袁景麗,鄭紅麗,梁先利,梅俊,余東亮,孫玉強(qiáng),柯麗萍
花青素代謝對(duì)陸地棉葉片和纖維色澤呈現(xiàn)的影響
袁景麗,鄭紅麗,梁先利,梅俊,余東亮,孫玉強(qiáng),柯麗萍
浙江理工大學(xué)生命科學(xué)與醫(yī)藥學(xué)院/植物基因組與彩色纖維分子改良實(shí)驗(yàn)室,杭州 310018
【】棉花作為一種重要的經(jīng)濟(jì)作物和油料作物,其葉片和纖維均可積累色素物質(zhì),呈現(xiàn)不同顏色。葉綠素、類胡蘿卜素和花青素的含量及其比例是棉花葉片呈色的主要原因,而棕色纖維中主要色素成分為花青素單體氧化聚合而成的原花青素及其衍生物。通過分析陸地棉不同的葉色突變體葉片和纖維中的花青素含量,花青素和原花青素合成途徑中關(guān)鍵基因的表達(dá),探究棉花葉片和纖維顏色呈現(xiàn)與花青素合成的關(guān)系,為葉色突變體的利用和彩色棉纖維色澤的改良奠定基礎(chǔ)。通過測(cè)定21個(gè)陸地棉葉色突變體的葉片花青素含量,根據(jù)葉色突變體葉片、纖維顏色和花青素含量差異,篩選了其中6個(gè)典型的棉花葉色突變體作為研究材料,比較葉片和纖維(開花后15 d)中的花青素含量,分析花青素含量與葉片、纖維顏色呈現(xiàn)的關(guān)系;同時(shí)檢測(cè)葉片及不同發(fā)育時(shí)期纖維(開花后5、10、15和20 d)中花青素合成關(guān)鍵基因和原花青素合成途徑關(guān)鍵基因和的表達(dá)水平,分析目標(biāo)基因?qū)θ~片和纖維顏色呈現(xiàn)的影響。21個(gè)陸地棉葉色突變體葉片中的花青素含量差異顯著,呈現(xiàn)紫紅色或紫色的葉片花青素含量高。在篩選的6個(gè)陸地棉葉色突變體及其對(duì)照葉片和不同發(fā)育時(shí)期纖維中,葉片花青素含量顯著高于纖維,棕色纖維的花青素含量顯著高于白色纖維。葉片中,表達(dá)量較高,而和表達(dá)量較低,花青素積累與顏色呈現(xiàn)與其表達(dá)量沒有顯著的相關(guān)性;而在纖維中,和在棕色纖維的表達(dá)量極顯著高于白色纖維中,且主要集中在纖維發(fā)育的5—15 DPA高表達(dá)。陸地棉葉片和纖維的顏色呈現(xiàn)均與花青素含量有關(guān),紫色及紫紅色葉片以及棕色纖維中花青素含量高,但纖維顏色的形成與棉花葉片顏色呈現(xiàn)沒有顯著的相關(guān)性,其花青素含量與原花青素合成途徑的關(guān)鍵基因和表達(dá)水平直接相關(guān),表明棉花葉片和纖維中的呈色機(jī)制不一致,原花青素主要在纖維中積累顯色。
陸地棉;葉色突變體;纖維色澤;花青素;基因表達(dá)
【研究意義】棉花是中國(guó)重要經(jīng)濟(jì)作物和油料作物之一,也是人們生活必需品的重要紡織原料。因?yàn)樘烊徊噬蘩w維腔中富含天然色素而呈現(xiàn)色彩,所以可以直接紡紗成衣,無需化學(xué)印染,而且制品無污染、純天然,和皮膚親和性好,呵護(hù)皮膚健康,符合大眾對(duì)于健康、環(huán)保的要求,具有廣闊的發(fā)展前景。但是彩色棉的纖維品質(zhì)較差、顏色種類少(只有綠色和棕色)、色牢度不穩(wěn)等因素限制了彩色棉產(chǎn)品的開發(fā)。為了滿足消費(fèi)市場(chǎng)需求,培育出更多色系的彩色棉顯得尤為重要。因此,解析陸地棉葉片和纖維中花青素生物合成調(diào)控及呈色機(jī)理,對(duì)進(jìn)一步培育出更多顏色類型彩色棉品種具有重要意義?!厩叭搜芯窟M(jìn)展】葉綠素、類胡蘿卜素和花青素廣泛存在于植物的葉片、花朵、莖稈、根以及果實(shí)中[1-3],三者之間的比例和含量是植物呈現(xiàn)色彩的主要原因?;ㄇ嗨厥且环N水溶性色素,主要以糖苷形式存在,能形成紅色和藍(lán)色等多種顏色,在植物的生長(zhǎng)、發(fā)育和防御中起重要作用[4-7]?;ㄇ嗨厣锖铣赏緩郊罢{(diào)控網(wǎng)絡(luò)一直是研究的重點(diǎn)和熱點(diǎn),目前,已對(duì)擬南芥()、蕪菁(L.)、葡萄(L.)、菊花()和蘋果(Mill)等[8-14]多種植物的花青素合成途徑進(jìn)行了深入研究,在不同植物中,花青素代謝基因可分為結(jié)構(gòu)基因和調(diào)節(jié)基因。根據(jù)其在花青素合成途徑中的位置和作用,結(jié)構(gòu)基因又可分為上游合成基因(包括(phenylalanine ammonialyase)、(chalcone synthase)、(chalconesynthase)、(flavanone-3’ -hydroxylase)、(flavanone-3’5’-hydroxylase)等)和下游合成基因(包括(dihydroflavonol 4 reductase)、(anthocyanidin synthase)、(flavonoid- 3-O-glycosyltransferase)、(O-methyltransferase)等)。其中,是類黃酮合成途徑中的第一個(gè)關(guān)鍵酶,它催化丙二酰輔酶A的3個(gè)乙酸基和對(duì)羥基苯丙烯酰輔酶A的一個(gè)乙酸基縮合生成柚苷配基查爾酮,參與植物逆境反應(yīng)和植物花色等諸多過程[15-16]。位于下游的原花青素特異性途徑涉及2條支路和2種酶,即無色花青素還原酶(leucoanthocyanin reductase,LAR)參與的LAR途徑和花青素還原酶(anthocyanidin reductase,ANR)參與的ANR途徑。最早在銀葉山螞蝗((Jacs) DC)中被克隆獲得,LAR是植物類黃酮化合物合成路徑中一個(gè)關(guān)鍵酶,它可以催化無色花青素轉(zhuǎn)化成為兒茶素[17-18]。ANR負(fù)責(zé)將有色花青素還原成表兒茶素,參與調(diào)控植物組織中花青素的水平及原花青素的形成,在花青素積累過程中具有重要的調(diào)節(jié)作用[19-20]。雖然天然彩色棉纖維色素的具體組分還未明確,但LIU等[21]研究證實(shí)天然彩棉纖維色素成分與植物類黃酮合成途徑密切相關(guān),并且類黃酮生物合成途徑調(diào)控棕色棉色素沉積過程。Xiao等[22]和郭帥等[23]從棕色棉中克隆了花青素合成相關(guān)結(jié)構(gòu)基因,并發(fā)現(xiàn)基因的表達(dá)量在棕色棉纖維中明顯高于白色棉纖維;Feng等[24]研究證實(shí)棕色棉中的色素類物質(zhì)為原花青素,纖維顏色的呈現(xiàn)與原花青素的氧化聚合有關(guān)。而綠色棉纖維色素最早被認(rèn)為其中含有有機(jī)酸、甾醇、香豆素和黃酮類物質(zhì),隨后發(fā)現(xiàn)苯乙烯酸及其衍生物是綠色棉纖維產(chǎn)生顏色的重要因素[25-28]?!颈狙芯壳腥朦c(diǎn)】花青素生物合成途徑及調(diào)控因子是彩色葉片和果蔬色澤形成研究的重點(diǎn)和熱點(diǎn),在陸地棉中葉片和纖維的顏色呈現(xiàn)都與植物類黃酮合成途徑密切相關(guān),但棉纖維色素物質(zhì)的合成代謝及其轉(zhuǎn)運(yùn)機(jī)理研究甚少。【擬解決的關(guān)鍵問題】本研究利用收集到的陸地棉21種葉色突變體及白色纖維棉和棕色纖維棉為材料,通過比較不同顏色葉片和纖維中花青素含量,分析花青素和原花青素合成通路關(guān)鍵酶基因、、的表達(dá)水平對(duì)葉色和纖維色澤的影響,探究陸地棉葉片和纖維呈色與花青素積累的關(guān)系及其分子調(diào)控水平的差異,為培育出更多顏色類型彩色棉品種奠定基礎(chǔ)。
所用20份陸地棉葉色突變體由國(guó)家棉花種質(zhì)資源中期庫(kù)和國(guó)家棉花種質(zhì)資源平臺(tái)提供(表1)。紫化突變體、C312和棕絮1號(hào)(ZX1)由浙江理工大學(xué)植物基因組與彩色纖維分子改良實(shí)驗(yàn)室保存。試驗(yàn)材料于2017—2020年種植在浙江理工大學(xué)棉花試驗(yàn)地(浙江杭州下沙校區(qū)),按照大田常規(guī)栽培管理。采集幼葉及5、10、15和20 DPA(day post anthesis,開花后天數(shù))纖維,3個(gè)生物學(xué)重復(fù),液氮速凍,-80℃保存?zhèn)溆谩?/p>
采集陸地棉葉色突變體的新生葉片和纖維(15 DPA)于液氮中速凍,放于-80℃冰箱中保存?zhèn)溆谩2捎盟峄状挤╗29]測(cè)定花青素含量。
表1 試驗(yàn)材料
綠/紫(紅):表示夏季葉片呈綠色,秋天呈紫(紅)色;黃/綠:表示苗期葉片呈黃色,后期葉片呈綠色
Green/Purple (Red): indicates leaves showed green in summer and purple (red) in autumn; Yellow/Green: indicates leaves in young seedlings showed yellow and turned green in autumn
采集葉色突變體幼葉及5、10、15和20 DPA(day post anthesis,開花后天數(shù))纖維,按照多糖多酚植物RNA提取試劑盒說明書進(jìn)行RNA提取,并將RNA濃度稀釋到200 ng·μL-1,參照反轉(zhuǎn)錄試劑盒說明書反轉(zhuǎn)錄成cDNA,以泛素延伸蛋白7(ubiquitin extension protein 7,GhUBQ7)基因?yàn)閮?nèi)參基因,進(jìn)行PCR擴(kuò)增,檢測(cè)其純度。最終將cDNA稀釋10倍后于-20℃保存。
根據(jù)前期工作中在陸地棉葉片和纖維中優(yōu)勢(shì)表達(dá)的基因序列[30],在NCBI和COTTONGEN中搜索、和的CDS序列,用Primer Express 5.0設(shè)計(jì)目的基因、和所需引物(表2)。
以陸地棉葉色突變體幼葉、不同發(fā)育時(shí)期纖維cDNA為模板,以陸地棉泛素延伸蛋白7基因()為內(nèi)參基因,利用QuantStudio 3 applied biosystem,按照Solarbio SYBR green Mix說明書進(jìn)行實(shí)時(shí)熒光定量PCR擴(kuò)增。反應(yīng)條件為95℃2 min;95℃15 s,58℃30 s,40個(gè)循環(huán)。熔解曲線95℃15 s,60℃15 s。生物學(xué)重復(fù)和技術(shù)重復(fù)各3次。按照2-ΔΔCt方法計(jì)算相對(duì)表達(dá)量,用Graphpad Prism 5繪圖。
表2 引物序列及用途
:查爾酮合成酶;:無色花青素還原酶;:花青素還原酶;:泛素延伸蛋白。下同
: Chalcone synthase;: Leucoanthocyanidin reductase;: Anthocyanidin reductase;: Ubiquitin extension protein. The same as below
通過對(duì)陸地棉不同葉色突變體花青素的提取,發(fā)現(xiàn)提取液顏色差異顯著(圖1),黃色葉片的芽黃棉1號(hào)提取液呈淺黃色;紅紫色葉片的紅葉白絮、矮紅株、紅雞腳柳苞棉、貴池紅葉、以及紅色葉片的送興紅葉B、紅葉雞腳、安徽紅桃棉、抗紅葉提取液呈現(xiàn)出不同深淺的紅色、褐色、紅褐色。陸地棉葉色突變體葉色呈紅色或紅紫色,其葉片花青素提取液色澤較深。
通過對(duì)陸地棉葉色突變體花青素提取液進(jìn)行500—700 nm的波段掃描(圖2),不同陸地棉葉色突變體花青素提取液均在530、620和650 nm處呈現(xiàn)吸收高峰。530 nm是花青素酸性溶液的吸收高峰,620 nm是可溶性糖的吸收高峰,650 nm是葉綠素的吸收高峰,表明不同陸地棉葉色突變體在500—700 nm所含的物質(zhì)相同,但不同陸地棉葉色突變體之間的吸光值呈現(xiàn)差異。
通過比較不同陸地棉葉色突變體葉片的花青素含量(圖3),以陸地棉C312為對(duì)照,安徽紅桃棉的花青素含量略低;石河子822、錦9-70、紫花棉、小紅葉等的花青素含量無顯著差異;送興紅葉B、紅雞腳柳苞棉、抗紅葉、紅葉花苞棉、花斑葉、紅雞腳柳苞、貴池紅葉、等的花青素含量均顯著高于陸地棉C312。
為了研究花青素合成相關(guān)基因表達(dá)與花青素含量及葉片和纖維顏色呈現(xiàn)的關(guān)系,根據(jù)葉色突變體葉片、纖維顏色和花青素含量選取了6個(gè)突變體,包括葉片呈紫色且花青素含量較高的貴池紅葉和矮紅株,葉片為綠色且花青素含量與對(duì)照C312持平的紅槿矮和棕色纖維的紫花棉,葉色為紫紅但花青素含量較低的安徽紅桃棉,及花青素大量累積的紫葉突變株,測(cè)定其纖維(15 DPA)中的花青素含量以及葉片和纖維中、和的相對(duì)表達(dá)量。6個(gè)葉色突變體的葉片和纖維顏色如圖4所示。
樣本編號(hào)同表1。下同 The sample ID is the same as table 1. The same as below
依據(jù)光波長(zhǎng)530 nm處吸收峰值自上向下的順序?yàn)椋?0、21、17、13、7、1、4、15、10、19、11、3、2、18、12、14、6、16、5、9、8
測(cè)定6個(gè)陸地棉葉色突變體和白絮對(duì)照C312 及棕絮對(duì)照棕絮1號(hào)(ZX1)15 DPA纖維中的花青素含量(圖5),結(jié)果顯示,所有材料中,葉片花青素含量在0.5—40 nmol·g-1,而纖維花青素含量只有0.1—0.8 nmol·g-1,纖維中花青素含量都明顯低于葉片。葉片中,呈紫紅色的貴池紅葉、矮紅株和中花青素含量略高,顯著高于C312;纖維中,棕色纖維的紫花棉和棕絮1號(hào)的花青素含量極顯著高于白色纖維的C312和其他葉色突變體;但不同葉色突變體中葉片與纖維中的花青素含量沒有顯著相關(guān)性,如葉片中花青素含量較高的貴池紅葉,其纖維花青素含量極低,顯著低于棕絮1號(hào)和紫花棉;而葉片花青素較低的紫花棉,其纖維花青素含量極顯著高于C312。
通過分析3個(gè)花青素通路關(guān)鍵酶基因查爾酮合成酶()、花青素還原酶基因()和無色花青素還原酶基因()在6個(gè)陸地棉葉色突變體中的表達(dá),發(fā)現(xiàn)3個(gè)基因的表達(dá)水平各不相同(圖6)。在紅槿矮和中表達(dá)水平顯著高于C312;和在不同葉色突變體的葉片中表達(dá)量普遍較低,除安徽紅桃棉、矮紅株和貴池紅葉中表達(dá)量顯著低于C312外,在其他突變體中,這兩個(gè)基因的表達(dá)變化不顯著。而且,在各棉花葉色突變體的葉片中,的表達(dá)水平顯著高于和。
顯著性分析均以C312為對(duì)照,星號(hào)表示具有顯著性差異(*P<0.05,**P<0.01)。下同
A:葉色突變體的葉片表型;B:葉色突變體的纖維表型
通過對(duì)6個(gè)陸地棉葉色突變體不同發(fā)育時(shí)期纖維中的3個(gè)基因進(jìn)行表達(dá)分析,發(fā)現(xiàn)、和均在發(fā)育5、10和15 DPA的纖維中表達(dá)量較高,棕色纖維與白色纖維之間的表達(dá)差異較大(圖7)。其中,在葉色突變體和棕絮1號(hào)5—10 DPA纖維中的表達(dá)均顯著高于對(duì)照C312,在、HT和ZX1的15 DPA纖維中仍保持較高表達(dá)量;而在20 DPA左右纖維中,所有葉色突變體和對(duì)照中表達(dá)量都降至極低水平。在白色纖維的葉色突變體中,和在10 DPA纖維中的表達(dá)量均顯著高于C312;棕色纖維的棕絮1號(hào)在5—15 DPA纖維中,和的表達(dá)量均顯著高于C312,而紫花棉中3個(gè)基因都集中在5 DPA纖維中高表達(dá)。
A:葉色突變體的葉片花青素含量;B:葉色突變體的纖維花青素含量
圖6 GhCHS、GhLAR和GhANR在陸地棉葉色突變體葉片中的表達(dá)
葉片是植物主要的光合作用器官,含有大量葉綠素使其呈綠色,葉片隨色素種類及比例的變化而呈現(xiàn)不同色彩。植物中除了葉綠素外,還含有花青素、類胡蘿卜素等,使植物莖、葉、花、果實(shí)及種子等組織呈現(xiàn)五彩繽紛的色彩[31]。自然界中常見的花青素有6種,分別為天竺葵色素(pelargonidin,Pg)、矢車菊色素(cyanidin,Cy)、飛燕草色素(delphindin,Dp)、芍藥色素(peonidin,Pn)、錦葵色素(malvidin,Mv)和矮牽牛色素(petunidin,Pt)[32-33],而棕色棉纖維中主要色素成分為原矢車菊素和原飛燕草色素[24]。為了探究花青素代謝與陸地棉葉色突變體表型之間的關(guān)系,本研究提取21種陸地棉葉色突變體幼葉花青素進(jìn)行分析。不同陸地棉葉色突變體的花青素提取液呈現(xiàn)出色澤差異。黃色葉片的芽黃棉1號(hào)花青素提取液色澤呈現(xiàn)黃色,紫色或紅色葉色的陸地棉葉色突變體葉片花青素提取液色澤呈現(xiàn)深紅色、紅褐色,表明花青素提取液色澤與葉片顏色基本一致。測(cè)定葉片花青素含量,發(fā)現(xiàn)葉片為紫色或紅色的陸地棉葉色突變體花青素含量高,與吳華玲等發(fā)現(xiàn)茶樹芽葉花青素含量較高時(shí)能使茶樹嫩葉呈現(xiàn)紫色、紅色或紫紅色結(jié)果相一致[34]。葉色突變體中,花青素含量差異較大,除斑葉棉、安徽紅桃棉、錦9-70、石河子822、芽黃棉1號(hào)外,其他突變體中花青素含量都顯著高于綠葉的陸地棉C312。其中,芽黃棉1號(hào)葉綠素和花青素含量都較低,其葉片顏色應(yīng)該是由類胡蘿卜素呈色所致。矮紅株、紅葉雞腳、紅槿矮夏葉呈綠色,秋葉呈紫色,可能是由于光照、溫度等刺激花青素合成,也有可能是秋季葉綠素開始降解,導(dǎo)致植物內(nèi)色素比例發(fā)生改變[35]。
圖7 不同陸地棉葉色突變體不同發(fā)育時(shí)期纖維中GhCHS、GhLAR和GhANR的表達(dá)
通過對(duì)6個(gè)突變體15 DPA纖維的花青素含量分析顯示,纖維中花青素含量顯著低于葉片中;白色纖維中雖然沒有顏色呈現(xiàn),但仍然能檢測(cè)到花青素存在,只是含量顯著低于棕色纖維,與Feng等[36]研究棕色棉纖維中柑橘素、槲皮素、山奈酚和楊梅素4種黃酮類化合物的積累量明顯高于白色棉纖維中這一結(jié)果相一致。
為了進(jìn)一步研究花青素代謝對(duì)陸地棉葉片和纖維呈色的影響,本研究分析了6個(gè)陸地棉葉色突變體中、和在葉片和纖維中的表達(dá)變化。在葉片中,表達(dá)量較高,而和在葉片中表達(dá)量較低,花青素積累與顏色呈現(xiàn)與其表達(dá)量沒有顯著的相關(guān)性。而在纖維中,和在棕色纖維的表達(dá)量極顯著高于白色纖維中,且主要集中在纖維發(fā)育的5—15 DPA高表達(dá),表明二者可以促進(jìn)纖維花青素的合成,且纖維發(fā)育早期是色澤形成的重要時(shí)期。前期對(duì)、和的病毒誘導(dǎo)的基因沉默(virus induced gene silencing,VIGS)干涉,已經(jīng)證實(shí)3個(gè)基因表達(dá)量的降低可以不同程度地使棕色棉纖維色澤變淺[30],本研究進(jìn)一步證實(shí),、和主要參與纖維顏色的形成,對(duì)葉片花青素含量和葉片顏色呈現(xiàn)影響不大,由此推測(cè)葉片顏色和纖維色澤的形成之間沒有顯著的相關(guān)性。
陸地棉葉片和纖維中顏色呈現(xiàn)都與花青素含量相關(guān),紫色及紫紅色葉片以及棕色纖維中花青素含量高,但纖維顏色的形成與棉花葉片顏色呈現(xiàn)沒有顯著的相關(guān)性,其花青素含量與原花青素合成途徑的關(guān)鍵基因和表達(dá)水平直接相關(guān),表明棉花葉片和纖維中的呈色機(jī)制不完全一致,原花青素主要在纖維中積累顯色。
[1] Tian J, Shen H, Zhang J, Song T, Yao Y. Characteristics of chalcone synthase promoters from different leaf-color malus crabapple cultivars. Scientia Horticulturae, 2011, 129: 449-458.
[2] Lin Q H, Zhong Q Z, Zhang Z H. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the pink-white and red fruits of Chinese bayberry (). Scientia Horticulturae, 2019, 250: 278-286.
[3] Bradshaw H D, Schemske D W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature, 2003, 426(6963): 176-178.
[4] Silva V O, Freitas A A, Ma A, Quina F H. Chemistry and photochemistry of natural plant pigments: The anthocyanins. Journal of Physical Organic Chemistry, 2016, 29: 594-599.
[5] Bueno J M, Saez-Plaza P, Ramos-Escudero F, Mu?oz A M, Navas M J, Asuero G A. Analysis and antioxidant capacity of anthocyanin pigments. Part I: General considerations concerning polyphenols and flavonoids. Critical Reviews in Analytical Chemistry, 2012, 42: 126-151.
[6] Heldt H W, Piechulla B. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components// Plant Biochemistry. 4th ed. ELSEVIER: Academic Press, 2011: 431-449.
[7] 彭祖茂, 鄧夢(mèng)雅, 嚴(yán)虞虞, 朱麗, 張協(xié)光. 植物中花青素含量測(cè)定及種類分布研究. 食品研究與開發(fā), 2018, 39(17): 100-104.
Peng Z M, Deng M Y, Yan Y Y, Zhu L, Zhang X G. Study on the determination of anthocyanin content and its species distribution in plants. Journal of food research and development,2018, 39(17): 100-104. (in Chinese)
[8] Ahmed N U, Park J I, Jung H J, Hur Y, Nou I S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in. Functional & Integrative Genomics, 2015, 15: 383-394.
[9] Ahmed N U, Park J I, Jung H J, Yang T J, Hur Y, Nou I S. Characterization of dihydro flavonol 4-reductase () genes and their association with cold and freezing stress in. Gene, 2014, 550(1): 46-55.
[10] Azuma A, Yakushiji H, Koshita Y, Kobayashi S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 2012, 236: 1067-1080.
[11] Li Z, Wang J, Zhang X, Xu L. Comparative transcriptome analysis of“Albama” and its anthocyanin-loss mutant. PLoS One, 2015, 10(3): e0119027-1-e0119027-20.
[12] Hong Y, Tang X, Huang H, Zhang Y, Dai S. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in. BMC Genomics, 2015, 16: 202.
[13] 韓科廳, 趙莉, 唐杏姣,胡可, 戴思蘭. 菊花花青素苷合成關(guān)鍵基因表達(dá)與花色表型的關(guān)系. 園藝學(xué)報(bào), 2012, 39(3): 516-524.
Han K T, Zhao L, Tang X J, Hu K, Dai S L. The relationship between the expression of key genes in anthocyanin biosynthesis and the color of. Acta Horticulturae Sinica, 2012, 39(3): 516-524. (in Chinese)
[14] Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiology, 2007, 48(7): 958-970.
[15] Burbulis I E, Winkel-Shirley B. Interactions among enzymes of theflavonoid biosynthetic pathway. Poceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12929-12934.
[16] Koes R E, Quattrocchio F, Mol J N. The flavonoid biosynthetic pathway in plants: Function and evolution. Bioessays, 1994, 16(2): 123-132.
[17] Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. Thegene encodes a‐like protein and is a marker of early seed coat development. The Plant Journal, 1999, 19(4): 387-398.
[18] Furukawa T, Eshima A, Kouya M, Takio S, Takano H, Ono K. Coordinate expression of genes involved in catechin biosynthesis incells. Plant Cell Reports, 2002, 21(4): 385-389.
[19] Xie D Y, Sharma S B, Dixon R A. Anthocyanidin reductases fromand. Archives of Biochemistry and Biophysics, 2004, 422(1): 100-102.
[20] Han Y, Vimolmangkang S, Soria-Guerra R E, Korban S. Introduction of applegenes into tobacco inhibits expression of bothandgenes in flowersleading to loss of anthocyanin. Journal of Experimental Botany, 2012, 63(7): 2437-2447.
[21] Liu H F, Luo C, Song W, Shen H T, Li G L, He Z G, Chen W G, Cao Y Y, Huang F, Tang S W, Hong P, Zhao E F, Zhu J B, He D J, Wang S M, Huo G Y, Liu H L. Flavonoid biosynthesis controls fiber color in naturally colored cotton. PeerJ, 2018, 6(10): e4537.
[22] Xiao Y H, Zhang Z S, Yin M H, Luo M, Li X B, Hou L, Pei Y. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and biophysical research communications, 2007, 358(1): 73-78.
[23] 郭帥, 郭倩瑜, 郭紅彥. 五種綠葉和彩葉樹種光合色素含量的動(dòng)態(tài)變化. 安徽農(nóng)學(xué)通報(bào), 2011, 17: 38-44.
Guo S, Guo Q Y, Guo H Y. Dynamic changes of photosynthetic pigment contents in five green and colored leaf trees. Anhui Agricultural Science Bulletin, 2011, 17: 38-44. (In Chinese)
[24] Feng H, Li Y, Wang S, Zhang L, Liu Y, Xue F, Sun Y, Wang Y, Sun J. Molecular analysis of proanthocyanins related to pigmentation in brown cotton fiber (L.). Journal of Experimental Botany, 2014, 65(20): 5759-5769.
[25] Yatsu L Y, Espelie K E, Kolattukudy P E. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology, 1983, 73(2): 521-524.
[26] Schmutz A, Jenny T, Ryser U. A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fiber suberin. Phytochemistry, 1994, 36(6): 1343-1346.
[27] Schmutz A, Buchala A J, Ryser U. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongates. Plant Physiology, 1996, 110(2): 403-411.
[28] Feng H, Yang Y, Sun S, Li Y, Zhang L, Tian J, Zhu Q, Feng Z, Zhu H, Sun J. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. Journal of Experimental Botany, 2017, 68(16): 4559-4569.
[29] GIUSTI M M, WROLSTAD R E. Characterization and measurement of anthocyanins by UV-Visible spectroscopy//GIUSTI M M, WROLSTAD R E, eds., Current protocols in food analytical chemistry, John Wiley and Sons, Inc., Hoboken, 2001, F1.2.1. -F1.2.13.
[30] Gao J F, Shen L, Yuan J L, Zheng H L. Su Q S, Yang W G, Zhang L Q, Nnaemeka E V, Sun J, Ke L P, Sun Y Q. Functional analysis ofandin colored fiber formation ofL.. BMC Plant Biology, 2019, 19(1): 455.
[31] Ma D, Sun D, Wang C, Li Y, Guo T. Expression of flavonoid biosynthesis genes andaccumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 2014, 80: 60-66.
[32] Zhao C L, Chen Z J, Bai X S, Ding C, Long T J, Wei F G, Miao K RStructure-activity relationships of anthocyanidin glycosylationMolecular Diversity,2014, 18(3): 687-700
[33] Kong J M, Chia L S, Goh N K,Chia T F,Brouillard R. Analysis and biological activities of anthocyaninsPhytochemistry,2003, 64(5): 923-933
[34] 吳華玲, 何玉媚, 李家賢, 陳棟, 黃華林, 喬小燕, 劉軍. 11個(gè)紅紫芽茶樹新品系的芽葉特性和生化成分研究. 植物遺傳資源學(xué)報(bào), 2012, 13(1): 42-47.
Wu H L, He Y M, Li J X, Chen D, Huang H L, Qiao X Y, Liu J. Shoot traits and biological compositions among eleven new tea germplasms with reddish violet shoots.Journal of Plant Genetic Resources, 2012, 13(1): 42-47. (in Chinese)
[35] Saure M C. External control of anthocyanin formation in apple. Scientia Horticulturae, 1990, 42(3): 181-218.
[36] Feng H, Tian X, Liu Y, Li Y, Zhang X, Jones B J, Sun Y, Sun J. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS ONE, 2013, 8(3): e58820.
Influence of anthocyanin biosynthesis on leaf and fiber color ofL.
Yuan Jingli, Zheng Hongli, Liang Xianli, Mei Jun, Yu Dongliang, Sun Yuqiang, Ke Liping
School of Life Sciences and Medicine, Zhejiang Sci-Tech University/Plant Genomics & Molecular Improvement of Colored Fiber Lab, Hangzhou 310018
【】Cotton is an important economic and oil crop. Both its leaves and fibers can accumulate pigments and present different colors. Studies have confirmed that chlorophyll, carotenoids, and anthocyanin are the main pigments in cotton leaves and their relative proportion changes leaf colors. While proanthocyanidins and their derivatives, which are oligomeric and polymeric products from anthocyanidins, are thought to be responsible for the color formation of brown fibers. This article intends to explore the relationship between the color of leaves and fibers in upland cotton through analyzing the anthocyanidin content and gene expression level in the anthocyanin biosynthesis pathway in different leaf color mutants. The result will help to lay the foundation for the utilization of leaf color mutants and the improvement of the color of colored cotton fibers.【】In this experiment, the anthocyanidin contents in leaves of 21 upland cotton leaf color mutants were detected. According to the leaf and fiber color as well as the anthocyanidin content level, 6 cotton leaf color mutants were selected as materials to measure the anthocyanidin level in leaves and fibers at 15 days post anthesis to analyze the relationship between anthocyanidin content and the leaf or fiber color. Then the expression levels of,andin leaves and fibers at different developmental stages (5, 10, 15, 20 DPA) were measured to analyze the influence of target genes on the color formation of leaves and fibers.【】The anthocyanidin content in the leaves of 21 leaf color mutants ofwas significantly different, and the purple or fuchsia leaves had higher anthocyanidin content. In the selected six leaf color mutants, the anthocyanidin content in leaves was significantly higher than that in fibers, and brown fibers accumulated more anthocyanidins than white fibers. Compared to,andexpressed at a very low level in leaves, and no significant correlation was found between leaf color and their expression level. While in fibers, the expressions ofandwere obviously higher in brown fibers than in white fibers, especially in fibers of 5 DPA to 15 DPA.【】Anthocyanins played important roles in color formation of both leaves and fibers in upland cotton. Purple-red or purple leaves and brown fibers accumulated more anthocyanidins, while the formation of fiber color did not directly correlate with leaf color. In fibers, the contents of anthocyanidins directly related to the expression levels ofand, indicating that coloration mechanism of cotton leaves and fibers was not exactly the same, and proanthocyanidins mainly accumulated in fibers.
L.; leaf color mutant; fiber color; anthocyanin; gene expression
10.3864/j.issn.0578-1752.2021.09.003
2020-10-04;
2020-12-25
國(guó)家自然科學(xué)基金(U1903204,31671738)、浙江省自然科學(xué)基金(LZ21C130004)
袁景麗,E-mail:yuanjingli2017@126.com。通信作者柯麗萍,Tel:0571-86843335;E-mail:keliping@zstu.edu.cn
(責(zé)任編輯 李莉)