋率除外
In the same row, values with different small letter mean significant difference(<0.05), while with the same or no letter mean no significant difference(>0.05). The same as below. n=6,except for egg production rate
淺麻羽色配套系的5%開產(chǎn)體重、300日齡體重、脛骨長(zhǎng)度顯著低于深麻羽色配套系(<0.05),而脛骨重最高,其次為瑯琊雞、深麻羽色配套系,且品系間均差異顯著(<0.05);另外,淺麻羽色配套系的脛骨指數(shù)最高,其次為瑯琊雞、深麻羽色配套系,而淺麻羽色配套系脛骨密度最高,其次為深麻羽色配套系、瑯琊雞,但品系間均差異不顯著(>0.05,表5)。
表4 瑯琊雞及其配套系雞蛋和脛骨中鈣、磷成分含量分析
表5 瑯琊雞及其配套系脛骨質(zhì)量分析
淺麻羽色配套系的血漿鈣、磷、降鈣素含量最低,其次為瑯琊雞、深麻羽色配套系,品系間均差異顯著(<0.05);而淺麻羽色配套系的堿性磷酸酶含量顯著高于瑯琊雞、深麻羽色配套系,且品系間均差異顯著(<0.05);淺麻羽色配套系的甲狀旁腺素含量最高,其次為深麻羽色配套系、瑯琊雞,且品系間均差異顯著(<0.05);淺麻羽色配套系的鈣結(jié)合蛋白含量顯著高于其他品系(<0.05),而配套系的骨鈣素均顯著高于瑯琊雞(<0.05,表6)。
由圖1可知,淺麻羽色配套系十二指腸部位鈣結(jié)合蛋白基因mRNA表達(dá)量顯著高于其他品系(<0.05),淺麻羽色配套系蛋殼腺mRNA表達(dá)量顯著高于深麻羽色配套系(<0.05),淺麻羽色配套系腎臟mRNA表達(dá)量顯著高于瑯琊雞(<0.05)。淺麻羽色配套系十二指腸和蛋殼腺以及腎臟mRNA表達(dá)量與瑯琊雞比較分別上調(diào)28.37%、10.09%、23.88%,而與深麻羽色配套系比較分別上調(diào)29.36%、23.40%、9.84%。
表6 瑯琊雞及其配套系血液指標(biāo)分析
數(shù)柱標(biāo)注*表示差異顯著(P<0.05)
蛋雞產(chǎn)蛋性能主要取決于養(yǎng)殖環(huán)境、疫病、體重、飼料均能影響[19]。開產(chǎn)體重反映了后備雞的體質(zhì)和性成熟情況,影響產(chǎn)蛋周期產(chǎn)蛋性能的發(fā)揮。研究表明,壩上長(zhǎng)尾雞的開產(chǎn)體重與開產(chǎn)日齡呈極顯著正相關(guān),開產(chǎn)日齡與前期產(chǎn)蛋量呈極顯著負(fù)相關(guān)[20]。本研究發(fā)現(xiàn),開產(chǎn)體重較大的深麻羽色配套系產(chǎn)蛋數(shù)最少,與前者研究結(jié)果相符合。雞蛋品質(zhì)指標(biāo)主要包括蛋重和蛋殼質(zhì)量(強(qiáng)度、厚度)等方面,受到遺傳、飼養(yǎng)管理、健康狀態(tài)和營(yíng)養(yǎng)水平等因素的影響[21]。蛋重作為家禽育種工作中重要的目標(biāo),也是衡量蛋品質(zhì)的主要指標(biāo)。本試驗(yàn)結(jié)果表明,在相同飼養(yǎng)條件下的深麻羽色配套系的蛋重顯著大于淺麻羽色配套系,這與選育體系中母系品種直接相關(guān),由于南丹瑤雞成年雞平均蛋重50—54 g[12],遠(yuǎn)大于清遠(yuǎn)麻雞的46.55 g[11]。蛋殼質(zhì)量直接影響鮮蛋的保存以及孵化期間熱濕傳遞、破殼等環(huán)節(jié)。優(yōu)良的蛋殼質(zhì)量不僅便于保存和運(yùn)輸,而且提高種蛋孵化率。研究表明,蛋殼厚度、蛋殼重等蛋殼質(zhì)量與蛋殼強(qiáng)度呈高度的正相關(guān)[22],并且300 d母雞產(chǎn)蛋量與蛋殼強(qiáng)度呈強(qiáng)正相關(guān)[23],而蛋殼質(zhì)量主要取決于鈣和磷含量及其比率,蛋殼鈣主要來(lái)自于腸道吸收和骨鈣[24-25]。本研究結(jié)果表明,淺麻羽色配套系蛋殼厚度、蛋殼強(qiáng)度、蛋殼比率顯著高于深麻羽色配套系,且淺麻羽色配套系產(chǎn)蛋率顯著高于深麻羽色配套系,與已有研究結(jié)果[23]相一致。說(shuō)明兩個(gè)配套系對(duì)鈣、磷等礦物質(zhì)吸收能力存在顯著差異。
蛋黃中富含蛋白質(zhì)、脂肪和鈣、磷等礦物質(zhì),主要來(lái)源于日糧中養(yǎng)分,其中鈣、磷通過(guò)母雞的一系列吸收、轉(zhuǎn)運(yùn)過(guò)程沉積在卵泡中。家禽的卵巢發(fā)育受遺傳、環(huán)境、營(yíng)養(yǎng)等因素的影響, 其中遺傳決定其生產(chǎn)潛能。董傳豪報(bào)道,地方優(yōu)質(zhì)雞和錦醫(yī)大1、2號(hào)配套系間蛋黃含鈣量呈現(xiàn)顯著差異[26]。本試驗(yàn)也發(fā)現(xiàn),淺麻羽色與深麻羽色配套系間蛋黃中含鈣量差異顯著,說(shuō)明兩個(gè)配套系父母代對(duì)蛋黃中礦物質(zhì)的沉積有較大影響,并且產(chǎn)蛋性能的高低直接反映成熟卵泡的正常排卵能力。本研究結(jié)果顯示,淺麻羽色配套系產(chǎn)蛋率顯著高于深麻羽色配套系,而體重顯著低于深麻羽色配套系。是否與深麻羽色配套系體重過(guò)大或卵巢過(guò)重而導(dǎo)致過(guò)多的卵泡干擾次級(jí)卵泡的發(fā)育和鈣、磷等礦物質(zhì)的沉積有關(guān),尚需要進(jìn)一步驗(yàn)證。蛋殼在形成過(guò)程中由于子宮本身不存在或含有很少量的鈣,鈣離子跨膜轉(zhuǎn)運(yùn)對(duì)子宮內(nèi)膜的鈣代謝有重要的影響,故蛋殼形成所需要的鈣磷直接來(lái)源于血液和骨骼[27]。蛋殼中鈣有60%—75%直接來(lái)自飼料,其余來(lái)源于骨鈣[22],產(chǎn)蛋期飼糧中的鈣優(yōu)先沉積在髓骨中,而髓骨成為蛋殼形成的動(dòng)態(tài)鈣源[28]。本研究發(fā)現(xiàn),淺麻羽色配套系蛋殼、脛骨中鈣、灰分含量顯著高于深麻羽色配套系。說(shuō)明在飼養(yǎng)條件相同情況下,淺麻羽色配套系在產(chǎn)蛋期骨鈣分解能力優(yōu)于深麻羽色配套系,高產(chǎn)蛋雞需釋放骨骼鈣、磷進(jìn)入血液以滿足產(chǎn)蛋需求,當(dāng)?shù)半u產(chǎn)蛋率降至70%時(shí),由于產(chǎn)蛋所需鈣、磷消耗下降,骨動(dòng)員相關(guān)基因表達(dá)減少,骨骼、血液鈣含量均略有回升[29]。本試驗(yàn)過(guò)程中深麻羽色配套系一直處在低產(chǎn)蛋水平,并且血鈣濃度高于淺麻羽色配套系,促進(jìn)降鈣素分泌,抑制小腸對(duì)鈣的吸收和骨鈣的釋放[30],影響深麻羽色配套系蛋殼、脛骨中鈣水平。另外,本試驗(yàn)結(jié)果也顯示產(chǎn)蛋率較低的深麻羽色配套系血磷含量顯著高于淺麻羽色配套系,與產(chǎn)蛋高峰期血磷含量低于低產(chǎn)期的研究結(jié)果相一致,而血磷中含量過(guò)高會(huì)影響鈣的吸收,影響蛋殼質(zhì)量[31]。本研究還發(fā)現(xiàn),淺麻羽色配套系脛骨長(zhǎng)度顯著小于深麻羽色配套系,而脛骨指數(shù)、脛骨密度高于深麻羽色配套系。脛骨長(zhǎng)度是反映母雞骨骼發(fā)育情況,其發(fā)育程度直接說(shuō)明母雞整個(gè)產(chǎn)蛋期產(chǎn)蛋個(gè)數(shù)和產(chǎn)蛋總量。本試驗(yàn)結(jié)果顯示,淺麻羽色配套系產(chǎn)蛋率高于深麻羽色配套系,但其脛骨長(zhǎng)度顯著低于深麻羽色配套系。其結(jié)果是否與深麻羽色配套系體重顯著大于淺麻羽色配套系相關(guān),有待于進(jìn)一步探討,并且目前尚未有瑯琊雞脛骨標(biāo)準(zhǔn)指標(biāo),按照僅有脛骨長(zhǎng)度大小評(píng)定產(chǎn)蛋性能高低缺乏依據(jù)。脛骨中鈣、磷含量是反映蛋雞鈣、磷營(yíng)養(yǎng)狀況的指標(biāo),而骨強(qiáng)度、骨密度等指標(biāo)是對(duì)骨骼質(zhì)量評(píng)價(jià)的重要指標(biāo)。隨著產(chǎn)蛋性能的提高,機(jī)體為不斷滿足產(chǎn)蛋需求,髓質(zhì)骨進(jìn)一步降解,同時(shí)開始動(dòng)用皮質(zhì)骨,降低了骨骼質(zhì)量,骨的穩(wěn)定性變差,并且不同產(chǎn)蛋率蛋雞脛骨骨吸收水平存在顯著差異[29]。本試驗(yàn)結(jié)果顯示,產(chǎn)蛋率高的淺麻羽色配套系脛骨中鈣、磷、灰分含量以及脛骨密度顯著高于其他品系。說(shuō)明淺麻羽色配套系在產(chǎn)蛋階段脛骨動(dòng)員和重建能力強(qiáng)于深麻羽色配套系,并且反映脛骨中鈣磷含量和脛骨密度與雞蛋和蛋殼中鈣磷水平有一定的相關(guān)性。因此,脛骨質(zhì)量指標(biāo)可作為評(píng)價(jià)雞蛋中鈣、磷以及蛋殼質(zhì)量的有意義指標(biāo)[32]。
本研究發(fā)現(xiàn),在240—300日齡產(chǎn)蛋期,與鈣(或磷)代謝相關(guān)的結(jié)合蛋白和主要激素在兩個(gè)配套系表現(xiàn)出顯著差異。據(jù)研究報(bào)道,飼糧中大部分鈣以難溶性鈣鹽形式存在,必須經(jīng)消化道內(nèi)轉(zhuǎn)變成Ca2+才能被吸收,其吸收主要在小腸上段,家禽在相關(guān)激素和活性物質(zhì)的協(xié)調(diào)下,使血鈣、磷濃度保持相對(duì)恒定,維持家禽諸多組織和細(xì)胞的正?;顒?dòng)[9,33]。本試驗(yàn)結(jié)果顯示,淺麻羽色配套系血鈣、磷濃度顯著低于瑯琊雞和深麻羽色配套系,而淺麻羽色配套系脛骨質(zhì)量、蛋殼質(zhì)量?jī)?yōu)于深麻羽色配套系,同時(shí)淺麻羽色配套系具有較高的產(chǎn)蛋率和蛋殼比率,說(shuō)明淺麻羽色配套系鈣磷動(dòng)態(tài)吸收、轉(zhuǎn)運(yùn)能力可能優(yōu)于深麻羽色配套系。已有研究表明,在腸黏膜細(xì)胞中存在多種鈣結(jié)合蛋白,能與Ca2+結(jié)合,促使鈣被吸收[34]。本研究發(fā)現(xiàn),淺麻羽色配套系中鈣結(jié)合蛋白CaBP-D28k含量顯著高于瑯琊雞和深麻羽色配套系,說(shuō)明血漿中鈣結(jié)合蛋白CaBP-D28k含量的升高促進(jìn)鈣的吸收,影響其脛骨、蛋殼、蛋黃中鈣含量。甲狀旁腺素(PTH)、降鈣素(CT)影響家禽小腸上段對(duì)鈣磷的吸收,維持鈣磷在骨組織與體液間平衡,促進(jìn)腎臟對(duì)鈣磷的排泄,共同調(diào)節(jié)血鈣和血磷濃度的動(dòng)態(tài)平衡,促進(jìn)骨的代謝。本試驗(yàn)結(jié)果顯示,淺麻羽色配套系血Ca2+濃度顯著低于瑯琊雞和深麻羽色配套系,并且PTH濃度顯著高于其他品系,可能是蛋殼形成過(guò)程中鈣沉積增加引起血鈣降低,并進(jìn)一步誘發(fā)PTH分泌增加[35]。降鈣素(CT)分泌也受到血鈣濃度調(diào)控,血鈣濃度與降鈣素分泌呈正相關(guān)。本試驗(yàn)結(jié)果也顯示,淺麻羽色配套系血Ca2+濃度顯著低于瑯琊雞和深麻羽色配套系,而CT濃度顯示明顯低于其他品系。由于淺麻羽色配套系CT濃度降低,能促進(jìn)間葉細(xì)胞轉(zhuǎn)化為破骨細(xì)胞,激活破骨細(xì)胞活性,促成骨鹽溶解及骨基質(zhì)分解,同時(shí)能抑制破骨細(xì)胞轉(zhuǎn)化為成骨細(xì)胞,并降低其活性,促進(jìn)小腸對(duì)鈣的吸收和骨鈣的釋放[33],進(jìn)而影響淺麻羽色配套系蛋黃、蛋殼質(zhì)量。骨源堿性磷酸酶(ALP)活性可反映成骨細(xì)胞和破骨細(xì)胞的活性,在產(chǎn)蛋期鈣的需要量升高時(shí),堿性磷酸酶通過(guò)其活性作用促進(jìn)骨組織釋放鈣,滿足蛋雞鈣的需要[33]。本研究結(jié)果顯示,淺麻羽色配套系的ALP濃度顯著高于其他品系,說(shuō)明淺麻羽色配套系骨組織釋放鈣能力優(yōu)于其他品系。骨鈣素(BGP)影響骨骼正常礦化和軟骨礦化進(jìn)程,當(dāng)骨鈣素濃度升高時(shí),可促進(jìn)成骨細(xì)胞活性和骨形成,一定程度上活躍骨骼代謝[30, 36]。本研究發(fā)現(xiàn),淺麻羽色配套系BGP濃度顯著高于其他品系,反映了淺麻羽色配套系骨骼代謝較為活躍。與之相對(duì)應(yīng),淺麻羽色配套系的蛋殼和脛骨的鈣、磷、灰分含量與其他品系差異顯著。
蛋雞在產(chǎn)蛋高峰期和產(chǎn)蛋后期對(duì)鈣需求量比產(chǎn)蛋期之前均會(huì)增加,并且主要依賴于十二指腸和腎臟對(duì)鈣吸收能力的增強(qiáng)以及骨質(zhì)的降解[37]。參與Ca2+吸收的主要蛋白是鈣結(jié)合蛋白D28k,其含量影響骨骼的破骨進(jìn)程,促進(jìn)蛋殼腺內(nèi)Ca2+轉(zhuǎn)運(yùn)和蛋殼形成;腎臟和蛋殼腺內(nèi)鈣結(jié)合蛋白D28k表達(dá)與Ca2+的轉(zhuǎn)運(yùn)密切相關(guān)[33,38]。在mRNA水平,雞產(chǎn)蛋期十二指腸表達(dá)量直接或間接與鈣磷吸收代謝有關(guān),并影響骨骼的發(fā)育;在蛋殼腺內(nèi),mRNA表達(dá)水平在蛋殼鈣化的過(guò)程中顯著增加;而腎臟中CaBP-D28k可促進(jìn)腎小管對(duì)鈣的重吸收,其含量與雞骨代謝調(diào)節(jié)密切相關(guān),在蛋殼形成時(shí)參與鈣的分泌[39—40];且CaBP-D28k第三外顯子A5115G突變極顯著提高蛋殼強(qiáng)度[41]。本試驗(yàn)通過(guò)對(duì)240—300日齡產(chǎn)蛋期瑯琊雞及其配套系不同部位鈣結(jié)合蛋白mRNA表達(dá)檢測(cè)發(fā)現(xiàn),淺麻羽色配套系十二指腸部位mRNA表達(dá)水平顯著高于其他品系,并且通過(guò)激素等物質(zhì)的分析結(jié)果證實(shí)了淺麻羽色配套系蛋黃、蛋殼和脛骨中鈣的沉積優(yōu)于其他品系,淺麻羽色配套系腸道中鈣吸收和Ca2+的轉(zhuǎn)運(yùn)水平表現(xiàn)更佳。蛋殼腺內(nèi)的表達(dá)量與Ca2+的轉(zhuǎn)運(yùn)密切相關(guān)[42],本試驗(yàn)結(jié)果顯示,淺麻羽色配套系鈣結(jié)合蛋白含量和蛋殼腺內(nèi)mRNA的表達(dá)量與深麻羽色配套系比較分別高12.97%和上調(diào)23.40%,而淺麻羽色配套系產(chǎn)蛋率、蛋殼比率、蛋殼厚度以及蛋殼中鈣含量均高于深麻羽色配套系,說(shuō)明蛋殼腺內(nèi)mRNA表達(dá)量差異影響蛋殼形成過(guò)程中Ca2+的轉(zhuǎn)運(yùn),從而導(dǎo)致品系間蛋殼厚度、蛋殼中鈣水平表現(xiàn)差異。
在240—300日齡產(chǎn)蛋期,淺麻羽色配套系產(chǎn)蛋率、蛋殼比率、蛋殼厚度、蛋殼強(qiáng)度顯著高于深麻羽色配套系,雜交改良在改善蛋殼質(zhì)量的同時(shí),還影響蛋黃、蛋殼中礦物質(zhì)的沉積和脛骨質(zhì)量。淺麻羽色配套系的相關(guān)激素和活性物質(zhì)與其他品系間表現(xiàn)差異,促進(jìn)小腸上段對(duì)鈣磷吸收和骨鈣的釋放、轉(zhuǎn)運(yùn)能力,骨骼代謝活躍;淺麻羽色配套系十二指腸部位mRNA表達(dá)水平顯著高于其他品系,深麻羽色配套系和瑯琊雞蛋殼腺、腎臟部位mRNA表達(dá)顯著下調(diào),反映了相關(guān)部位Ca2+的吸收、轉(zhuǎn)運(yùn)以及鈣代謝水平差異,影響蛋黃、蛋殼厚度、蛋殼比率以及蛋殼和脛骨中鈣水平。
[1] BAO Y M, CHOCT M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Animal Production Science, 2009, 49(4): 269-282.
[2] WEBSTER A B. Welfare implications of avian osteoporosis. Poultry Science, 2004, 83(2): 184-192.
[3] 趙旦華, 趙秀華, 馬渭青, 王思博, 楊季, 李滿雨, 劉國(guó)君, 許麗. 遮陰對(duì)產(chǎn)蛋后期東北白鵝生產(chǎn)性能、蛋品質(zhì)及血清激素指標(biāo)的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2020, 32(1): 215-223.
ZHAO D H, ZHAO X H, MA W Q, WANG S B, YANG J, LI M Y, LIU G J, XU L. Effects of shading on performance, egg quality and serum hormone indexes of northeast white geese during later laying period. Chinese Journal of Animal Nutrition, 2020, 32(1): 215-223. (in Chinese)
[4] 刁華杰, 馮京海, 張敏紅, 刁新平, 周瑩, 李萌, 王雪潔. 循環(huán)高溫對(duì)蛋雞生產(chǎn)性能、蛋殼品質(zhì)及鈣磷代謝的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2017, 29(8): 2689-2696.
DIAO H J, FENG J H, ZHANG M H, DIAO X P, ZHOU Y, LI M, WANG X J. Effect of cyclic high temperature on performance, egg shell quality and metabolism of calcium and phosphorous of laying hens. Chinese Journal of Animal Nutrition, 2017, 29(8): 2689-2696. (in Chinese)
[5] 康樂(lè), 穆雅東, 張克英, 王建萍, 白世平, 曾秋鳳, 彭煥偉, 宿卓薇, 玄玥, 丁雪梅. 不同鈣水平飼糧添加維生素D3對(duì)產(chǎn)蛋后期蛋雞生產(chǎn)性能、蛋品質(zhì)、脛骨質(zhì)量和血漿鈣磷代謝的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2018, 30(10): 3889-3898.
KANG L, MU Y D, ZHANG K Y, WANG J P, BAI S P, ZENG Q F, PENG H W, SU Z W, XUAN Y, DING X M. Effects of different calcium level diets supplemented with vitamin d3on performance, egg quality, tibia quality and plasma calcium and phosphorus metabolism of laying hens in late laying period. Chinese Journal of Animal Nutrition, 2018, 30(10): 3889-3898. (in Chinese)
[6] 楊濤, 甘悅寧, 宋志芳, 趙婷婷, 龔月生. 不同來(lái)源和水平的維生素D3對(duì)蛋雞生產(chǎn)性能、蛋品質(zhì)和脛骨質(zhì)量的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2014, 26(3):659-666.
YANG T, GAN Y N, SONG Z F, ZHAO T T, GONG Y S. Effects of different sources and levels of Vitamin D3on performance, eggshell quality and tibial quality of laying hens. Chinese Journal of Animal Nutrition, 2014, 26(3): 659-666. (in Chinese)
[7] 張淑云, 王安. 鈣和維生素D對(duì)生長(zhǎng)肉雞免疫及抗氧化功能的影響. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2010, 22(3):579-585.
ZHANG S Y,WANG A. Effects of calcium and vitamin D on immune and antioxidant functions in growing broilers. Chinese Journal of Animal Nutrition, 2010, 22(3):579-585. (in Chinese)
[8] TAHARA Y, SHIBATA S. Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nature Reviews Gastroenterology and Hepatology, 2016, 13(4): 217-226.
[9] 姜明君. 籠養(yǎng)蛋雞鈣代謝對(duì)蛋殼質(zhì)量的影響及其機(jī)制的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué).2015.
JIANG M J. Effect of calcium metabolism on eggshell quality in caged laying hens[D].Taian: Shandong Agricultural University, 2015. (in Chinese)
[10] 董志梅, 劉曉曉, 龍君江, 李永洙, 秦四海. 不同地方雞種蛋品質(zhì)比較和相關(guān)性分析. 黑龍江畜牧獸醫(yī), 2016(2):111-113.
DONG Z M, LIU X X, LONG J J, LI Y Z, QIN S H. Comparison and correlation analysis of egg quality of different local chicken breeds. Heilongjiang Animal Science and Veterinary Medicine, 2016(2): 111-113. (in Chinese)
[11] 陳希萍, 景棟林, 李華, 張正芬, 鄺智祥. 清遠(yuǎn)麻雞蛋品質(zhì)研究. 中國(guó)家禽, 2014, 36(4):9-12.
CHEN X P, JING D L, LI H, ZHANG Z F, GUANG Z X. Study on egg quality of Qingyuan partridge chickens. China Poultry, 2014, 36(4):9-12. (in Chinese)
[12] 王娟, 鄧?yán)^賢, 楊祝良, 孫甜甜, 徐文文, 曾令湖, 黎卓炎, 鄒樂(lè)勤, 肖聰, 蔣和生, 楊秀榮. 南丹瑤雞產(chǎn)蛋期蛋品質(zhì)變化分析. 中國(guó)家禽, 2019, 41(17):54-57.
WANG J, DENG J X, YANG Z L, SUN T T, XU W W, ZENG L H, LI Z Y, ZOU L Q, XIAO C, JIANG H S, YANG X R. Analysis of egg quality changes of Nandan Yao chicken during laying period. China Poultry, 2019, 41(17):54-57. (in Chinese)
[13] 蔣宗勇. 黃羽肉雞營(yíng)養(yǎng)需要研究進(jìn)展. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社, 2010.
JIANG Z Y. Research Progress on Nutritional Requirements of Yellow Feather Broilers. Beijing: China Agricultural Science and Technology Press, 2010. (in Chinese)
[14] 馮靜, 王燕, 臧蕾, 劉會(huì)杰, 鵬達(dá), 馬雪英.不同品種蛋雞雞蛋營(yíng)養(yǎng)成分的比較研究. 畜牧與飼料科學(xué), 2016, 37(9):4-8.
FENG J, WANG Y, ZANG L, LIU H J, PENG D, MA X Y. Comparative study on nutritional components of eggs from different laying hens breeds. Animal Husbandry and Feed Science, 2016, 37(9):4-8. (in Chinese)
[15] LI P, WANG R, JIAO H, WANG X, ZHAO J P, LIN H. Effects of dietary phosphorus level on the expression of calcium and phosphorus transporters in laying hens. Frontiers in Physiology, 2018, 9: 627.
[16] SUGIYAMA T, KIKUCHI H, HIYAMA S, NISHIZAWA K, KUSUHARA S. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen. British Poultry Science, 2007, 48(2): 233-238.
[17] 章世元, 俞路, 王雅倩, 孫懷昌, 王志躍, 王捍東, 周聯(lián)高, 嚴(yán)桂芹, 張瑩, 林顯華, 汪益峰, 閆韓韓. 雞甲狀旁腺素基因質(zhì)粒對(duì)蛋雞生產(chǎn)性能、蛋殼質(zhì)量及血液激素水平的影響(英文). 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2008(4): 475-481.
ZHANG S Y, YU L, WANG Y Q, SUN H C, WANG Z Y, WANG H D, ZHOU L G, YAN G Q, ZHANG Y, LIN X H, WANG Y F, YAN H H. Effects of pCEP4-PTH gene plasmid on production performance, eggshell quality and serum hormone levels in layers. Chinese Journal of Animal Nutrition, 2008(4):475-481. (in Chinese)
[18] TAVERNIERS I, WINDELS P, VAITILINGO M M, MILCAMPS A, VAN BOCKSTAELE E, GUY V D E, MARC D L. Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola. Journal of Agricultural and Food Chemistry, 2005, 53(8):3041-3052.
[19] 王海濤. 蛋雞產(chǎn)蛋率影響因素及提高措施. 畜禽業(yè), 2019, 30(4): 31.
WANG H T. Influencing factors of layer egg laying rate and improving measures. Livestock Industry, 2019, 30(4):31. (in Chinese)
[20] 劉小輝, 李祥龍, 趙彩娟, 李杰, 逯春香. 壩上長(zhǎng)尾雞生長(zhǎng)指標(biāo)與產(chǎn)蛋性能的關(guān)系. 江蘇農(nóng)業(yè)科學(xué), 2015, 43(10):256-258.
LIU X H, LI X L, ZHAO C J, LI J, LU C X. Relationship between growth index and egg production performance of Bashang long-tailed chicken. Jiangsu Agricultural Sciences, 2015, 43(10):256-258. (in Chinese)
[21] 張劍, 初芹, 王海宏, 耿愛蓮, 肖銀花, 劉華貴. 北京油雞不同產(chǎn)蛋期雞蛋品質(zhì)分析及變化規(guī)律研究. 中國(guó)家禽, 2010, 32(16):10-13.
ZHANG J, CHU Q, WANG H H, GENG A L, XIAO Y H, LIU H G. Effect of different production phage on egg quality traits of Beijing Fatty chicken. China Poultry, 2010, 32(16):10-13. (in Chinese)
[22] POGGENPOELD G.Correlated response in shell and albumen quality with selection for increased egg production. Poultry Science, 1986, 65(9):1633-1641.
[23] 杜曉惠, 熊婷. 母雞產(chǎn)蛋量、孵化率與蛋品質(zhì)的關(guān)系研究. 中國(guó)畜牧雜志, 2013, 49(5): 9-12.
DU X H, XIONG T. Study on the relationship between hen egg production, hatchability and egg quality. Chinese Journal of Animal Science, 2013, 49(5): 9-12. (in Chinese)
[24] SEIBELM J. Biochemical markers of bone turnover Part I: Biochemistry and variability. Clinical Biochemist Reviews, 2005, 26(4):97-122.
[25] CRANSBERG P H, PARKINSON G B, WILSON S, THORP B H. Sequential studies of skeletal calcium reserves and structural bone volume in a commercial layer flock. British Poultry Science, 2001, 42(2):260-265.
[26] 董傳豪, 徐亞歐, 鄭玉才,饒開晴. 3品種雞蛋外在品質(zhì)及營(yíng)養(yǎng)價(jià)值的對(duì)比分析. 江蘇農(nóng)業(yè)科學(xué), 2016, 44(10):351-354.
DENG C H, XU Y O, ZHENG Y C, RAO K Q. Comparative analysis of external quality and nutritional value of three eggs. Jiangsu Agricultural Science, 2016, 44(10):351-354. (in Chinese)
[27] YANG J H,ZHAO Z H, HOU J F, ZHOU Z L, DENG Y F, DAI J J.Expression of TRPV6 and CaBP-D28k in the egg shell gland(uterus) during the oviposition cycle of the laying hen. British Poultry Science, 2013, 54(3):398-406.
[28] 陳杰, 章世元. 蛋殼的鈣化過(guò)程及蛋殼腺的鈣代謝調(diào)控. 畜牧與獸醫(yī), 2010, 42(11):93-96.
CHEN J, ZHANG S Y. Eggshell calcification and calcium metabolism regulation of eggshell glands. Animal Husbandry and Veterinary Medicine, 2010, 42(11):93-96. (in Chinese)
[29] 劉世發(fā). 籠養(yǎng)蛋雞鈣、磷與骨骼代謝規(guī)律及其調(diào)節(jié)機(jī)制[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2016.
LIU S F. Calcium and phosphorus and bone metabolism of cage layers and the regulation mechanism[D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
[30] 劉旭. 日糧鈣和維生素D3水平對(duì)修水黃羽烏雞產(chǎn)蛋性能、蛋品質(zhì)和鈣代謝的影響[D]. 南昌: 江西農(nóng)業(yè)大學(xué), 2017.
LIU X. Effects of dietary calcium and vitamin D3level on laying performance、egg quality and calcium metabolism in Xiushui yellow black bone chicken during the laying stage[D]. Nanchang: Jiangxi Agricultural University, 2017. (in Chinese)
[31] 閃愛婷, 卜舒揚(yáng), 田菁菁, 張強(qiáng), 楊建成. 海蘭褐蛋雞不同產(chǎn)蛋期血鈣磷水平與蛋品質(zhì)相關(guān)性分析. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2017, 38(2): 68-70.
SHAN A T, BU S Y, TIAN J J, ZHANG Q, YANG J C. Correlation analysis of serum calcium and phosphorus levels and egg quality in different laying periods of Hyline Brown layers. Progress in Veterinary Medicine, 2017, 38(2):68-70. (in Chinese)
[32] 趙春, 朱忠珂, 李勤凡,王建華, 汪儆, 蔡青和. 制粒溫度對(duì)飼喂含植酸酶日糧肉仔雞生長(zhǎng)性能及鈣、磷利用的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2007, 16(4) :47-51.
ZHAO C, ZHU Z K, LI Q F, WANG J H, WANG J, CAI Q H. Effects of pelleting temperature on growth performance, calcium and phosphorus utilization in broilers fed contained phytase diets. Acta Agriculturae Boreali-occidentalis Sinica, 2007, 16(4): 47-51. (in Chinese)
[33] MICHAEL B C. Involvement of calcium and phosphorus in bone an d shell quality of early maturing commercial layers. World Poultry, 2001, 6:16-19.
[34] GRZYBOWSKA EWA A. Calcium-binding proteins with disordered structure and their role in secretion, storage, and cellular signaling. Biomolecules, 2018, 8(2):42-50.
[35] CHRISTAKOS S, DHAWAN P, PORTA A, MADY L J, SETH T. Vitamin D and intestinal calcium absorption. Molecular & Cellular Endocrinology, 2011, 347(1):25-29.
[36] 王紅, 郭定宗. 成骨生長(zhǎng)肽對(duì)體外培養(yǎng)奶牛成骨細(xì)胞堿性磷酸酶和骨鈣素的影響初探. 中國(guó)奶牛, 2008(4): 11-14.
WANG H, GUO D Z. Influence of osteogenic growth peptide on the regulation of alkaline phosphatase and osteocalcin in the in vitro osteoblast. China Dairy Cattle, 2008(4):11-14. (in Chinese)
[37] 卜舒揚(yáng). 不同產(chǎn)蛋期蛋雞小腸及腎臟鈣磷代謝相關(guān)因子表達(dá)變化的研究[D]. 沈陽(yáng): 沈陽(yáng)農(nóng)業(yè)大學(xué), 2017.
BU S Y. Study on intestine and kidney calcium-phosphorus metabolism related factors expression levels in different laying period hens[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese)
[38] CORRADINO R A, SMITH C A, KROOK L P, FULLMER C S. Tissue-specific regulation of shell gland calbindin D28k biosynthesis by estradiol in precociously matured, vitamin D-depleted chicks. Endocrinology, 1993, 132(1):193-198.
[39] 孫杰, 趙宗勝, 姚秀娟, 楊鑫, 任士朋. 鈣結(jié)合蛋白D28k基因在雞子宮中表達(dá)變化的研究. 安徽農(nóng)業(yè)科學(xué), 2010, 38(2) : 609-616.
SUN J, ZHAO Z S, YAO X J, YANG X, REN S P. Study on expression of calbindin-d28k in chicken uterus. Journal of Anhui Agricultural Sciences, 2010, 38(2): 609-616. (in Chinese)
[40] 俞路. 肌注CaBP-D28k真核表達(dá)載體對(duì)老齡蛋雞鈣代謝和蛋殼質(zhì)量的調(diào)控效應(yīng)研究[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2009.
YU L. Effects of intramuscular injection of CaBP-D28k eukaryotic expression vector on calcium metabolism and eggshell quality in aged laying hens[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[41] 張璐, 張蕾, 秦玉梅, 王恩保, 任嵩, 胡清清, 程勝利, 廖和榮, 孫杰. CaBP-D28k在蛋雞生殖器官中的表達(dá)及其與蛋品質(zhì)性狀的關(guān)聯(lián)分析. 中國(guó)家禽, 2015(24):5-9.
ZHANG L, ZHANG L, QIN Y M, WANG E, REN S, HU Q Q, CHENG S L, LIAO H R, SUN J. Expression of CaBP-D28k in reproductive organs of laying hens and its correlation analysis with egg quality traits. China Poultry, 2015(24):5-9. (in Chinese)
[42] CHOI K C, AN B S, YANG H, JEUNG E B. Regulation and molecular mechanisms of calcium transport genes: Do they play a role in calcium transport in the uterine endometrium? Journal of Physiology and Pharmacology, 2011, 62(5):499-504.
Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding ProteinmRNA Expression Between Langya Chicken and Its Synthetic Lines
ZHANG NingBo1, HAN ZhaoQing1, JIN TaiHua1, ZHUANG GuiYu2, LI JiongKui3, ZHENG QuanSheng3, LI YongZhu1
1College of Agriculture and Forestry Science, Linyi University, Linyi 276005, Shandong;2Agricultural and Rural Bureau of Qingdao West Coast New District, Qingdao 266400, Shandong;3Shandong Langya Chicken Breed Industry Co., Ltd., Linyi 276000, Shandong
【】 The aim of this research was to provide a theoretical basis for the conservation of Langya Chicken breed resources and the development of its synthetic lines based on the comparative study on eggshell quality and calcium metabolism of Langya Chicken and its two synthetic lines. 【】 Each of one hundred and eighty 240-day-old birds of Langya Chicken and its two synthetic lines (Light linen and Dark linen synthetic lines), were randomly divided into 6 repeats, each with 30 replicates. When the chicken were raised to 300 days of age under the same breeding conditions, thirty eggs and six birds were randomly collected from each repeat, blood samples were taken from the veins under the wings, and tissue samples from the left leg tibia and duodenum, egg shell glands, and kidneys were collected after slaughter. Calcium- and phosphorus-related indicators and the expression levels of calcium binding proteinmRNA were detected. 【】The results showed that the egg weight of the light linen synthetic line was significantly lower than that of the dark linen synthetic line (<0.05), and the eggshell weight was lower than other lines (>0.05). In addition, the eggshell thickness and eggshell ratio were significantly higher than those of the linen line (<0.05), the strength of eggshell was significantly higher than that of other lines (<0.05). The calcium content of egg yolk, eggshell, and tibia in light linen synthetic line was significantly higher than that in dark linen synthetic line (<0.05). The content of phosphorus in the tibia was significantly higher than that of other lines (<0.05), and the ash content in eggshells and tibia was the highest in the light linen synthetic line, followed by the Langya Chicken and the dark linen synthetic line (<0.05). The body weight and tibia length of light linen synthetic line was significantly lower than those of dark linen synthetic line (<0.05). The contents of plasma calcium and calcitonin in the light linen synthetic line were significantly lower than those in other lines, while the plasma phosphorus, alkaline phosphatase, and parathyroid hormone contents in the light linen synthetic line were significantly higher than those in other lines, and the differences between the lines were significant (<0.05); the calcium binding protein content of the light linen synthetic line was significantly lower than that of the dark linen synthetic line (<0.05). While the osteocalcin of the synthetic lines was significantly higher than that of the Langya Chicken (<0.05). The expression level of calcium binding proteinmRNA in duodenum of light linen synthetic line was significantly higher than that of other lines (<0.05), and the expression level in eggshell gland was significantly higher than that of dark linen synthetic line (<0.05). The expression level of calcium binding protein in kidney was significantly higher than that of Langya Chicken (<0.05). 【】 The above results showed that the plasma phosphorus, alkaline phosphatase, parathyroid hormone, osteocalcin and other related active substances and calcium-binding proteinmRNA expression level in duodenum, kidney, and shell glands of light linen synthetic lines was all higher than other lines during the 240-300 day-old laying period. which could promote the absorption of calcium and phosphorus in the upper small intestine and the release and transport of bone calcium, affect the deposition of minerals in egg yolk and eggshell, and improve the quality of eggshell and tibia.
LangyaChicken; synthetic line; egg quality; nutrient content; calcium binding protein
10.3864/j.issn.0578-1752.2021.09.017
2020-04-13;
2020-09-03
山東省農(nóng)業(yè)重大應(yīng)用技術(shù)創(chuàng)新項(xiàng)目(20186243)、瑯琊雞配套系構(gòu)建與產(chǎn)業(yè)化推廣項(xiàng)目(20171125)
張寧波,E-mail:ningbo712@126.com。通信作者李永洙,E-mail:liyongzhu@lyu.edu.cn
(責(zé)任編輯 林鑒非)