国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

密植條件下玉米品種混播提高籽粒灌漿性能和產(chǎn)量

2021-05-12 14:59:52胡旦旦李榮發(fā)劉鵬董樹(shù)亭趙斌張吉旺任佰朝
關(guān)鍵詞:混播夏玉米籽粒

胡旦旦,李榮發(fā),劉鵬,董樹(shù)亭,趙斌,張吉旺,任佰朝

密植條件下玉米品種混播提高籽粒灌漿性能和產(chǎn)量

胡旦旦,李榮發(fā),劉鵬,董樹(shù)亭,趙斌,張吉旺,任佰朝

山東農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018

【】探究密植條件下玉米品種混播對(duì)夏玉米籽粒灌漿性能及產(chǎn)量形成的影響。以鄭單958(ZD958)和登海605(DH605)為試驗(yàn)材料,設(shè)置3個(gè)種植密度(D1,67 500株/hm2;D2,82 500株/hm2;D3,97 500株/hm2)和2個(gè)不同混播方式(M:等種子量混合后隨機(jī)播種;I:1行鄭單958和1行登海605混播),以相同密度下單播鄭單958(SZD958)和登海605(SDH605)為對(duì)照,研究密植夏玉米品種混播對(duì)花后干物質(zhì)積累與轉(zhuǎn)運(yùn)、籽粒灌漿特性和產(chǎn)量形成的影響。隨種植密度增加,不同播種方式處理的花后干物質(zhì)積累量顯著增加,成熟期單株干物質(zhì)積累量和籽粒灌漿參數(shù)降低;雖然千粒重降低但群體產(chǎn)量顯著增加。在D1密度下,混播處理較單播無(wú)顯著增產(chǎn)優(yōu)勢(shì);D2和D3密度下,2個(gè)品種混播后夏玉米產(chǎn)量顯著增加。D2密度下M和I處理2年平均產(chǎn)量較SZD958分別增加8.70%和8.09%,較SDH605分別增加6.92%和6.32%;D3密度下M和I處理2年平均產(chǎn)量較SZD958分別增加7.24%和7.55%,較SDH605分別增加4.98%和5.28%。D2和D3密度下,2個(gè)品種混播后增加了籽粒最大灌漿速率(Gmax)、灌漿速率最大時(shí)的生長(zhǎng)量(Wmax)和粒重,且百粒重與灌漿速率達(dá)到最大時(shí)需要的天數(shù)(Tmax)、Wmax、Gmax、籽粒灌漿活躍期(P)呈極顯著正相關(guān)。D2密度下M和I處理2年平均Wmax較SZD958分別顯著增加11.61%和11.12%,較SDH605分別增加5.86%和5.38%;D3密度下M和I處理2年平均Wmax較SZD958顯著增加10.32%和9.75%,較SDH605顯著增加5.63%和5.08%?;觳ズ蟪墒炱趩沃旮晌镔|(zhì)積累量、花后干物質(zhì)積累量、轉(zhuǎn)運(yùn)量、干物質(zhì)轉(zhuǎn)運(yùn)率較單播增加。D2密度下M和I處理2年平均花后干物質(zhì)積累量較SZD958分別顯著增加4.43%和7.56%,較SDH605分別顯著增加5.25%和8.36%;D3密度下M和I處理2年平均花后干物質(zhì)積累量較SZD958分別顯著增加3.85%和4.68%,較SDH605分別顯著增加4.52%和5.36%。低密度下混播無(wú)增產(chǎn)效應(yīng),在82 500株/hm2和97 500株/hm2密度下,混播顯著增加了花后干物質(zhì)積累與轉(zhuǎn)運(yùn),提高了夏玉米籽粒最大灌漿速率和灌漿速率最大時(shí)的生長(zhǎng)量,促進(jìn)了籽粒灌漿,最終夏玉米產(chǎn)量顯著增加。

夏玉米;密度;混播;籽粒灌漿特性;產(chǎn)量

0 引言

【研究意義】隨著全球人口數(shù)量增加及人們生活水平提高,到2050年糧食產(chǎn)量需要在現(xiàn)有基礎(chǔ)上再增加70%—100%,每年至少需要增加440萬(wàn)t[1-5]。當(dāng)前玉米產(chǎn)量的提高主要?dú)w因于種植密度的增加[6-8]。但隨種植密度增加,植株間對(duì)光溫水肥等資源的競(jìng)爭(zhēng)加劇,群體內(nèi)冠層透光率降低,削弱了中下部葉片的通風(fēng)受光條件,降低植株的光合性能,玉米籽粒灌漿過(guò)程受到影響,籽粒灌漿速率降低,粒重減小,限制了籽粒庫(kù)的發(fā)育,最終限制籽粒產(chǎn)量的增加[9-13]。混播通過(guò)相同作物不同品種之間互補(bǔ)性差異,改善群體的冠層結(jié)構(gòu),使得葉面積指數(shù)、凈光合速率提高,進(jìn)而延長(zhǎng)籽粒灌漿時(shí)間,提高中后期的灌漿速率,達(dá)到提高群體產(chǎn)量的目的[14-17]?!厩叭搜芯窟M(jìn)展】利用不同基因型玉米品種1﹕1混播,與單播相比,混播品種產(chǎn)量有的增加,有的減少,但群體產(chǎn)量增加,主要是由于吐絲后玉米葉面積指數(shù)大于單播,綠葉面積持續(xù)時(shí)間長(zhǎng),穗粒數(shù)、粒重顯著提高[18]。平展型與緊湊型玉米品種混播,通過(guò)增加葉片保護(hù)酶的活性,延緩玉米葉片的衰老,且土地當(dāng)量比均>1,提高土地利用效率[19]。緊湊型與半緊湊型玉米品種1﹕1混播后,增加了生育后期群體葉面積指數(shù),且單株葉面積降低幅度較慢,提高了群體干物質(zhì)積累量,進(jìn)而增加產(chǎn)量[20]。適宜玉米品種組合混播后,花期遇到連續(xù)陰雨天氣時(shí),通過(guò)延長(zhǎng)授粉時(shí)間,提高雌蕊的受精率,達(dá)到增產(chǎn)減災(zāi)的目的[21]。普通玉米授高油玉米花粉后,籽粒灌漿期縮短,最大籽粒灌漿速率增加,使籽粒干重增加[22]。蘇新宏[15]研究認(rèn)為,混播可延長(zhǎng)玉米有效灌漿期,提高灌漿后期籽粒灌漿速率?!颈狙芯壳腥朦c(diǎn)】前人就混播條件下光合性能的變化研究較多,而對(duì)密植條件下玉米品種混播的籽粒灌漿性能的研究較少?!緮M解決的關(guān)鍵問(wèn)題】本試驗(yàn)通過(guò)設(shè)置不同混播處理,研究不同種植密度下玉米品種混播對(duì)夏玉米花后干物質(zhì)積累與轉(zhuǎn)運(yùn)、籽粒灌漿特性及產(chǎn)量的影響,探討不同密度和混播條件下夏玉米籽粒灌漿性能的差異,為黃淮海密植玉米的穩(wěn)產(chǎn)提供新的技術(shù)支撐。

1 材料與方法

1.1 試驗(yàn)地點(diǎn)

大田試驗(yàn)于2017—2018年在山東農(nóng)業(yè)大學(xué)黃淮海區(qū)域玉米技術(shù)創(chuàng)新中心和作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。試驗(yàn)田土壤為棕壤土,0—20 cm土層有機(jī)質(zhì)含量為10.35 g·kg-1,全氮含量為0.82 g·kg-1,速效磷含量為28.13 mg·kg-1,速效鉀含量為110.41 mg·kg-1。

1.2 試驗(yàn)方法

1.2.1 品種選擇與特性 以緊湊型玉米品種鄭單958(ZD958)和登海605(DH605)為試驗(yàn)材料。2個(gè)品種生育期相近,適應(yīng)范圍廣、耐密植、抗倒性強(qiáng)、高抗病性;其中鄭單958上部葉片寬大,而登海605上部葉片窄細(xì),二者有一定互補(bǔ)性。

1.2.2 試驗(yàn)設(shè)計(jì) 試驗(yàn)采用雙因素裂區(qū)設(shè)計(jì),種植方式為主區(qū),密度為副區(qū),小區(qū)面積60 m2,重復(fù)3次。其中種植方式設(shè)置2個(gè)品種相同數(shù)量種子混合后隨機(jī)混播(M)、鄭單958和登海605 2個(gè)品種1﹕1混播(2個(gè)品種各1行)(I)、單播鄭單958(SZD958)和單播登海605(SDH605)4個(gè)水平,密度設(shè)置67 500株/hm2(D1)、82 500株/hm2(D2)、97 500株/hm2(D3)3個(gè)水平,采用溫特斯泰格小區(qū)精密播種機(jī)單粒精播。各小區(qū)施肥情況均為施氮320 kg·hm-2、P2O572 kg·hm-2、K2O 96 kg·hm-2。氮肥(尿素,含純氮46%)在拔節(jié)期施入50%,大喇叭口期施入50%;磷肥(過(guò)磷酸鈣,含有17%的P2O5)和鉀肥(氯化鉀,含有60%的K2O)全部用作基肥施入。其他管理同一般高產(chǎn)田。

1.3 測(cè)定項(xiàng)目與方法

1.3.1 干物質(zhì)積累分別于開(kāi)花期(VT)和成熟期(R6)取樣10株,每株按照莖稈、葉片、穗軸、雄穗、苞葉和籽粒部分分開(kāi),于105℃殺青30 min,80℃烘干至恒重,稱重。參照周玲等[23]方法計(jì)算花后干物質(zhì)積累量、轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和花后干物質(zhì)轉(zhuǎn)運(yùn)對(duì)籽粒的貢獻(xiàn)。

1.3.2 籽粒灌漿特性 于開(kāi)花期,選擇有代表性且生長(zhǎng)一致的植株50株,掛牌標(biāo)記。自開(kāi)花期開(kāi)始至籽粒完熟期,每隔10 d取樣1次,每處理取10個(gè)果穗,從每個(gè)果穗中部選取100個(gè)籽粒烘干至恒重,并稱重。參考朱慶森等[24]、顧世梁等[25]的計(jì)算方法,用Richards方程模擬籽粒灌漿過(guò)程,用Richards方程參數(shù)計(jì)算下列籽粒灌漿參數(shù)。

W = A(1+Be-Ct)-1/D;

Tmax= (ln B-ln D)/C ;

Wmax= A(D+1)-1/D;

Gmax=(C×Wmax/D)[1-(Wmax/A)D];

P=6/C。

式中,t:開(kāi)花后天數(shù);W:所取籽粒重量;A:終極生長(zhǎng)量;B:初級(jí)參數(shù);C:生長(zhǎng)速率參數(shù);D:形狀參數(shù),當(dāng)D=1時(shí)即為L(zhǎng)ogistic方程。Tmax:達(dá)最大灌漿速率時(shí)的天數(shù);Wmax:灌漿速率最大時(shí)的生長(zhǎng)量;Gmax:最大灌漿速率;P:灌漿活躍期。

1.3.3 測(cè)產(chǎn) M和單播收獲中間3行,I收獲中間6行以計(jì)算產(chǎn)量。隨機(jī)選取30個(gè)果穗自然風(fēng)干后用于室內(nèi)考種,每個(gè)處理3次重復(fù)。

1.4 數(shù)據(jù)分析

采用Microsoft Excel 2010軟件進(jìn)行數(shù)據(jù)處理,用SigmaPlot 12.5(Systat Software,San Jose,CA)作圖,用DPS 16.05和SPSS 17.0 軟件進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)和分析。

2 結(jié)果

2.1 密植條件下玉米品種混播對(duì)產(chǎn)量及其構(gòu)成的影響

年份、密度和種植方式以及密度與種植方式的交互作用對(duì)夏玉米產(chǎn)量、穗粒數(shù)、千粒重有顯著影響(<0.05)(表1)。隨種植密度增加,各處理的穗粒數(shù)、千粒重則顯著下降,收獲穗數(shù)的顯著增加提高了籽粒產(chǎn)量;同一密度下穗數(shù)無(wú)顯著差異,籽粒產(chǎn)量提升主要是穗粒數(shù)或千粒重的提高。密度相同時(shí),混播處理籽粒產(chǎn)量高于單播處理,且隨密度增加,混播處理優(yōu)勢(shì)更加明顯。D1密度下,混播處理較單播籽粒產(chǎn)量無(wú)顯著差異。D2密度下M和I處理2年平均產(chǎn)量較SZD958分別顯著增加8.70%和8.09%,較SDH605分別顯著增加6.92%和6.32%;D3密度下M和I處理2年平均產(chǎn)量較SZD958分別顯著增加7.24%和7.55%,較SDH605分別顯著增加4.98%和5.28%。D1密度下,混播處理較單播穗粒數(shù)和千粒重?zé)o顯著差異。但在D2和D3密度下,混播處理穗粒數(shù)顯著高于單播處理;混播處理千粒重顯著高于SZD958,與SDH605之間無(wú)顯著差異。此外,混播處理的空稈率都有不同程度的降低,D1密度下,混播較單播無(wú)顯著差異。D2和D3密度下,2年均表現(xiàn)為SDH605>SZD958>I>M。

2.2 密植條件下玉米品種混播對(duì)夏玉米籽粒灌漿特性的影響

2.2.1 籽粒干重 隨種植密度的增加,籽粒干重呈逐漸降低的趨勢(shì)?;觳?duì)籽粒干重的變化趨勢(shì)無(wú)顯著影響,各處理籽粒干重均呈現(xiàn)慢-快-慢的增長(zhǎng)趨勢(shì)(圖 1)。吐絲后10—20 d籽粒干重呈現(xiàn)緩慢增加趨勢(shì)。20—30 d籽粒干重呈現(xiàn)急劇增加趨勢(shì),之后開(kāi)始下降。改變種植方式對(duì)籽粒干重具有顯著影響。低密度條件下,混播處理籽粒干重較單播無(wú)顯著差異。D2和D3密度下,吐絲后30—50 d,混播處理較單播顯著增加?;ê?0 d,D2密度下,M和I處理2年平均籽粒干重較SZD958分別顯著增加11.64%和10.94%,較SDH605分別顯著增加5.66%和4.98%;D3密度下M和I處理2年平均較SZD958分別顯著增加9.50%和8.73%,較SDH605分別顯著增加5.02%和4.28%。

表1 密植條件下玉米品種混播對(duì)產(chǎn)量及其構(gòu)成的影響

同一性狀中的數(shù)值標(biāo)以不同字母表示在同一年度不同密度下不同處理在<0.05水平差異顯著。***表示在<0.001 水平上顯著;**表示在<0.01 水平上顯著;*表示在<0.05 水平上顯著;NS表示無(wú)顯著性差異。ZD958:鄭單958;DH605:登海605。S:?jiǎn)尾ィ籑:按同等比例混合后隨機(jī)播種;I:1行鄭單958,1行登海605。下同

The values in the same character were marked with different letters to indicate that there were significant differences in different treatments under the different densities in the same year (<0.05). Ns, not significant; *, significant at<0.05; **, significant at<0.01; ***, significant at<0.001. ZD958: Zhengdan958; DH605: Denghai605; S: monoculture; M: random sowing after mixing seeds of the two hybrids in the same proportion; I, raw ratio of ZD958 to DH605 is 1:1. The same as below

S:?jiǎn)尾?;M:按同等比例混合后隨機(jī)播種;I:1行鄭單958,1行登海605。下同

2.2.2 籽粒灌漿速率 各處理籽粒灌漿速率呈現(xiàn)先增加后降低的趨勢(shì)(圖 2)。相同種植密度下,授粉后10 d至20 d各處理籽粒灌漿速率無(wú)顯著差異。D1密度下,混播處理最大籽粒灌漿速率較單播無(wú)顯著差異。D2和D3密度下,最大籽粒灌漿速率2年均表現(xiàn)為M>I>SDH605>SZD958。此外,不同種植密度對(duì)籽粒灌漿速率也具有顯著影響。隨種植密度增加,籽粒灌漿速率呈逐漸降低的趨勢(shì)。

2.2.3 籽粒灌漿參數(shù) 隨種植密度增加,Tmax、Wmax、Gmax、P均呈逐漸下降的趨勢(shì)(表 2)?;觳ヌ幚盹@著影響密植夏玉米籽粒灌漿特性。D1密度下,混播處理籽粒灌漿參數(shù)較單播無(wú)顯著差異。D2和D3密度下,混播處理的Wmax、Gmax值均高于單播,而Tmax和P較單播無(wú)顯著差異。D2密度下M和I處理2年平均Wmax較SZD958分別顯著增加11.61%和11.12%,較SDH605分別顯著增加5.86%和5.38%;D3密度下M和I處理2年平均較SZD958分別顯著增加10.32%和9.75%,較SDH605分別顯著增加5.63%和5.08%。D2和D3密度下,Gmax2年均表現(xiàn)為M>I>SDH605>SZD958,D2、D3密度下M處理2年平均Gmax較SZD958分別顯著增加11.54%和8.31%,較SDH605分別顯著增加5.16%和4.02%。

圖2 密植條件下玉米品種混播對(duì)夏玉米籽粒灌漿速率的影響

2.3 密植條件下玉米品種混播對(duì)夏玉米干物質(zhì)積累、分配與轉(zhuǎn)運(yùn)的影響

2.3.1 單株干物質(zhì)積累與分配 隨種植密度的增加,相同處理成熟期整株、籽粒、莖稈、葉片干物質(zhì)積累量逐漸降低(圖 3)。D1密度下,混播處理植株干物質(zhì)積累量較單播無(wú)顯著差異,D2和D3密度下,混播處理明顯高于單播。D2密度下M和I處理2年平均干物質(zhì)積累量較SZD958分別顯著增加6.08%和6.73%,較SDH605分別顯著增加5.25%和5.91%;D3密度下M和I處理2年平均較SZD958分別顯著增加3.33%和3.86%,較SDH605分別增加2.85%和3.40%。D2和D3密度下,籽粒干物質(zhì)積累量均表現(xiàn)為M>I>S(除2017年M和I外)。

由表3可知,隨種植密度的增加,葉片所占干物質(zhì)比例逐漸降低,莖稈和籽粒所占干物質(zhì)比例逐漸增加。此外,D2和D3密度下混播處理增加了干物質(zhì)向籽粒的分配比例。

2.3.2 花后干物質(zhì)積累與轉(zhuǎn)運(yùn) 花后干物質(zhì)積累量、轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率以及干物質(zhì)轉(zhuǎn)移對(duì)籽粒的貢獻(xiàn)率均表現(xiàn)為D3>D2>D1(表 4)。D1密度下,各處理間無(wú)顯著差異。D2和D3密度下,混播花后干物質(zhì)積累量、轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率較單播增加。各處理間花后干物質(zhì)轉(zhuǎn)移對(duì)籽粒的貢獻(xiàn)率無(wú)顯著差異。D2密度下M和I處理2年平均花后干物質(zhì)積累量較SZD958分別顯著增加4.43%和7.56%,較SDH605分別顯著增加5.25%和8.36%;D3密度下M和I處理2年平均較SZD958分別增加3.85%和4.68%,較SDH605分別增加4.52%和5.36%。

表2 密植條件下玉米品種混播對(duì)夏玉米籽粒灌漿參數(shù)的影響

R:相關(guān)系數(shù);A:終極生長(zhǎng)量;B:初級(jí)參數(shù);C:生長(zhǎng)速率參數(shù);Tmax:灌漿速率達(dá)到最大時(shí)需要的天數(shù);Wmax:灌漿速率達(dá)到最大值的粒重;Gmax:籽粒最大灌漿速率;P:籽?;钴S灌漿期

R: Correlation coefficients; A: Ultimate growth mass; B: Primary parameter; C: Growth rate parameter;Tmax: Days needed for reaching the maximum grain-filling rate; Wmax: Kernel weight at the maximum grain-filling rate; Gmax: Maximum grain-filling rate; P: Active grain-filling period

2.4 灌漿參數(shù)、干物質(zhì)積累量、干物質(zhì)轉(zhuǎn)運(yùn)率與產(chǎn)量的相關(guān)性分析

群體籽粒產(chǎn)量與群體干物質(zhì)轉(zhuǎn)運(yùn)量(0.376**)、花后干物質(zhì)積累量(0.926**)呈極顯著正相關(guān),與干物質(zhì)轉(zhuǎn)運(yùn)率(0.264*)呈顯著正相關(guān);與Wmax(-0.390**)、Gmax(-0.340**)極顯著負(fù)相關(guān),與Tmax(-0.273*)顯著負(fù)相關(guān)。干物質(zhì)轉(zhuǎn)運(yùn)率與Wmax、Gmax、P正相關(guān),但未達(dá)顯著水平。成熟期單株干物質(zhì)積累量與Tmax(0.472**)、Wmax(0.362**)、Gmax(0.503**)顯著正相關(guān)。百粒重與Tmax(0.631**)、Wmax(0.958**)、Gmax(0.815**)、P(0.504**)呈極顯著正相關(guān)(表5)。

3 討論

3.1 密植條件下玉米品種混播對(duì)夏玉米籽粒灌漿特性和產(chǎn)量的影響

隨種植密度的增加,葉片之間相互遮蔽,群體穗位層、下層透光性變差,影響籽粒灌漿進(jìn)程,導(dǎo)致籽粒重量顯著降低[9, 26]。高密度下,通過(guò)改善冠層中下部光的分布,維持生育后期較高光合綠葉面積,增加花后光合同化物的積累與分配,促使較多光合同化物向籽粒的轉(zhuǎn)運(yùn),進(jìn)而實(shí)現(xiàn)增產(chǎn)[27-28]。籽粒灌漿期是玉米生長(zhǎng)發(fā)育的重要時(shí)期[29-31],籽粒灌漿持續(xù)期和灌漿速率決定了粒重和產(chǎn)量[25, 32-34],灌漿期長(zhǎng)度和灌漿速率高低與百粒重間存在顯著正相關(guān)關(guān)系[35]。本研究條件下,百粒重與灌漿速率達(dá)到最大時(shí)需要的天數(shù)(Tmax)、粒重(Wmax)、籽?;钴S灌漿期(P)、籽粒最大灌漿速率(Gmax)呈顯著正相關(guān)。相同密度各處理灌漿期籽粒干重均呈“慢-快-慢”的增長(zhǎng)趨勢(shì)。百粒重、Tmax、Wmax、P、Gmax均隨密度的增加而降低。這與Jia等[36]研究結(jié)果一致。蘇新宏[15]研究發(fā)現(xiàn),不同基因型玉米品種混播,延長(zhǎng)了籽粒灌漿有效期,提高了灌漿中后期的灌漿速率。本研究中,D1密度下,混播處理籽粒灌漿參數(shù)較單播無(wú)顯著差異。D2和D3密度下混播后籽粒干重、Gmax和Wmax較單播增加。由此可見(jiàn),混播增加了籽粒灌漿速率,使粒重增加,從而提高籽粒產(chǎn)量。主要是由于混播改善夏玉米群體透光率,使得花后葉片抗氧化酶活性增強(qiáng),葉綠素含量和凈光合速率降低減緩,延緩葉片衰老,增加功能葉的光合有效持續(xù)期[37]。

表3 密植條件下玉米品種混播對(duì)夏玉米成熟期單株干物質(zhì)分配的影響

表4 密植條件下玉米品種混播花后干物質(zhì)積累、分配及轉(zhuǎn)運(yùn)

表5 灌漿參數(shù)、群體干物質(zhì)積累量、干物質(zhì)轉(zhuǎn)運(yùn)率與產(chǎn)量的相關(guān)性分析

A1:達(dá)最大灌漿速率時(shí)的天數(shù)(Tmax);A2:灌漿速率最大時(shí)的生長(zhǎng)量(Wmax);A3:最大灌漿速率(Gmax);A4:活躍灌漿期(P);A5:干物質(zhì)轉(zhuǎn)運(yùn)量;A6:干物質(zhì)轉(zhuǎn)運(yùn)率;A7:花后干物質(zhì)積累量;A8:成熟期單株干物質(zhì)積累量;A9:百粒重;A10:產(chǎn)量

A1: Days needed for reaching the maximum grain-filling rate; A2: Kernel weight at the maximum grain-filling rate; A3: Maximum grain-filling rate; A4: Active grain-filling period; A5: Transfer amount of dry matter; A6: Translocation efficiency of dry matter; A7: Dry matter accumulation after anthesis; A8: Dry matter accumulation of per plant; A9: 100-kernel weight; A10: Yield

不同小寫(xiě)字母的數(shù)值在5%水平差異顯著The different small letters are significantly different at 5% probability level

不同株型的玉米品種混播,由于株型互補(bǔ)改變冠層結(jié)構(gòu),增加了受光面積,混播群體產(chǎn)量顯著增加[38]。不同氮效率的玉米品種在不同氮素水平下2﹕2混播,與單播相比,提高了凈光合速率,增加地上部生物量、穗粒數(shù)和千粒重,使產(chǎn)量增加[39]。玉米品種克單11與12混播,4種種植密度產(chǎn)量均高于單播[40]。本研究認(rèn)為,隨種植密度增加,群體穗數(shù)增加,千粒重和穗粒數(shù)顯著降低,籽粒玉米產(chǎn)量顯著增加。D1密度下,混播處理產(chǎn)量較單播無(wú)顯著差異,但在D2和D3密度下,混播處理優(yōu)勢(shì)更明顯,其群體產(chǎn)量顯著高于單播。此外,混播處理穗粒數(shù)和千粒重均高于單播處理。這主要與籽粒灌漿速率最大時(shí)的生長(zhǎng)量、最大灌漿速率增加有關(guān)。

3.2 密植條件下玉米品種混播對(duì)夏玉米干物質(zhì)積累特性的影響

干物質(zhì)積累是玉米籽粒形成的物質(zhì)基礎(chǔ),而花后干物質(zhì)的積累與分配是決定籽粒產(chǎn)量主要因素[41-43]。本研究中,花后干物質(zhì)積累量、干物質(zhì)轉(zhuǎn)運(yùn)量、干物質(zhì)轉(zhuǎn)運(yùn)率與產(chǎn)量之間存在顯著正相關(guān)。D2和D3密度下,混播顯著增加了成熟期單株干物質(zhì)的積累,降低了莖稈等營(yíng)養(yǎng)物質(zhì)所占比例,提高了干物質(zhì)向籽粒的分配比例,進(jìn)而使籽粒干重增加。前人研究表明,隨種植密度的增加,花后干物質(zhì)積累量、轉(zhuǎn)運(yùn)量和轉(zhuǎn)運(yùn)率顯著增加,且對(duì)籽粒干重的貢獻(xiàn)呈現(xiàn)先增加后降低的趨勢(shì)[28]。本研究表明,花后干物質(zhì)積累量、轉(zhuǎn)運(yùn)量及轉(zhuǎn)運(yùn)率對(duì)籽粒的貢獻(xiàn)隨種植密度增加呈逐漸上升的趨勢(shì),這可能與種植條件及品種不同有關(guān)。劉天學(xué)等[44]認(rèn)為滑豐9號(hào)和浚單20的單播群體花后干物質(zhì)的積累量均大于混播,但群體產(chǎn)量卻又小于混播,這可能是由于群體冠層結(jié)構(gòu)的改善,從而增強(qiáng)了光合產(chǎn)物向籽粒的轉(zhuǎn)運(yùn)能力。本研究中,D2和D3密度下,混播增加了花后干物質(zhì)積累量和轉(zhuǎn)運(yùn)率。因此混播通過(guò)增加單株及花后干物質(zhì)積累量,促進(jìn)光合產(chǎn)物向籽粒的分配比例,進(jìn)而提高籽粒產(chǎn)量。

4 結(jié)論

82 500株/hm2和97 500株/hm2密度下,混播能增加夏玉米整株及花后干物質(zhì)積累量,提高干物質(zhì)轉(zhuǎn)運(yùn)量以及轉(zhuǎn)運(yùn)率,從而使產(chǎn)量顯著提高?;觳ツ茉龃蠡ê蠊夂袭a(chǎn)物向籽粒的分配比例,提高籽粒灌漿速率以及灌漿速率最大時(shí)的生長(zhǎng)量,有效增加粒重,從而為密植條件下玉米高產(chǎn)穩(wěn)產(chǎn)奠定一定的理論與實(shí)踐依據(jù)。

[1] TESTER M, LANGRIDGE P.Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818-822.

[2] AINSWORTH E A, YENDREK C R, SKONECZKA K A, LONG S P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell and Environment, 2012, 35(1): 38-52.

[3] ALEXANDRATOS N, BRUINSMA J. World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Papers, 2012.

[4] WART J V, KERSEBAUM K C, PENG S B, MILNER M, CASSMAN K G. Estimating crop yield potential at regional to national scales. Field Crops Research, 2013, 143(1): 34-43.

[5] TILMAN D, CLARK M. Food, agriculture & the environment: Can we feed the world and save the earth? Daedalus, 2015, 144(4): 8-23.

[6] SANGOI L, GRACIETTI M A, RAMPAZZOV C, BIANCHETTI P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Research, 2002, 79(1): 39-51.

[7] TOKATLIDIS I S, KOUTROUBAS S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004, 88(2/3): 103-114.

[8] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143(1): 91-97.

[9] 呂麗華, 陶洪斌, 夏來(lái)坤, 張雅杰, 趙明, 趙久然, 王璞. 不同種植密度下的夏玉米冠層結(jié)構(gòu)及光合特性. 作物學(xué)報(bào), 2008, 34(3): 447-455. Lü L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)

[10] 陳晨, 董樹(shù)亭, 劉鵬, 張吉旺, 趙斌. 種植密度對(duì)玉米自交系產(chǎn)量和灌漿特性的影響. 玉米科學(xué), 2012, 20(6): 107-111.

CHEN C, DONG ST, LIU P, ZHANG J W, ZHAO B. Effects of planting density on grain filling characteristics of different maize inbred lines.Journal of Maize Sciences, 2012, 20(6): 107-111. (in Chinese)

[11] FATEMEH F, MANI M, SHAHRAM L. The effect of source-sink restriction and plant density changes on the role of assimilate remobilization in corn grain yield. International Journal of Agriculture and Crop Sciences, 2013, 5(20): 2459-2465.

[12] XUE J, GOU L, ZHAO Y S, YAO M N, YAO H S, TIAN J S, ZHANG W F. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016, 188: 133-141.

[13] 金容, 李鐘, 楊云, 周芳, 杜倫靜, 李小龍, 孔凡磊, 袁繼超. 密度和株行距配置對(duì)川中丘區(qū)夏玉米群體光分布及雌雄穗分化的影響. 作物學(xué)報(bào), 2020, 46(4): 614-630.

JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

[14] ZHU Y Y, CHEN H R, FAN J H, WANG Y Y, CHEN J B, FAN J X, YANG S S, HU L P. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718-722.

[15] 蘇新宏. 不同基因型玉米間作效應(yīng)研究[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2001.

SU X H. Studies on intercropping effects of different genotypes maize [D].Zhengzhou: Henan Agricultural University, 2001. (in Chinese)

[16] DAELLENBACH G C, KERRIDGE P C, WOLFE M S, FROSSARD E, FINCKH M R. Plant productivity in cassava-based mixed cropping systems in Colombian hillside farms. Agriculture Ecosystems & Environment, 2005, 105(4): 595-614.

[17] 趙亞麗, 康杰, 劉天學(xué), 李潮海. 不同基因型玉米間混作優(yōu)勢(shì)帶型配置. 生態(tài)學(xué)報(bào), 2013, 33(12): 3855-3864. ZHAO Y L, KANG J, LIU T X, LI C H. Optimum stripe arrangement for inter-cropping and mixed-cropping of different maize genotypes. Acta Ecologica Sinica, 2013, 33(12): 3855-3864. (in Chinese)

[18] 蘇新宏, 李潮海, 孫敦立, 張懷志.不同基因型玉米間作研究初報(bào). 玉米科學(xué), 2000, 8(4): 57-60.

SU X H, LI C H, SUN D L, ZHANG H Z. Preliminary report on intercropping with different genotypes of maize. Journal of Maize Sciences, 2000, 8(4): 57-60. (in Chinese)

[19] 劉天學(xué), 李潮海, 馬新明, 趙霞, 劉士英. 不同基因型玉米間作對(duì)葉片衰老、籽粒產(chǎn)量和品質(zhì)的影響. 植物生態(tài)學(xué)報(bào), 2008, 32(4): 914-921. LIU T X, LI C H, MA X M, ZHAO X, LIU S Y. Effects of maize intercropping with different genotypes on leaf senescence and grain yield and quality. Chinese Journal of Plant Ecology, 2008, 32(4): 914-921. (in Chinese)

[20] 王小林, 張歲岐, 王淑慶, 王志梁. 黃土源區(qū)不同品種玉米間作群體生長(zhǎng)特征的動(dòng)態(tài)變化. 生態(tài)學(xué)報(bào), 2012, 32(23): 7383-7390. WANG X L, ZHANG S Q, WANG S Q, WANG Z L. The dynamic variation of maize (L.) population growth characteristics under cultivars intercropped on the Loess Plateau. Acta Ecologica Sinica, 2012, 32(23): 7383-7390. (in Chinese)

[21] 張三坤, 陳文平. 玉米間混作增產(chǎn)又減災(zāi). 河南農(nóng)業(yè), 2005(6): 26.

ZHANG S K, CHEN W P. Corn intercropping increases yield and reduces disaster. Agriculture of Henan, 2005(6): 26. (in Chinese)

[22] LIU Y E, LIU P, DONG S T, ZHANG J W. Hormonal changes caused by the Xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Science, 2010, 50(1): 215-221.

[23] 周玲, 王朝輝, 李富翠, 孟曉瑜, 李可懿, 李生秀. 不同產(chǎn)量水平旱地冬小麥品種干物質(zhì)累積和轉(zhuǎn)移的差異分析.生態(tài)學(xué)報(bào), 2012, 32(13): 4123-4131. ZHOU L, WANG Z H, LI F C, MENG X Y, LI K Y, LI S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland. Acta Ecologica Sinica, 2012, 32(13): 4123-4131. (in Chinese)

[24] 朱慶森, 曹顯祖, 駱亦其. 水稻籽粒灌漿的生長(zhǎng)分析. 作物學(xué)報(bào), 1988, 14(3):182-193.

ZHU Q S, CAO X Z, LUO Y Q. Growth analysis on the process of grain filling in rice. Acta Agronomica Sinica, 1988, 14(3): 182-193. (in Chinese)

[25] 顧世梁, 朱慶森, 楊建昌, 彭少兵. 不同水稻材料子粒灌漿特性的分析. 作物學(xué)報(bào), 2001, 27(1): 7-14.

GU S L, ZHU Q S, YANG J C, PENG S B. Analysis on grain filling characteristics for different rice types. Acta Agronomica Sinica, 2001, 27(1): 7-14. (in Chinese)

[26] 段民孝. 從農(nóng)大108和鄭單958中得到的玉米育種啟示. 玉米科學(xué), 2005, 13(4): 51-54.

DUAN M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. Journal of Maize Sciences, 2005, 13(4): 51-54. (in Chinese)

[27] 張仁和, 王博新, 楊永紅, 楊曉軍, 馬向峰, 張興華, 郝引川, 薛吉全. 陜西灌區(qū)高產(chǎn)春玉米物質(zhì)生產(chǎn)與氮素積累特性. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(12): 2238-2246.

ZHANG R H, WANG B X, YANG Y H, YANG X J, MA X F, ZHANG X H, HAO Y C, XUE J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Scientia Agricultura Sinica, 2017, 50(12): 2238-2246. (in Chinese)

[28] 柏延文, 楊永紅, 朱亞利, 李紅杰, 薛吉全, 張仁和. 種植密度對(duì)不同株型玉米冠層光能截獲和產(chǎn)量的影響.作物學(xué)報(bào), 2019, 45(12): 1868-1879.

BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)

[29] MUHAMMAD K, SU W, AHMAD I, MENG X, CUI W, ZHANG X, MOU S, AAQIL K, HAN Q, LIU T. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports, 2018, 8(1): 4818.

[30] JIANG Q, DU Y, TIAN X, WANG Q, XIONG R, XU G, YAN C, DING Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. European Journal of Agronomy, 2016, 74: 185-192.

[31] OKAMURA M, ARAI-SANOH Y, YOSHIDA H, MUKOUYAMA T, ADACHI S, YABE S, NAKAGAWA H, TSUTSUMI K, TANIGUCHI Y, KOBAYASHI N, KONDO M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Research, 2018, 219: 139-147.

[32] 李軼冰, 逄煥成, 李華, 李玉義, 楊雪, 董國(guó)豪, 郭良海, 王湘峻. 粉壟耕作對(duì)黃淮海北部春玉米籽粒灌漿及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(14): 3055-3064.

LI Y B, PANG H C, LI H, LI Y Y, YANG X, DONG G H, GUO L H, WANG X J. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in North Huang-Huai-Hai region. Scientia Agricultura Sinica, 2013, 46(14): 3055-3064. (in Chinese)

[33] 王曉慧, 張磊, 劉雙利, 曹玉軍, 魏雯雯, 劉春光, 王永軍, 邊少鋒, 王立春. 不同熟期春玉米品種的籽粒灌漿特性. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(18): 3557-3565. WANG X H, ZHANG L, LIU S L, CAO Y J, WEI W W, LIU C G, WANG Y J, BIAN S F, WANG L C. Grain filling characteristics of maize hybrids differing in maturities. Scientia Agricultura Sinica, 2014, 47(18): 3557-3565. (in Chinese)

[34] 徐云姬, 顧道健, 秦昊, 張耗, 王志琴, 楊建昌. 玉米灌漿期果穗不同部位籽粒碳水化合物積累與淀粉合成相關(guān)酶活性變化. 作物學(xué)報(bào), 2015, 41(2): 297-307. XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015, 41(2): 297-307. (in Chinese)

[35] 李璐璐, 明博, 高尚, 謝瑞芝, 侯鵬, 王克如, 李少昆. 夏玉米籽粒脫水特性及與灌漿特性的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(10): 1878-1889.

LI L L, MING B, GAO S, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Scientia Agricultura Sinica, 2018, 51(10): 1878-1889. (in Chinese)

[36] JIA Q M, SUN L F, MOU H Y, ALI S, LIU D H, ZHANG Y, ZHANG P, REN X L, JIA Z K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (L.) in semi-arid regions. Agricultural Water Management, 2018, 201: 287-298.

[37] 胡旦旦, 張吉旺, 劉鵬, 趙斌, 董樹(shù)亭. 密植條件下玉米品種混播對(duì)夏玉米光合性能及產(chǎn)量的影響. 作物學(xué)報(bào), 2018, 44(6): 920-930.

HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018, 44(6): 920-930. (in Chinese)

[38] 史振聲, 朱敏, 李鳳海, 王志斌. 玉米不同品種間作的增產(chǎn)效果研究. 玉米科學(xué), 2008, 16(2): 112-114.

SHI Z S, ZHU M, LI F H, WANG Z B. Research on yield- increasing of different kinds of maize.Journal of Maize Sciences, 2008, 16(2): 112-114. (in Chinese)

[39] 陶靜靜, 王海標(biāo), 朱宗瑛, 譚金芳, 王宜倫.不同基因型夏玉米間作對(duì)產(chǎn)量及氮素吸收利用的影響. 華北農(nóng)學(xué)報(bào), 2016, 31(6): 185-191.

TAO J J, WANG H B, ZHU Z Y, TAN J F, WANG Y L. Effect of different genotype summer maize intercropping on yield and nitrogen absorption and utilization. Acta Agriculturae Boreali-Sinica, 2016, 31(6): 185-191. (in Chinese)

[40] 楊耿斌, 王屾, 譚福忠, 韓翠波, 劉興焱, 何長(zhǎng)安, 紀(jì)春學(xué), 王輝. 兩個(gè)玉米品種混種對(duì)產(chǎn)量及產(chǎn)量構(gòu)成因素的影響. 玉米科學(xué), 2009, 17(4):104-106.

YANG G B, WANG S, TAN F Z, HAN C B, LIU X Y, HE C A, JI C X, WANG H. Effects of mixed planting of two maize varieties on maize yield and component factors. Journal of Maize Sciences, 2009, 17(4): 104-106. (in Chinese)

[41] ECHARTE L, LUQUE S, ANDRADE F H, SADRAS V O, CIRILO A, OTEGUI M E, VEGA C R C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1995. Field Crops Research, 2000, 68: 1-8.

[42] ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016, 108(1): 196-204.

[43] 徐田軍, 呂天放, 趙久然, 王榮煥, 陳傳永, 劉月娥, 劉秀芝, 王元東, 劉春閣. 玉米生產(chǎn)上3個(gè)主推品種光合特性、干物質(zhì)積累轉(zhuǎn)運(yùn)及灌漿特性. 作物學(xué)報(bào), 2018, 44(3): 104-112.

XU T J, Lü T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinica, 2018, 44(3): 104-112. (in Chinese)

[44] 劉天學(xué), 李潮海, 付景, 閆成輝. 不同基因型玉米間作的群體質(zhì)量. 生態(tài)學(xué)報(bào), 2009, 29(11): 6302-6309.

LIU T X, LI C H, FU J, YAN C H. Population quality of different maize (L.) genotypes intercropped. Acta Ecologica Sinica, 2009, 29(11): 6302-6309. (in Chinese)

Mixed-cropping Improved on Grain Filling Characteristics and Yield of Maize under High Planting Densities

HU DanDan, LI RongFa, LIU Peng, DONG ShuTing, ZHAO Bin, ZHANG JiWang, REN BaiZhao

College of Agriculture, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong

【】The aim of this study was to evaluate the effects of mixed planting of maize varieties on grain filling characteristics and yield under close planting conditions. 【】Zhengdan 958 (ZD958) and Denghai 605 (DH605) were used as experimental materials. Three planting densities (D1, 67 500 plants/hm2; D2, 82 500 plants/hm2; D3, 97 500 plants/hm2), and two different mixed-cropping planting patterns (mixture (M), random sowing after mixing seeds of the two varieties in the same proportion; I, one row of ZD958 and one row of DH605) were arranged, with the same density of Zhengdan 958 (SZD958) and Denghai 605 (SDH605) as controls. Effects of mixed planting of maize varieties on the dry matter accumulation and translocation, grain filling characteristics and yield of summer maize were investigated under close planting conditions. 【】With the increase of planting density, the dry matter accumulation of different planting methods after anthesis increased, while the dry matter accumulation per plant at maturity and the grain filling parameters decreased.Although the 1000-grain weight decreased, the population yield increased significantly. There were no significant differences in the grain yields among the different treatments at D1 density. The grain yields obtained under the M and I treatments were higher than those of the monoculture treatments at D2 and D3 densities. Under D2 density, the 2-year average data showed that the grain yields obtained under the M and I treatments increased by 8.70% and 8.09% than that of SZD958, and 6.92% and 6.32% than that of SDH605, respectively. At D3 density, the grain yields obtained under the M and I treatments increased by 7.24% and 7.55% than that of SZD958, and 4.98% and 5.28% than that of SDH605, respectively. At D2 and D3 densities, the Gmax(maximum grain-filling rate), Wmax(kernel weight at the maximum grain filling rate) and grain weight were increased under the M and I treatments. And the 100-kernel weight was extremely significantly positively correlated with the days needed for reaching the maximum grain-filling rate (Tmax), Wmax, Gmax, and active grain filling period (P) at<0.01. At D2 density, the average Wmaxfor two years under M and I treatments increased significantly by 11.61% and 11.12% than that of SZD958, and 5.86% and 5.38% than that of SDH605, respectively. The average Wmaxat M and I treatments at D3 density increased significantly by 10.32% and 9.75% than that of SZD958, and 5.63% and 5.08% than that of SDH605, respectively. The dry matter accumulation per plant at maturity, dry matter accumulation after anthesis, the transfer amount and translocation efficiency of dry matter for M and I treatments increased than those of SZD958 and SDH605. The 2-year average data showed that dry matter accumulation after anthesis obtained under the M and 1:1 treatments increased by 4.43% and 7.56% than that of SZD958, and 5.25% and 8.36% than that of SDH605 at D2 density, respectively. The dry matter accumulation after anthesis obtained under the M and I treatments increased by 3.85% and 4.68% than that of SZD958, and by 4.52% and 5.36% than that of SDH605 at D3 density, respectively.【】 There were no significant differences in the grain yields among the different treatments at low density. Under82 500 plant/hm2and 97 500 plant/hm2density, the mixed cropping significantly increased dry matter accumulation and transport after anthesis, improved the maximum grain filling rate of summer maize and weight of maximum grain filling rate, promoted grain filling, and finally increased the yield significantly.

summer maize; density; mixed-cropping; grain filling characteristics; yield

10.3864/j.issn.0578-1752.2021.09.004

2020-07-08;

2020-09-27

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300603,2016YFD0300106)

胡旦旦,E-mail:hudandan0110@163.com。通信作者劉鵬,E-mail:liupengsdau@126.com。通信作者董樹(shù)亭,E-mail:stdong@sdau.edu.cn

(責(zé)任編輯 楊鑫浩)

猜你喜歡
混播夏玉米籽粒
牧草混播的優(yōu)點(diǎn)、原則及方法
籽粒莧的飼用價(jià)值和高產(chǎn)栽培技術(shù)
籽粒莧的特性和種植技術(shù)
羊草混播披堿草的好處及栽培技術(shù)
小麥?zhǔn)崭钪?如何種植夏玉米才能高產(chǎn)
混播方式對(duì)小黑麥產(chǎn)量與品質(zhì)的影響
玉米機(jī)械脫粒籽粒含水量與破碎率的相關(guān)研究
夏玉米高產(chǎn)的關(guān)鍵栽培技術(shù)措施
商麥1619 籽粒灌漿的特性
東祁連山多年生禾草混播草地雜草發(fā)生規(guī)律
临朐县| 汉寿县| 赤城县| 全州县| 岐山县| 竹山县| 兴国县| 永和县| 弥渡县| 漳平市| 桦甸市| 三穗县| 平湖市| 揭东县| 和田市| 鄢陵县| 墨竹工卡县| 仁寿县| 昂仁县| 军事| 盘锦市| 磐石市| 盱眙县| 福清市| 佳木斯市| 阿城市| 宜兴市| 达拉特旗| 刚察县| 东方市| 台前县| 成安县| 株洲市| 玛多县| 安多县| 济阳县| 岗巴县| 山西省| 延吉市| 安吉县| 辽中县|