李睿, 周軍, 張春波, 烏彥全, 梁武, 秦豐
(哈爾濱焊接研究院有限公司,黑龍江 哈爾濱150028)
隨著時(shí)代的發(fā)展,航空領(lǐng)域在國(guó)內(nèi)具有著重要地位,航空發(fā)動(dòng)機(jī)做為航空飛機(jī)關(guān)鍵部件之一,因其滿足高推重比、高可靠性、低成本的要求已被廣泛應(yīng)用[1]。面對(duì)航空工業(yè)的飛速發(fā)展,航空發(fā)動(dòng)機(jī)零部件的制造方法以及工藝水平也在不斷地更新?lián)Q代。整體葉盤作為航空發(fā)動(dòng)機(jī)核心,是將發(fā)動(dòng)機(jī)轉(zhuǎn)子其輪盤與葉片加工成一體,與以往的機(jī)械連接對(duì)比,不僅連接部位尺寸大大減少,減重效果顯著;同時(shí)也消除了連接部位因裝配不當(dāng)造成的磨損而產(chǎn)生故障[2-3]。整體葉盤的制造技術(shù)目前主要有五坐標(biāo)數(shù)控加工、電解加工、擴(kuò)散焊、電子束焊接及線性摩擦焊。線性摩擦焊(Linear friction welding, LFW)因其可以避免熔焊過程產(chǎn)生的偏析、氣孔及晶粒粗化、并能提高材料利用率等優(yōu)點(diǎn),現(xiàn)已成為整體葉盤制造的關(guān)鍵技術(shù),也是發(fā)動(dòng)機(jī)整體葉盤修復(fù)及異質(zhì)材料整體葉盤制造的關(guān)鍵技術(shù)[4]。
LFW是一種綠色新型固相連接連接技術(shù),是兩工件其中一端平行端面邊緣方向做周期性往復(fù)運(yùn)動(dòng)作為振動(dòng)端,另一端施加壓力作為前進(jìn)端,伴隨界面間溫度不斷升高,產(chǎn)生塑性狀態(tài)并區(qū)域穩(wěn)定,從而實(shí)現(xiàn)界面的原子間結(jié)合[5-7]。
目前工程上多采用雙合金-雙態(tài)研制整體葉盤,LFW就可以實(shí)現(xiàn)異質(zhì)材料連接,焊縫組織致密、性能優(yōu)良等特點(diǎn)。學(xué)者們對(duì)與同種及異種鈦合金線性摩擦焊接頭組織性能均做了大量的研究。馬鐵軍等人[8]研究了雙相鈦合金TC6鈦合金線性摩擦焊接頭的焊縫、熱力影響區(qū)及飛邊的組織特征分布及其形成過程,說明了焊縫在快速熱循環(huán)及大變形過程中發(fā)生了充分的回復(fù)與再結(jié)晶過程。而熱力影響區(qū)僅在焊縫處發(fā)生了部分再結(jié)晶,也形成了典型的流線組織。李曉紅等人[9]針對(duì)同材雙組織TC17(α+β)/ TC17(β)鈦合金線性摩擦焊接頭進(jìn)行了組織特征研究,在焊態(tài)下焊縫為典型的動(dòng)態(tài)再結(jié)晶組織。針對(duì)異種鈦合金材料Wen等人[10]對(duì)具有雙態(tài)組織結(jié)構(gòu)特征的TC4/TC11異種鈦合金線性摩擦焊組織演化進(jìn)行了研究。結(jié)果表明不同材料接頭各區(qū)寬度不同,變形不對(duì)稱。焊接接頭的界面及附近金屬因動(dòng)態(tài)再結(jié)晶形成細(xì)小等軸組織。而熱力影響區(qū)的組織與文獻(xiàn)[8]基本相同。
目前關(guān)于TC4/Ti17異種材料線性摩擦焊的研究鮮有報(bào)導(dǎo),Ti17是一種富β穩(wěn)定元素的α+β雙相過渡型鈦合金,其成分為Ti-5Al-2Sn-2Zr-4Mo-4Cr。Al,Sn和Zr的加入強(qiáng)化了α相,具有較高的強(qiáng)度及斷裂韌性。TC4是Ti-Al-V系α+β雙相等軸鈦合金具有優(yōu)異的綜合性能。
文中主要研究了在不同壓力下的TC4/Ti17異種鈦合金的LFW試驗(yàn)。結(jié)合LFW的工藝特點(diǎn)分析焊接工藝參數(shù)對(duì)接頭組織及力學(xué)性能的影響,探索異質(zhì)材料鈦合金LFW的工藝規(guī)范。
試驗(yàn)材料選用Ti17鈦合金,其化學(xué)成分見表1,試件在焊前經(jīng)過高溫固溶處理:840 ℃×4 h,AC; 二次固溶處理:800 ℃×4 h,WQ;時(shí)效處理:630 ℃×8 h,AC。試驗(yàn)用TC4鈦合金為經(jīng)過均勻化處理后的TC4鈦合金鍛件,化學(xué)成分見表2。
表1 Ti17鈦合金化學(xué)成分(質(zhì)量分?jǐn)?shù),%)
表2 TC4鈦合金化學(xué)成分(質(zhì)量分?jǐn)?shù),%)
試驗(yàn)采用哈爾濱焊接研究有限公司自主研發(fā)的HWI-LFW-30T型線性摩擦焊機(jī),最大焊接力300 kN。焊接試件尺寸50 mm×20 mm×15 mm,焊接面積20 mm×15 mm。主要焊接試驗(yàn)參數(shù):頻率f=35 Hz、振幅A=2 mm及摩擦?xí)r間t=3 s。采用3種不同焊接壓力120 MPa, 150 MPa, 180 MPa。焊接完成后,對(duì)3種焊接接頭進(jìn)行組織觀察,元素分析并進(jìn)行接頭拉伸及硬度測(cè)試。焊后截取金相試樣及拉板如圖1所示。對(duì)金相試樣進(jìn)行研磨、拋光、腐蝕后采用OM, SEM及顯微硬度儀接頭組織分析,拉板采用電子拉伸試驗(yàn)機(jī)進(jìn)行常溫拉伸試驗(yàn)。
圖1 金相及拉伸式樣取樣位置
經(jīng)過二次高溫固溶和一次時(shí)效熱處理的Ti17晶粒尺寸粗大,為1.0~1.5 mm,如圖2所示。β相相界面是由等軸α相斷續(xù)排列形成的網(wǎng)籃α相。β相內(nèi)含有大量針狀α相。在經(jīng)過一次高溫固溶熱處理空冷下初生α相表現(xiàn)為粗大的塊狀及條狀,經(jīng)過二次固溶熱處理水冷析出次生α相決定供貨態(tài)母材Ti17材料的強(qiáng)度。最后時(shí)效熱處理析出細(xì)小的針狀α相彌散分布在粗大和次生α相間,對(duì)母材進(jìn)行二次強(qiáng)化作用。
圖2 Ti17母材組織
圖3為經(jīng)過均勻化處理后的TC4鈦合金鍛造件,母材組織是由等軸初生的α相、層片狀次生α相和層片狀保留的β相組成的典型等軸組織。這種組織的形成是在α+β相區(qū)溫度上半部分發(fā)生變形,在層片狀的α+β基體上形成等軸初生α相。
2.2.1宏觀組織
在不同焊接壓力下,TC4/Ti17異種鈦合金焊接接頭低倍顯微組織如圖4所示。根據(jù)接頭區(qū)域的變形程度、明暗程度及組織特征,通常把線性摩擦焊焊接接頭細(xì)分為焊縫(WZ)、熱力影響區(qū)(TMAZ)、熱影響區(qū)(HAZ)和母材(BM),不同參數(shù)下Ti17側(cè)熱力影響區(qū)寬度均大于TC4側(cè),伴隨焊接壓力的增大,Ti17與TC4側(cè)熱力影響區(qū)均逐漸減小,Ti17側(cè)焊縫和熱力影響區(qū)寬度分別約為1 800 μm,1 700 μm和1 600 μm,而TC4側(cè)寬度分別約為900 μm,600 μm和500 μm,焊縫的上部和下部較寬,中間區(qū)域較窄[11]。如圖5所示,伴隨焊接壓力的增大,高倍焊縫區(qū)內(nèi)的熔合線變得不再清晰,異質(zhì)接頭組織在大壓力下產(chǎn)生熔合形成再結(jié)晶區(qū)域。
圖4 不同焊接壓力下異質(zhì)接頭宏觀組織特征
圖5 不同焊接壓力下異質(zhì)接頭微觀組織特征
2.2.2微觀特區(qū)組織特征
圖6為180 MPa焊接壓力下TC4/Ti17異質(zhì)鈦合金焊接接頭各區(qū)域顯微組織(在130 MPa與150 MPa焊接壓力下的微觀組織基本相似)。如圖6a所示,焊縫區(qū)Ti17側(cè)近熔合線發(fā)生了動(dòng)態(tài)再結(jié)晶,形成了等軸晶粒,與TC4側(cè)在界面處形成共生晶粒。Ti17側(cè)遠(yuǎn)離熔合線附近呈現(xiàn)流線型的組織分布,而TC4熔合線附近焊縫區(qū)溫度達(dá)到了β相變溫度以上,原始組織全部轉(zhuǎn)變?yōu)棣孪?,主要以?dòng)態(tài)再結(jié)晶為主。在焊接結(jié)束階段,以較快的冷卻速度冷卻到室溫。在800 ℃開始發(fā)生馬氏體轉(zhuǎn)變,全部轉(zhuǎn)變?yōu)轳R氏體組織,鈦合金的馬氏體在相變過程中不發(fā)生原子擴(kuò)散屬于無擴(kuò)散相變,只有晶格發(fā)生重構(gòu)。熱力影響區(qū)圖6b、圖6c分別為Ti17側(cè)近焊縫熱力影響區(qū)和近熱影響熱力影響區(qū)。熱機(jī)影響區(qū)存在亞穩(wěn)定的β相,同時(shí)和α相由于受到振動(dòng)摩擦力的作用根據(jù)對(duì)近摩擦界面的距離不同,呈現(xiàn)出不同程度的流線變形。在近焊縫熱力影響區(qū)中亞穩(wěn)定β相內(nèi)部分發(fā)生了再結(jié)晶,形成細(xì)小等軸β相晶粒,α相流變作用嚴(yán)重變得細(xì)長(zhǎng),初生及次生α相已經(jīng)分辨不清。熱影響區(qū)(圖6d)相對(duì)母材組織變化β基體組織上由于溫度的升高彌散細(xì)小的二次次生α相發(fā)生球化轉(zhuǎn)變。TC4近焊縫側(cè)熱力影響區(qū)在靠近摩擦界面的區(qū)域在發(fā)生β馬氏體轉(zhuǎn)變的同時(shí)存在部分初生α等軸晶粒發(fā)生劇烈形變的初生α相,近熱影響熱機(jī)影響伴隨則正相反伴隨初生α相局部變形外,α+β片層組織內(nèi)有部分α相轉(zhuǎn)變?yōu)棣孪?,同時(shí)相界面變得模糊,β相一部分轉(zhuǎn)變?yōu)獒槧铖R氏體組織,如圖6e、圖6f所示。TC4側(cè)熱影響區(qū)相對(duì)于母材組織變化不大。
圖6 180 MPa焊接壓力下TC4/Ti17異質(zhì)鈦合金焊接接頭各區(qū)域顯微組織
2.3.1各區(qū)顯微硬度
沿垂直焊縫方向進(jìn)行顯微硬度測(cè)試,測(cè)試點(diǎn)間距0.1 mm,如圖7所示對(duì)接頭焊縫中心區(qū)域測(cè)得結(jié)果可知TC17側(cè)母材硬度約為410 HV0.5左右,TC4側(cè)母材硬度在350 HV0.5。3種焊接壓力參數(shù)下顯微硬度趨勢(shì)整體相似,焊縫中心硬度約在400 HV0.5,Ti17側(cè)焊縫區(qū)附近顯微硬度較低約在350 HV0.5,這是由于亞穩(wěn)定β相的產(chǎn)生使Ti17側(cè)顯微硬度下降,到達(dá)熱力影響區(qū)逐漸遠(yuǎn)離焊縫區(qū)域時(shí),亞穩(wěn)定β相的減少同時(shí)熱力耦合下α相與β相的塑形變形程度劇烈,使材料發(fā)生了加工硬化,顯微硬度出現(xiàn)回升,達(dá)到熱影響區(qū)附近區(qū)域,形變程度的減小,加工硬化現(xiàn)象減弱,又由于焊接過程中熱循環(huán)作用使二次次生的α相發(fā)生球化轉(zhuǎn)變顯微硬度硬度開始呈現(xiàn)階梯式下降顯微硬度達(dá)到最低在320 HV0.5,隨著在靠近母材區(qū)域,顯微硬度值不斷升高。焊接壓力的增大使近熱影響熱力影響區(qū)的寬度變窄而使近焊縫熱力影響區(qū)及焊縫區(qū)的硬度值減小。TC4側(cè)最高硬度在中心位置,是由于焊縫中心α相熱力耦合作用下全部轉(zhuǎn)變?yōu)棣孪?,焊縫中心的快速冷去使β相發(fā)生馬氏體轉(zhuǎn)變,遠(yuǎn)離焊縫區(qū)域硬度逐漸下降。
圖7 接頭中心顯微硬度
圖8為焊縫上端部中心區(qū)域顯微硬度分布??山瓶醋鞣糯髤^(qū)域焊縫中心的顯微硬度。由于整體焊縫接頭呈現(xiàn)腰鼓狀焊縫端部各區(qū)域中Ti17側(cè)及TC4側(cè)熱力影響區(qū)及熱影響區(qū)域明顯寬度增大。近焊縫熱力影響區(qū)的加工硬化程度明顯高于焊縫中心,因此顯微硬度也相對(duì)較高,Ti17側(cè)加工硬化區(qū)域顯微硬度約為400 HV0.5,TC4側(cè)近焊縫熱力影響區(qū)顯微硬度與焊縫區(qū)接近持平。焊縫接頭端部中心硬度較高。近界面兩側(cè)合金顯微硬度差異較大。焊接接頭端部區(qū)域焊接熔化情況屬于薄弱區(qū)。近界面兩側(cè)顯微硬度差異越大則可能焊接熔合較弱。焊接壓力在120 MPa情況下顯微硬度發(fā)生突變。
圖8 接頭上端部中心顯微硬度
2.3.2拉伸試驗(yàn)和斷口分析
3組式樣采用常溫力學(xué)性能試驗(yàn)拉伸斷裂后的宏觀形貌如圖9所示,拉伸試驗(yàn)結(jié)果見表3。120 MPa焊接壓力下,焊接接頭斷于焊接區(qū)域,150 MPa和180 MPa焊接壓力下焊接接頭斷于TC4母材。TC4側(cè)母材抗拉強(qiáng)度在960 MPa,Ti17側(cè)母材抗拉強(qiáng)度為1 150 MPa。120 MPa焊接壓力下焊接熔合性較弱。
圖9 拉伸性能試件
表3 接頭拉伸試驗(yàn)結(jié)果
對(duì)TC4/Ti17在120 MPa焊接壓力下接頭常溫拉伸斷口進(jìn)行SEM分析,斷口宏觀形貌如圖10所示。圖10a中斷裂面較為平整,斷裂處未產(chǎn)生縮頸,剪切唇不明顯只在左側(cè)產(chǎn)生一點(diǎn),宏觀上屬于脆性開裂,針對(duì)裂紋源進(jìn)行了1區(qū)的高倍觀察,針對(duì)裂紋斷裂特性進(jìn)行了2區(qū)典型區(qū)域的高倍觀察。圖10b,圖10c中斷口裂紋源以典型的存在夾渣物裂紋起裂。是由于壓力不足焊接界面結(jié)合不穩(wěn)定造成的。圖10d、圖10e中2區(qū)低倍斷裂面不僅平整,且條紋方向一直,在高倍觀察下能夠看到平行走向撕裂棱,撕裂棱的特征與Ti17側(cè)焊縫區(qū)亞穩(wěn)定相β及形變?chǔ)料嘤嘘P(guān),斷裂性質(zhì)為準(zhǔn)解理,可認(rèn)為斷裂所處位置為焊接界面融合性不足形成夾渣物開裂,擴(kuò)展至Ti17熱力影響區(qū)。
在高壓力180 MPa下拉伸斷口如圖11所示,通過SEM觀察,發(fā)現(xiàn)典型韌窩形態(tài)斷裂面,帶有明顯縮頸屬于韌性斷裂。
圖10 120 MPa焊接壓力下斷口形貌
圖11 180 MPa焊接壓力下斷口形貌
(1)3種不同焊接壓力下,焊接壓力較小時(shí)能夠在低倍下觀察到明顯的熔合線,隨著焊接壓力的增大,熔合線變得不再清晰,各區(qū)域?qū)挾茸冋?,TC4/Ti17異質(zhì)線性摩擦焊接頭Ti17一側(cè)熱力影響區(qū)及焊縫寬度大于TC4側(cè)。
(2)Ti17側(cè)鈦合金焊接接頭存在2個(gè)弱化區(qū),顯微硬度較低,一是由于近縫區(qū)的亞穩(wěn)定相β轉(zhuǎn)化導(dǎo)致,顯微硬度在350 HV0.5;二是由于熱影響區(qū)二次次生α相在焊接熱循環(huán)下的球化溶解顯微硬度在320 HV0.5。TC4側(cè)焊縫顯微硬度最大,約為400 HV0.5,是由于焊縫的β相冷卻速度過快發(fā)生馬氏體轉(zhuǎn)變。
(3) 120 MPa焊接壓力下,常溫拉伸試樣斷裂在焊縫,是由于焊接壓力不足,異質(zhì)材料焊接界面結(jié)合不充分,通過斷口分析屬于脆性斷裂,界面存在夾渣,開裂可能擴(kuò)展到Ti17側(cè)熱力影響區(qū);當(dāng)焊接壓力在150 MPa和180 MPa時(shí)焊接壓力足夠大時(shí),常溫拉伸試樣斷裂在TC4母材側(cè),通過斷口分析屬于韌性斷裂,抗拉強(qiáng)度為955~960 MPa。