秦瑋
摘 要:為揭示不同捻角鋼絲繩股受腐蝕后產(chǎn)生的蝕坑對(duì)其拉伸力學(xué)性能的影響,本研究對(duì)腐蝕繩股進(jìn)行拉伸力學(xué)性能仿真,分析了蝕坑對(duì)不同捻角腐蝕繩股應(yīng)力特性和軸向承載特性等力學(xué)性能的影響。結(jié)果表明,腐蝕繩股蝕坑內(nèi)產(chǎn)生了明顯的應(yīng)力集中,且蝕坑的存在會(huì)降低繩股的承載性能。繩股最大應(yīng)力、應(yīng)力集中系數(shù)均隨繩股捻角的增大而增大。
關(guān)鍵詞:力學(xué)性能;蝕坑;捻角;有限元仿真
中圖分類(lèi)號(hào):TD532文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1003-5168(2021)03-0051-03
Study on the Influence of Corrosion Pit on the Mechanical
Properties of Wire Ropes with Different Twist Angle
QIN Wei
(School of Shipping and Naval Engineering, Chongqing Jiaotong University,Chongqing 400074)
Abstract: In order to reveal the influence of corrosion pits on the tensile mechanical properties of steel wire ropes with different twist angles, the tensile mechanical properties of corroded ropes were simulated in this study, and the influence of corrosion pits on the mechanical properties of corroded ropes with different twist angles such as stress characteristics and axial bearing characteristics was analyzed. The results show that obvious stress concentration occurs in the corrosion pits of the corroded strands, and the existence of corrosion pits will reduce the load-bearing performance of the strands. The maximum stress and the stress concentration factor of the strands increase with the increase of the strand twist angle.
Keywords: mechanical properties;corrosion pit;twist angle;finite element simulation
鋼絲繩被廣泛應(yīng)用于工程作業(yè)中,而長(zhǎng)期在酸性等惡劣環(huán)境下服役的鋼絲繩極易被腐蝕[1],使其服役性能降低甚至發(fā)生斷裂[2-3]。所以,對(duì)腐蝕引起的鋼絲繩性能變化規(guī)律進(jìn)行探究,對(duì)于確保工程作業(yè)安全有著重要意義。
鋼絲繩受腐蝕后造成的表面缺陷將降低其抗拉性能,對(duì)此,學(xué)者進(jìn)行了相關(guān)研究。受腐鋼結(jié)構(gòu)件的拉伸加載試驗(yàn)表明,受腐鋼結(jié)構(gòu)件應(yīng)變硬化隨加載時(shí)間的增加逐漸變得平緩[4],其應(yīng)變速率效應(yīng)和承載力與腐蝕率表現(xiàn)為反比關(guān)系[5-7],并存在一個(gè)腐蝕臨界值,超過(guò)該值,拉伸性能受腐蝕的影響會(huì)顯著增大[8]。
對(duì)于受腐鋼絲繩的服役性能,諸多學(xué)者已開(kāi)展了相關(guān)研究,但他們研究的大多數(shù)為鋼絲等結(jié)構(gòu)相對(duì)簡(jiǎn)單的對(duì)象。而被廣泛應(yīng)用的鋼絲繩股具有結(jié)構(gòu)復(fù)雜、受腐蝕后蝕坑參數(shù)多變、計(jì)入蝕坑后建模困難等特點(diǎn),因而深入研究服役性能受腐蝕影響的較少。對(duì)此,本研究建立了具有不同內(nèi)層側(cè)絲捻角的腐蝕多層結(jié)構(gòu)鋼絲繩股的幾何模型(蝕坑均位于外層側(cè)絲外輪廓),并對(duì)其進(jìn)行拉伸載荷作用下的有限元仿真,探究了蝕坑對(duì)不同捻角鋼絲繩股承載特性和應(yīng)力特性等力學(xué)性能的影響,以明確鋼絲繩股服役特性受腐蝕的影響。
1 有限元建模
為探究蝕坑對(duì)不同捻角多層結(jié)構(gòu)鋼絲繩股的影響,本文建立了不同內(nèi)層側(cè)絲捻角的腐蝕繩股模型,幾何參數(shù)如表1所示。其中,繩股蝕坑位于繩股外層側(cè)絲外輪廓位置,幾何模型如圖1所示。同時(shí),對(duì)其極限拉伸載荷進(jìn)行有限元分析,以此來(lái)探究蝕坑對(duì)不同內(nèi)層側(cè)絲捻角多層結(jié)構(gòu)鋼絲繩股性能的影響。
2 結(jié)果與討論
拉伸載荷下,不同內(nèi)層側(cè)絲捻角受腐多層結(jié)構(gòu)鋼絲繩股的應(yīng)力分布如圖2所示。由圖2可知,不同內(nèi)層側(cè)絲捻角[ηI]的腐蝕繩股應(yīng)力分布相同,均表現(xiàn)為以蝕坑長(zhǎng)軸為對(duì)稱(chēng)軸的軸對(duì)稱(chēng)分布;高應(yīng)力區(qū)均集中在蝕坑內(nèi)部及蝕坑短軸方向的蝕坑邊緣并向外發(fā)散,低應(yīng)力區(qū)分布在沿蝕坑長(zhǎng)軸兩端的蝕坑邊緣,該區(qū)域同樣也是繩股受腐蝕后的應(yīng)力安全區(qū)。由圖2還可知,繩股的最大應(yīng)力和應(yīng)力分布差值(最大應(yīng)力和最小應(yīng)力的差值)均隨內(nèi)層側(cè)絲捻角[ηI]的增加而增大。由上述可知,相同條件下,腐蝕繩股內(nèi)層側(cè)絲捻角越大,應(yīng)力分布均勻性越差,產(chǎn)生的最大應(yīng)力值也越大,更容易發(fā)生應(yīng)力屈服,產(chǎn)生疲勞損傷等危險(xiǎn)。
拉伸荷載作用下,蝕坑對(duì)不同內(nèi)層側(cè)絲捻角多層結(jié)構(gòu)鋼絲繩股承載力的影響如圖3所示。圖中,左側(cè)Y軸為無(wú)蝕坑條件下不同內(nèi)層側(cè)絲捻角繩股的軸向力,右側(cè)Y軸的承載力差值為無(wú)蝕坑與有蝕坑條件下繩股軸向力差值。由圖3可知,各類(lèi)繩股在無(wú)蝕坑條件下受拉伸荷載時(shí)軸向力均表現(xiàn)為先近似線性增加,其增加速率隨拉伸應(yīng)變的增大而逐漸減小;軸向力差值均表現(xiàn)為隨拉伸應(yīng)變的增加而逐漸增大。圖3中,軸向力差值均表現(xiàn)為正值,表明不同捻角繩股軸向承載力均受腐蝕的影響而減小。由圖3還可知,繩股軸向力和承載力均隨內(nèi)層側(cè)絲捻角[ηI]的增大而增大。綜上所述,繩股內(nèi)層側(cè)絲捻角越大,軸向承載力越大,同時(shí)其承載能力受腐蝕的影響也更大。
為更深入地探究蝕坑對(duì)不同內(nèi)層側(cè)絲捻角繩股的影響,圖4給出了拉伸荷載作用下繩股腐蝕區(qū)域應(yīng)力集中系數(shù)隨內(nèi)層側(cè)絲捻角[ηI]變化的曲線。由圖4可知,在拉伸荷載作用下,腐蝕繩股蝕坑區(qū)域應(yīng)力集中系數(shù)均隨內(nèi)層側(cè)絲捻角[ηI]的增加而增加。由上述可知,腐蝕對(duì)大內(nèi)層側(cè)絲捻角繩股的影響更大。
3 結(jié)論
對(duì)于不同內(nèi)層側(cè)絲捻角的腐蝕多層結(jié)構(gòu)鋼絲繩股來(lái)說(shuō),在蝕坑位置相同的條件下,腐蝕區(qū)域最大應(yīng)力值隨捻角的增加而增大,而且該區(qū)域應(yīng)力集中系數(shù)隨內(nèi)層側(cè)絲捻角的增加而增加。多層結(jié)構(gòu)鋼絲繩股內(nèi)層側(cè)絲捻角越大,軸向承載力越大,同時(shí)其承載能力受腐蝕的影響也越大。
參考文獻(xiàn):
[1]CHAVES I A,MELCHERS R E.Extreme value analysis for assessing structural reliability of welded offshore steel structures[J].Structural Safety,2014(50):9-15.
[2]SHU Q J,WANG K J,YUAN G L,et al.Assessing capacity of corroded angle members in steel structures based on experiment and simulation[J].Construction and Building Materials,2020(244):15.
[3]ZHANG W P,SONG X B,GU X L,et al.Tensile and fatigue behavior of corroded rebars[J].Construction and Building Materials,2012(34):409-417.
[4]XU J,CHEN W Z.Behavior of wires in parallel wire stayed cable under general corrosion effects[J].Journal of Constructional Steel Research,2013(85):40-47.
[5]ZHANG M Y,NAOKI N,MITSUYOSHI A,et al.Effect of the correlation of steel corrosion in the transverse direction between tensile rebars on the structural performance of RC beams[J].Construction and Building Materials,2020(264):120678.
[6]BEAULIEU L V,LEGERON F,LANGLOIS S.Compression strength of corroded steel angle members[J].Journal of Constructional Steel Research,2010(11):1366-1373.
[7]ZHANG W P,CHEN H,GU X L.Tensile behaviour of corroded steel bars under different strain rates[J].Magazine of Concrete Research,2016(3):127-140.
[8]YOO D Y,SHIN W,CHUN B.Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers[J].Cement & Concrete Composites,2020(109):13.