国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

江蘇省水稻品質(zhì)性狀遺傳和重要基因克隆研究進展

2021-05-19 06:09張昌泉馮琳皓顧銘洪劉巧泉
遺傳 2021年5期
關(guān)鍵詞:胚乳食味稻米

張昌泉,馮琳皓,顧銘洪,劉巧泉

江蘇省水稻品質(zhì)性狀遺傳和重要基因克隆研究進展

張昌泉,馮琳皓,顧銘洪,劉巧泉

揚州大學(xué)農(nóng)學(xué)院植物功能基因組學(xué)教育部重點實驗室/江蘇省作物基因組學(xué)和分子育種重點實驗室/江蘇省糧食作物現(xiàn)代產(chǎn)業(yè)技術(shù)協(xié)同創(chuàng)新中心,揚州 225009

水稻(L.)是保障我國糧食安全和農(nóng)業(yè)可持續(xù)發(fā)展的主糧作物,江蘇是我國重要的水稻種植區(qū)。經(jīng)過40多年的發(fā)展,江蘇水稻產(chǎn)量和品質(zhì)性狀研究都取得了重要進展。稻米品質(zhì)性狀組成復(fù)雜,涉及生產(chǎn)、加工、銷售和消費多方面。本文對江蘇省水稻幾個主要品質(zhì)性狀的遺傳研究歷程進行了概括,重點對水稻外觀品質(zhì)、蒸煮食味品質(zhì)和營養(yǎng)品質(zhì)的遺傳調(diào)控研究進行了總結(jié)。文章介紹了稻米品質(zhì)性狀的經(jīng)典遺傳規(guī)律和分子遺傳特點,綜述了各個品質(zhì)性狀遺傳調(diào)控相關(guān)的重要功能基因。相關(guān)研究成果凸顯了江蘇水稻品質(zhì)遺傳改良基礎(chǔ)研究在國內(nèi)外的重要地位。特別指出,隨著水稻功能基因組學(xué)的發(fā)展和品質(zhì)性狀遺傳調(diào)控網(wǎng)絡(luò)的明晰,未來針對特定或復(fù)合品質(zhì)性狀的分子設(shè)計育種是江蘇水稻品質(zhì)遺傳改良研究中要重點推進的方向。

水稻品質(zhì)性狀;遺傳規(guī)律;外觀品質(zhì);蒸煮食味品質(zhì);營養(yǎng)品質(zhì)

水稻(L.)是我國最重要的糧食作物。長期以來,為了解決“吃飽飯”問題,水稻高產(chǎn)育種及相關(guān)技術(shù)獲得了重大突破,經(jīng)歷了矮化育種、雜種優(yōu)勢利用和綠色超級稻培育3次飛躍,并成為確保我國“口糧絕對安全”的核心支撐[1]。21世紀以來,隨著國民生活水平的提高,育種目標已經(jīng)從以單一產(chǎn)量為主轉(zhuǎn)移到優(yōu)質(zhì)、多抗和高產(chǎn)并重的復(fù)合性狀,尤其是對稻米品質(zhì)的提高顯得越來越迫切。經(jīng)過多年品質(zhì)育種努力,近些年來選育出的水稻品種的稻米品質(zhì)較早期一些品種有了大幅提高,但對標國際優(yōu)質(zhì)大米和消費需求,我國高檔優(yōu)質(zhì)水稻品種較少,稻米品質(zhì)水平總體仍然較低[2,3]。

江蘇省水稻品種類型豐富,不僅秈、粳稻并存,粳稻中又有中、晚粳之分。江蘇是我國主要的粳稻種植區(qū)域,約占全國粳稻總種植面積的1/4,其中用于常規(guī)粳稻種植的面積約在200萬公頃,秈稻種植面積在30萬公頃左右[3]。江蘇省內(nèi)涉農(nóng)研究機構(gòu)高度重視水稻品質(zhì)性狀的遺傳與改良研究。自新中國成立以來,對水稻品質(zhì)性狀的遺傳研究大致可分為3個時期。第一個時期為改革開放以前,盡管國外已經(jīng)開始稻米品質(zhì)性狀的遺傳規(guī)律和遺傳效應(yīng)探索,但是國內(nèi)同時期的水稻品質(zhì)性狀遺傳研究卻很少,主要集中在對一些品種進行簡單品質(zhì)性狀的測定方面,尚未開展系統(tǒng)的遺傳學(xué)研究[4]。第二個時期為改革開放至20世紀末,該階段以稻米品質(zhì)性狀的經(jīng)典遺傳研究為主,主要是探索稻米品質(zhì)性狀的遺傳規(guī)律,研究品質(zhì)性狀與母體基因型、細胞質(zhì)基因型和胚乳基因型的關(guān)系。該時期的研究初步明確了一些品質(zhì)性狀如粒形、直鏈淀粉含量和堊白等的遺傳規(guī)律,但尚未進行具體的基因克隆與功能研究[5~6]。第三個時期為進入21世紀以來,稻米品質(zhì)性狀的分子遺傳研究進入了快速發(fā)展階段[2,7,8];其中前10年,研究主要集中在利用分子標記對一些品質(zhì)性狀進行遺傳連鎖、關(guān)聯(lián)分析和相關(guān)數(shù)量性狀位點(Quan-titative trait loci, QTLs)的定位分析[9~13],同時,也克隆了香味等幾個重要品質(zhì)性狀基因[14,15],也有一些利用轉(zhuǎn)基因技術(shù)研究品質(zhì)相關(guān)基因效用的進展[16];自2010年以來,稻米品質(zhì)性狀的一些重要基因或等位基因陸續(xù)被鑒定,基于功能基因分子標記輔助選擇和基因編輯的分子設(shè)計育種技術(shù)不斷推進,一些具有優(yōu)良食味或特殊營養(yǎng)價值的水稻新品種被不斷培育出來,稻米品質(zhì)遺傳改良研究進入了快速發(fā)展時期[2,17,18]。

稻米品質(zhì)性狀涉及多方面,就生產(chǎn)加工而言,需要較高的出米率(加工品質(zhì));就銷售過程而言,優(yōu)良的稻米外觀(外觀品質(zhì))是決定稻米商品價值的重要因素;而就消費者而言,好吃又健康(蒸煮食味、衛(wèi)生健康和營養(yǎng)品質(zhì))的稻米更具有吸引力[8]。因此,稻米品質(zhì)性狀的遺傳和分子調(diào)控研究也涉及多個研究方向。本文重點介紹了稻米品質(zhì)性狀遺傳規(guī)律和遺傳模型、以及近些年來在稻米蒸煮食味品質(zhì)(淀粉合成和香味調(diào)控)、外觀品質(zhì)(粒形和堊白)和營養(yǎng)品質(zhì)(蛋白含量和氨基酸代謝等)等重要品質(zhì)性狀相關(guān)基因克隆與功能研究方面取得的進展。

1 稻米品質(zhì)性狀遺傳規(guī)律和遺傳模型

水稻品質(zhì)性狀遺傳規(guī)律的研究是稻米品質(zhì)分子遺傳改良和育種應(yīng)用的基礎(chǔ)。從遺傳組成看,稻米的可食用部分主要為三倍體的胚乳,胚乳的遺傳組成和遺傳表現(xiàn)非常復(fù)雜,通常在F1植株的穗上就存在明顯的單粒(F2種子)分離,這使得品質(zhì)性狀的遺傳研究較為困難。針對胚乳性狀遺傳的復(fù)雜性,莫惠棟等[5,19]提出了經(jīng)典的胚乳三倍體遺傳模型,基于該模型,其不僅對控制胚乳性狀的主效基因的基因型組成和效用進行了推導(dǎo),同時也對微效基因進行了質(zhì)量–數(shù)量性狀遺傳基因效應(yīng)的推導(dǎo),該模型是后續(xù)品質(zhì)性狀遺傳和效應(yīng)研究的重要基礎(chǔ)。

稻米品質(zhì)性狀涉及多方面,包括粒形、堊白、直鏈淀粉含量(Amylose content, AC)、膠稠度(Gel con-sistency, GC)、糊化溫度(Gelatinization temperature, GT)和蛋白質(zhì)含量(Protein content, PC)等[1,8]。其中粒形是影響稻米碾磨加工品質(zhì)和外觀品質(zhì)的重要因素,該性狀的遺傳規(guī)律比較明確,其主要受核基因控制。由于粒形調(diào)控基因眾多且存在復(fù)雜的互作關(guān)系,早期的研究發(fā)現(xiàn)其受單基因、雙基因、多基因或微效多基因控制,因而早期以QTL定位研究為主[20~22]。近些年來的研究則多通過突變體或在遺傳背景差異較小的遺傳群體中開展粒形相關(guān)基因的遺傳分析、基因定位和克隆等研究[23]。

稻米堊白是影響稻米外觀和定級的重要因素,其遺傳調(diào)控非常復(fù)雜,受基因和環(huán)境的復(fù)合調(diào)控。因此,堊白性狀的遺傳調(diào)控研究進展較為緩慢,早期的研究主要以堊白相關(guān)QTLs的遺傳定位為主[24,25]。基于轉(zhuǎn)錄組的研究表明該性狀涉及多條代謝通路的互作[26,27]。近些年來,圍繞稻米堊白性狀的極端類型,如粉質(zhì)胚乳開展了較多研究,其多為單基因控制的性狀,遺傳規(guī)律簡單,通過圖位克隆方法即可鑒定突變基因。目前已經(jīng)定位和克隆了超過16個粉質(zhì)胚乳相關(guān)的基因[28]。

稻米AC、GC和GT是評價蒸煮食味品質(zhì)的關(guān)鍵指標,這些性狀主要由三倍體胚乳的基因型決定,但是每個性狀涉及的遺傳模式又存在一定區(qū)別。其中AC是最重要的指標,其與稻米外觀(透明度)、米飯質(zhì)地、米飯食味和消化特性等性狀密切相關(guān)(圖1A)。AC的調(diào)控基因是較早被克隆的[29],有關(guān)該性狀的遺傳效應(yīng)已有很多研究,發(fā)現(xiàn)高AC相對糯稻或低AC表現(xiàn)為完全顯性,但是相對中等AC表現(xiàn)為不完全顯性遺傳[30]。實際上稻米AC遺傳調(diào)控非常復(fù)雜,除了主效基因外,還有很多微效基因位點調(diào)控AC[13,31]。稻米GC與米飯質(zhì)地密切相關(guān),其主要受顯性單基因控制,但是基于不同遺傳群體的研究表明也有一些微效位點參與GC的調(diào)控[32]。后來的研究表明基因是GC的主效調(diào)控位點,一些淀粉合成酶編碼基因如、和也能微調(diào)GC[13]。稻米GT主要影響米飯的蒸煮時間,主要由同一基因位點的不同等位類型控制,基因的顯性效應(yīng)表現(xiàn)為高GT>中GT>低GT。除了主效基因外,還存在微效基因的修飾作用[33]。隨后的研究證實可溶性淀粉合成酶II-3編碼基因()是控制GT的主效基因,同時,、、和也參與了GT的調(diào)控[13]。

蛋白質(zhì)含量(PC)既是評價稻米營養(yǎng)品質(zhì)的重要指標,也是影響稻米蒸煮食味品質(zhì)的重要因素。稻米中的儲藏蛋白根據(jù)其溶解性的差異可分為堿溶性的谷蛋白(glutelin)、醇溶性的醇溶蛋白(prolamin)、鹽溶性的球蛋白(globulin)和水溶性的白蛋白(albumin),其中的谷蛋白含量最高,占胚乳總蛋白的80%以上[34]。從稻米PC在品種間的分布看,其表現(xiàn)為連續(xù)分布,但從亞群分布看,秈型稻米的PC通常高于粳型稻米[35]。稻米PC的遺傳調(diào)控也非常復(fù)雜,研究發(fā)現(xiàn)其表現(xiàn)為顯性和細胞質(zhì)效應(yīng),低PC對高PC為部分顯性,除了幾對主效基因外,一些微效基因也參與了PC的調(diào)控,其屬于典型的由多基因控制的數(shù)量性狀[36]。此外,研究發(fā)現(xiàn)PC與種植環(huán)境還存在復(fù)雜的互作,這進一步增加了開展PC遺傳研究的難度[37~39]。因此,多年來圍繞稻米PC的研究多集中在相關(guān)QTL位點的遺傳定位方面。

隨著水稻基因組重測序技術(shù)的發(fā)展和相關(guān)品質(zhì)基因信息的豐富,利用分子標記開展稻米品質(zhì)形成遺傳調(diào)控網(wǎng)絡(luò)的研究逐漸深入。早期的研究通常是利用分子標記對特定的品質(zhì)性狀進行遺傳定位分析,這一類研究多以定位品質(zhì)相關(guān)QTL為主,如上述涉及的AC以及米飯延伸等性狀QTL的定位研究[32,37,38,40]。隨后,基于等位基因特異分子標記的關(guān)聯(lián)分析被用來研究不同淀粉合成相關(guān)基因的組合與稻米品質(zhì)性狀的關(guān)系。Tian等[13]系統(tǒng)分析了影響稻米蒸煮食味品質(zhì)的淀粉合成酶相關(guān)基因()的組合效用,發(fā)現(xiàn)和能夠協(xié)同調(diào)控AC、GC和GT,其中對AC和GC起主效作用,對GT是微效的。而對GT起主效作用,對AC和GC起微效作用。和分別對GC和GT發(fā)揮微效作用,和共同對GC和GT起微效作用,而、、和共同影響AC。在糯稻背景下,Yan等[41]進一步分析了不同單倍型與稻米淀粉粘滯性(RVA)特征值間的關(guān)系,表明不同之間也是通過互作來協(xié)同調(diào)控稻米的糊化特性。Fan等[42]利用近等基因系驗證了的不同等位類型在秈稻背景下對稻米品質(zhì)的影響,表明秈型來源的等位基因?qū)Φ久灼焚|(zhì)影響最大。此外,Li等[43]利用染色體片段代換系在8個環(huán)境下分析了稻米理化特性和蒸煮食味品質(zhì)之間的關(guān)系,基于分子標記分析,檢測到132個加性效應(yīng)QTLs,其中56個QTLs能夠被重復(fù)檢出,并且存在典型的QTL簇。Zhao等[44]利用210個分子標記(部分等位基因特異標記)對253份水稻種質(zhì)的11個品質(zhì)性狀進行了關(guān)聯(lián)分析,在秈稻和粳稻中分別檢測到33和30個位點與品質(zhì)性狀關(guān)聯(lián),其中多個位點與已知的淀粉合成酶相關(guān)基因存在重疊。Yao等[45]利用分子標記分析了Wx背景下可溶性淀粉合成酶基因的等位變異組合以及對稻米品質(zhì)的效應(yīng),發(fā)現(xiàn)不同來源的和均對稻米品質(zhì)指標如AC、GT和GC有顯著的影響。上述研究表明稻米品質(zhì)性狀是由多基因多位點參與的復(fù)雜調(diào)控網(wǎng)絡(luò),并且各性狀以及各調(diào)控位點間均存在明顯的相關(guān)性,這為品質(zhì)性狀遺傳調(diào)控網(wǎng)絡(luò)的全面深入解析帶來了挑戰(zhàn)。

圖1 水稻直鏈淀粉含量與稻米品質(zhì)性狀的相關(guān)性及Wx基因的等位變異和遺傳分化

A:稻米直鏈淀粉含量與品質(zhì)性狀的相關(guān)性;B:基因的結(jié)構(gòu)與功能等位變異類型;C:不同等位類型的可能演變途徑;AC:直鏈淀粉含量(Amylose content);AAC:表觀直鏈淀粉含量(Apparent amylose content)。

2 稻米蒸煮食味品質(zhì)重要基因克隆

稻米蒸煮食味品質(zhì)主要與香味、淀粉組成和結(jié)構(gòu)等因素有關(guān)。在香味研究方面,Chen等[14]成功克隆了控制稻米香味物質(zhì)2-乙酰-1-吡咯啉(2-AP)的基因,證明其為香味控制的主效基因。在稻米淀粉合成代謝方面的研究已有很多,大量的直接或間接參與淀粉合成調(diào)控的基因已經(jīng)被克隆(表1)[8,46]。早期的研究多為利用轉(zhuǎn)基因技術(shù)分析一些淀粉合成相關(guān)基因的效用,如利用反義RNA技術(shù)成功創(chuàng)建了系列低AC的水稻品系[16,47,48]。Wang等[49]通過對轉(zhuǎn)基因系的品質(zhì)分析,發(fā)現(xiàn)AC與稻米RVA譜存在密切的關(guān)聯(lián)。此外,Zhang等[50]基于對基因編碼蛋白GBSSI的定點修飾研究表明AC與稻米透明度和GT正相關(guān)。也有一些利用RNA干擾技術(shù)開展的研究,如Wei等[51~53]對和基因的下調(diào)表達,創(chuàng)建了高抗性淀粉水稻新品系;Li等[54]對在不同遺傳背景下進行了下調(diào)表達,發(fā)現(xiàn)其與基因協(xié)同調(diào)控稻米蒸煮食味品質(zhì);Li等[55]也對進行了RNA干擾,創(chuàng)建了具有極低AC且稻米透明的新型優(yōu)良食味軟米,該研究為后續(xù)改良當(dāng)下低AC半糯稻米的外觀品質(zhì)提供了重要線索。此外,也有對控制GT的()基因進行的RNA干擾研究,陳專專等[56]發(fā)現(xiàn)下調(diào)表達不同等位基因?qū)Φ久灼焚|(zhì)的影響存在明顯區(qū)別。在進行遺傳修飾研究的同時,也有一些對品質(zhì)性狀位點定位和克隆的研究。如Zhang等[31]利用染色體片段代換系鑒定了4個能在高溫下提高基因剪切效率的QTLs。基于同一套染色體片段代換系,其又對在不同環(huán)境下能微調(diào)AC的位點進行了精細定 位[57]。Chen等[58]基于種質(zhì)資源篩查和關(guān)聯(lián)分析,鑒定了控制低GT的等位基因ALK,并利用近等基因系證明了其對稻米品質(zhì)改良的潛在價值。此外,Chen等[59]進一步構(gòu)建了同一背景下不同和等位基因的組合系,表明兩者協(xié)同調(diào)控稻米蒸煮食味品質(zhì)。Zhang等[60]在控制高GT的ALK近等基因系中鑒定了1個能夠提高GT的ALK等位基因,證明其能夠進一步提高稻米GT。Tang等[61]通過圖位克隆技術(shù)克隆了控制籽粒灌漿的ADP葡萄糖焦磷酸化酶大亞基編碼基因,發(fā)現(xiàn)其功能缺失會嚴重阻礙淀粉在胚乳中的積累。

基因是控制稻米直鏈淀粉含量的最重要基因。Liu等[15]通過圖位克隆方式從一份云南軟米種質(zhì)中鑒定了Wx等位基因,發(fā)現(xiàn)其廣泛分布在云南一帶的優(yōu)質(zhì)軟米品種中。目前該等位基因已在一些優(yōu)質(zhì)南方水稻品種選育中得到了廣泛應(yīng)用。Zhang等[62]通過種質(zhì)資源篩查和圖位克隆方式,鑒定了基因的祖先等位基因Wx,發(fā)現(xiàn)其廣泛存在于野生稻中,證明當(dāng)下栽培稻中的各種等位類型均由其通過不同突變方式進化而來,栽培稻中AC的廣泛變異與不同的等位類型直接相關(guān)(圖1,B和C)。此外,Zhang等[63]也克隆了一個稀有的等位基因Wx,發(fā)現(xiàn)其可能是在水稻馴化過程中由WxWx同源重組而來;Wx所控制的AC為13%左右,其對稻米蒸煮食味品質(zhì)和外觀品質(zhì)均有顯著的改善效果。事實上,在水稻品質(zhì)育種過程中,一些品種尤其是秈稻品種已經(jīng)通過選擇控制中低AC的Wx等位基因替代控制高AC的Wx等位基因完了品質(zhì)的一次改良。在此過程中育種家可能忽略了Wx等位基因的作用,因為該基因在秈稻中也能較Wx顯著改良稻米的蒸煮食味品質(zhì)[64]。在基因克隆研究的同時,也有利用CRISPR/Cas9技術(shù)對品質(zhì)基因編輯的探索,一些研究者針對基因啟動子區(qū)的關(guān)鍵順式作用元件和編碼區(qū)功能位點進行了編輯,獲得了多個微調(diào)AC的新等位類型[18,65,66]。

除了直接參與淀粉合成調(diào)控外,一些間接調(diào)控淀粉代謝或胚乳發(fā)育的基因也有很多被克隆(表1)。編碼一個未知功能蛋白,其含有質(zhì)體定位信號和淀粉結(jié)合結(jié)構(gòu)域,突變后會造成明顯的粉質(zhì)表型,并且稻米總淀粉含量降低。進一步的分析表明該蛋白可能介導(dǎo)了異淀粉酶ISA1與淀粉粒的結(jié)合[67]。FLO7也編碼一個未知功能蛋白,該蛋白定位于淀粉體基質(zhì)中,功能缺失會造成顯著的胚乳外周粉質(zhì)表型,同時也會造成胚乳外周AC降低和支鏈淀粉結(jié)構(gòu)改變[68]。Duan等[69]克隆了果糖6-磷酸1-磷酸轉(zhuǎn)移酶β亞基編碼基因,表明其突變會造成嚴重的粉質(zhì)胚乳,粒厚和千粒重也顯著下降。進一步的分析發(fā)現(xiàn)其可能通過調(diào)控糖代謝方式調(diào)控水稻胚乳淀粉積累OsBT1編碼了一個ADP-葡萄糖轉(zhuǎn)運蛋白,其定位在淀粉體質(zhì)膜上,突變會造成明顯的心白表型,同時也導(dǎo)致總淀粉和AC下降,其可能通過調(diào)控多個淀粉合成相關(guān)基因的表達參與淀粉代謝調(diào)控[70]。OsPKpα1編碼一個丙酮酸激酶,該酶在淀粉體基質(zhì)中發(fā)揮作用,突變體具有明顯的心白,脂肪酸含量、總淀粉含量和AC均顯著下降[71]。OsNDUFA9編碼一個線粒體復(fù)合體I(泛醌氧化還原酶)亞基,其突變后不僅抑制種胚發(fā)育,還導(dǎo)致了粉質(zhì)胚乳,總淀粉含量和千粒重均顯著下降。隨后的分析表明該基因是胚發(fā)育和淀粉積累所依賴的[72]。編碼了一個質(zhì)體定位的熱休克蛋白OsHsp70cp-2,突變后導(dǎo)致明顯的粉質(zhì)胚乳,其可能通過與內(nèi)膜轉(zhuǎn)運復(fù)合體Tic共同調(diào)控淀粉體中蛋白的轉(zhuǎn)運而影響胚乳淀粉積累[73]。編碼一種與親磷脂酸磷脂酶A1同源的磷脂酶樣蛋白質(zhì),其定位于細胞質(zhì)基質(zhì)和細胞內(nèi)膜。其突變會造成皺縮的粉質(zhì)胚乳,胚乳中脂質(zhì)和磷脂含量增加,總淀粉和AC顯著下降。研究發(fā)現(xiàn)其可能通過調(diào)控胚乳中半乳糖脂的合成而參與脂質(zhì)和淀粉代謝的協(xié)同調(diào)控[74]。編碼一個依賴NAD的胞質(zhì)蘋果酸脫氫酶CMDH,其突變導(dǎo)致ATP含量降低,淀粉合成相關(guān)酶活性減弱,出現(xiàn)皺縮的粉質(zhì)胚乳表型。過量表達該基因后能夠顯著增加胚乳淀粉的積累而增加粒量[28]。和是NAC轉(zhuǎn)錄因子家族成員,單基因的突變不影響淀粉的合成,但雙突變后會造成嚴重的粉質(zhì)表型,隨后的分析表明2個基因可能通過調(diào)控一些淀粉和儲藏蛋白合成而影響胚乳淀粉的積累[75]。在胚乳發(fā)育調(diào)控方面,Chen等[76]鑒定了對高溫敏感的印記基因,發(fā)現(xiàn)其在胚乳發(fā)育早期的胚乳細胞化過程中發(fā)揮作用。E等[77]分析了水稻中8個胚乳特異表達的核因子NF-Ys,發(fā)現(xiàn)其可能以復(fù)合體的形式參與胚乳的發(fā)育進程,其中敲除后能夠嚴重影響種子的灌漿造成皺縮的粉質(zhì)表型。隨后,Niu等[78]的研究證實轉(zhuǎn)錄因子能夠與和互作調(diào)控種子發(fā)育早期的胚乳細胞化進程以及調(diào)控淀粉合成酶相關(guān)基因的表達。

表1 已克隆的稻米品質(zhì)性狀重要基因及其應(yīng)用研究

續(xù)表

3 稻米外觀品質(zhì)重要基因克隆

稻米外觀品質(zhì)主要涉及籽粒透明度和堊白,其中堊白又與粒形密切相關(guān),一般細長籽粒的堊白粒率和堊白度較低。稻米透明度的形成較為復(fù)雜,目前可以明確的是稻米透明度與水分含量和AC密切相關(guān),其中AC是最關(guān)鍵的影響因素。極端低AC的糯稻都是不透明的蠟質(zhì)表型,而低AC的半糯類稻米(也稱軟米)多為暗胚乳或云霧狀胚乳表型。通過淀粉粒斷面掃描電鏡觀察,發(fā)現(xiàn)胚乳透明度與單個淀粉粒內(nèi)部的空腔數(shù)目和大小有關(guān),因此也是調(diào)控籽粒透明度的關(guān)鍵基因[50,79]。Li等[55]的研究發(fā)現(xiàn)下調(diào)表達后能夠極顯著的降低AC(低于半糯類稻米),但是其對應(yīng)的籽粒透明度未改變,說明其可能在改良低AC半糯類稻米透明方面具有重要應(yīng)用潛力。

近些年水稻粒形基因的克隆和遺傳調(diào)控研究發(fā)展迅速,已經(jīng)克隆了大量粒形相關(guān)基因,如、、、、、和等[23]。江蘇在該領(lǐng)域的研究也取得了很多進展(表1)。Wan等[80]首先利用染色體片段代換系將控制粒寬和長寬比的主效QTL精細定位在很小的區(qū)間。Weng等[81]進一步克隆了該QTL即,發(fā)現(xiàn)存在于寬粒品種中的1212 bp缺失與粒寬性狀關(guān)聯(lián)。隨后的研究表明GW5蛋白能與油菜素內(nèi)酯信號途徑中的一個關(guān)鍵激酶GSK2直接互作,其能夠抑制GSK2下游兩個轉(zhuǎn)錄因子BZR1和DLT的活性,使得非磷酸化狀態(tài)的BZR1與DLT積累并進入細胞核中,調(diào)控BR下游響應(yīng)基因表達,進而調(diào)控水稻粒型等生長發(fā)育過程[82]。編碼一個功能未知的植物特有蛋白,主要在幼嫩組織中表達,該基因主要影響穗軸、一次和二次枝梗的伸長,不影響穗原基的發(fā)生,攜帶功能性的植株粒形變長[83]。是一個粒長負調(diào)控因子,其編碼一個含Kelch結(jié)構(gòu)域的PP2A蛋白磷酸酶(OsPPKL1),其通過調(diào)控細胞周期蛋白T1;3而控制籽粒大小[84]。隨后的研究表明能夠與GSK3/SHAGGY-Like家族激酶OsGSK3互作,后者又能與BR信號通路關(guān)鍵轉(zhuǎn)錄因子OsBZR1互作并通過磷酸化狀態(tài)的改變來調(diào)控BR信號通路和水稻粒長[85]。也負調(diào)控籽粒長度,攜帶功能型的植株具有較長的籽粒,由于其主要調(diào)控粒長而不影響粒重,是稻米粒形和外觀品質(zhì)改良的有利基因資源[86]。SLG編碼一個預(yù)測的類似BAHD?;D(zhuǎn)移酶蛋白,是維持油菜素內(nèi)酯平衡的一個重要調(diào)控因子,以同聚體形式發(fā)揮功能。其功能缺失突變體植株籽粒變窄,葉傾角變大[87]。是亞精胺合酶編碼基因之一,其下調(diào)表達后能夠顯著增加粒長,也能提高單株產(chǎn)量[88]。編碼一種未知保守功能域的蛋白,其通過調(diào)控細胞分裂來調(diào)節(jié)粒形。蛋白互作分析表明GS9蛋白和卵形家族蛋白OsOFP14和OsOFP8之間能夠互作并且受OsGSK2激酶調(diào)節(jié),該基因獨立于已知的稻米粒形調(diào)控通路,能夠與和基因疊加來調(diào)控稻米粒形,是培育細長型稻米的重要基因資源[89]。OsbHLH107是一個核定位的轉(zhuǎn)錄因子,其過量表達能夠通過增加籽粒長軸上細胞的數(shù)目來增加粒長,而敲除該基因后會導(dǎo)致較短的籽粒[90]。編碼水稻B類型G蛋白的γ亞基,其主要通過GA途徑負調(diào)控粒形,突變體籽粒在增長的同時粒重也顯著增加[91]。赤霉素誘導(dǎo)表達基因是赤霉素應(yīng)答的正調(diào)控因子,下調(diào)表達該基因會造成株高、粒長和產(chǎn)量下降,而過量表達后能夠顯著增加株高、粒長和粒寬[92]。編碼液泡轉(zhuǎn)化酶的基因主要在液泡腔內(nèi)發(fā)揮作用,其通過調(diào)控糖轉(zhuǎn)運和淀粉積累等方式影響植株粒形和產(chǎn)量[93]。Lan等[94]的研究發(fā)現(xiàn)轉(zhuǎn)錄因子OsWRKY36能夠增強SLR1 (GA信號抑制因子)的轉(zhuǎn)錄,并且能夠防止SLR1通過GA途徑被降解,從而調(diào)控株高和粒形。Cheng等[95]發(fā)現(xiàn)水稻中不依賴于受精的胚乳自主發(fā)生基因和在調(diào)控種子發(fā)育中的功能發(fā)生了分化,過量表達或者敲除均能夠?qū)е路N子變小,而敲除造成胚乳細胞化受阻而無法正常發(fā)育。在粒形基因克隆的同時,Zhang等[96]根據(jù)14個粒形基因的功能位點開發(fā)了21個基于凝膠電泳的功能性分子標記對這些基因進行了分型和群體檢測,這為后續(xù)水稻粒形和外觀品質(zhì)改良提供了有用的分子標記資源。

4 稻米營養(yǎng)品質(zhì)重要基因克隆

稻米營養(yǎng)品質(zhì)的一些研究多以蛋白質(zhì)和氨基酸代謝調(diào)控為主。蛋白質(zhì)代謝主要涉及蛋白質(zhì)含量和轉(zhuǎn)運調(diào)控兩方面,其中又以谷蛋白的研究為主,已經(jīng)克隆了一批相關(guān)調(diào)控基因(表1)。在谷蛋白含量調(diào)控方面,早期的研究集中在低谷蛋白含量基因位點的遺傳定位分析,如Jiang等[97]從168個品種中篩選獲得了3個低谷蛋白突變體W3660、W204和W379。Wang等[98]進一步對W3660中控制低谷蛋白含量的位點進行了精細定位,發(fā)現(xiàn)的下調(diào)表達可能是造成低谷蛋白的重要原因。Yang等[99]利用染色體片段代換系精細定位了PC含量QTL,發(fā)現(xiàn)來自秈稻Habataki的能夠顯著降低稻米PC隨后,其利用另一套染色體片段代換系鑒定了2個穩(wěn)定的PC調(diào)控QTLs,并證明OsGluA2是其中一個QTL位點的候選基因。進一步的分析發(fā)現(xiàn)OsGluA2啟動子的一個SNP變異是造成品種間谷蛋白含量變異的重要原因[100]。此外,在谷蛋白轉(zhuǎn)運調(diào)控方面克隆了很多基因。編碼一個蛋白質(zhì)二硫鍵異構(gòu)酶,負責(zé)谷蛋白分子內(nèi)和分子間二硫鍵的形成,其突變后導(dǎo)致谷蛋白不能從內(nèi)質(zhì)網(wǎng)(ER)輸出,而影響種子發(fā)育[101]。/編碼一個小分子量跨膜蛋白,其能與內(nèi)衣被組分COPII (coat protein complex II)的Sec23蛋白互作調(diào)控COPII的組裝,從而控制谷蛋白的ER輸出[102]。編碼一個內(nèi)膜系統(tǒng)堿化因子,其通過對內(nèi)膜系統(tǒng)pH值穩(wěn)態(tài)調(diào)節(jié)參與蛋白前體致密囊泡(DV)的發(fā)生和靶向運輸調(diào)控[103]。作為一個分子開關(guān),通過與GTP結(jié)合態(tài)(活性態(tài))和GDP結(jié)合態(tài)(非活性態(tài))間的循環(huán),調(diào)控谷蛋白囊泡的運輸[104];而編碼的bGPA2蛋白是GPA1的鳥核苷酸激活因子GEF (Guanine nucleotide exchange factor),其能夠?qū)⒎腔钚詰B(tài)的GPA1-GDP轉(zhuǎn)化為活性態(tài)的GPA1-GTP[105];另外,編碼的GPA3蛋白能與GPA2互作,負責(zé)招募GPA2于DV膜上,且GPA3-GPA2- GPA1形成復(fù)合體,協(xié)同調(diào)控谷蛋白的后高爾基體分選[106]。最近的研究發(fā)現(xiàn)了GPA1/Rab5a的效應(yīng)蛋白GPA5,其為包含PHOX結(jié)構(gòu)域的脂質(zhì)結(jié)合蛋白,能夠與PI(3)P磷脂特異結(jié)合,并通過與CORVET (class C core vacuole/endosome tethering)栓系復(fù)合體和SNARE (soluble NSF attachment protein receptor)蛋白VAMP721互作,介導(dǎo)DV囊泡與蛋白體PBII的膜融合[107]。

賴氨酸是稻米中的第一限制必需氨基酸,也是影響稻米營養(yǎng)品質(zhì)的重要因素。在高等植物中賴氨酸主要通過天冬氨酸代謝通路合成,在該通路中有2個受反饋抑制調(diào)節(jié)的關(guān)鍵酶,即天冬氨酸激酶(AK)和二氫吡啶羧酸合酶(DHPS)。蘇氨酸和賴氨酸能夠反饋抑制的表達,賴氨酸單獨也能抑制的表達。同時,當(dāng)賴氨酸含量提高后,會增加賴氨酸分解關(guān)鍵酶賴氨酸-酮戊二酸還原酶/酵母氨酸脫氫酶(LKR/SDH)的活性而加快賴氨酸的降解[108]。因此,通過表達外源富含賴氨酸的蛋白或者針對內(nèi)源基因進行反饋抑制遺傳修飾是提高稻米賴氨酸含量的重要方式。Liu等[109]通過過量表達來自四棱豆中富含賴氨酸的基因,使得水稻種子賴氨酸含量提高了30%。Long等[110]在抑制/表達的同時,轉(zhuǎn)入細菌來源的對反饋抑制不敏感的和,使得稻米中的自由賴基酸含量提高了60倍。Wong等[111]通過過量表達內(nèi)源賴氨酸含量豐富的組蛋白RLRH1和RLRH2,使稻米賴氨酸含量提高了35%。Yang等[112,113]對獲得的無選擇標記的高賴氨酸水稻進行的品質(zhì)評價和小鼠飼喂研究表明,高賴氨酸性狀的獲得對稻米其它品質(zhì)指標影響較小,同時,高賴氨酸稻米對小鼠的生長和健康情況較為有利。此外,Yang等[114]通過代謝組等分析發(fā)現(xiàn)高賴氨酸水稻糙米的暗棕色的表型是由5-羥色胺的積累造成的,進一步的分析表明賴氨酸分解代謝中的2-氨基脂肪酸升高可能在茉莉酸信號通路和5-羥色胺積累之間的聯(lián)系中起關(guān)鍵作用。近期,Yang等[115]對水稻內(nèi)源的AK和DHPS進行了定點氨基酸修飾,發(fā)現(xiàn)修飾后的兩個酶對賴氨酸的反饋抑制均降低;將其分別導(dǎo)入水稻中,發(fā)現(xiàn)其能夠分別提高自由賴氨酸含量至6.6倍和21.7倍,而將其在/下調(diào)表達系共同表達后能夠提高自由賴氨酸含量高達58.5倍。

5 江蘇水稻品質(zhì)分子遺傳改良策略

江蘇省水稻生產(chǎn)主要以粳稻為主。自2000年以來,在粳稻選育過程中開始重視稻米品質(zhì)的改良,注意選用優(yōu)質(zhì)材料作為雜交育種的親本。多年來育成了一批品質(zhì)達到一級優(yōu)質(zhì)稻谷標準的品種。同時,在優(yōu)良食味水稻培育方面更是形成了江蘇特色品種,以“南粳”系列為代表的半糯粳稻品種多次在全國稻米食味品質(zhì)評比中獲獎。然而江蘇水稻在國內(nèi)外缺乏高端有影響力和競爭力的優(yōu)質(zhì)品種[2,17]。由于稻米品質(zhì)本身由多個性狀組成,各品質(zhì)性狀間、品質(zhì)與環(huán)境以及品質(zhì)與產(chǎn)量性狀間均存在復(fù)雜的互作關(guān)系,這導(dǎo)致稻米品質(zhì)的遺傳改良中難以兼顧所有性狀[8,39]。江蘇半糯類稻米盡管食味較好,由于其暗胚乳的特性導(dǎo)致了“好吃不好看”缺陷的存在。此外,江蘇稻區(qū)在水稻灌漿期時有極端高溫事件發(fā)生,這不僅造成了較高的稻米堊白而且也降低了稻米的食味品質(zhì)[8,116]。當(dāng)前江蘇水稻優(yōu)質(zhì)育種的常用策略之一是借助分子標記有針對性的對半糯基因Wx進行輔助選擇,同時也兼顧香味基因的分子標記輔助選擇。從國內(nèi)外優(yōu)質(zhì)稻米品種和品牌發(fā)展趨勢來看,江蘇水稻品質(zhì)改良應(yīng)當(dāng)繼續(xù)堅持推進當(dāng)下的優(yōu)良食味品種選育的特色路線,通過產(chǎn)業(yè)化和品牌化來不斷加強特色品種的影響力。在此基礎(chǔ)上,育種家應(yīng)當(dāng)重視當(dāng)下特色品種的自身缺陷,一方面通過引入粒形調(diào)控基因如等能夠適度拉長粒形的基因來降低稻米的堊白;另一方面,也應(yīng)當(dāng)嘗試通過引入新的等位基因如Wx或者能夠適度上調(diào)直鏈淀粉含量的基因位點如來微調(diào)稻米直鏈淀粉含量,在保證稻米優(yōu)良食味品質(zhì)的前提下進一步改善半糯類稻米的透明度。在常規(guī)水稻品種選育方面,育種家同樣需要關(guān)注稻米的外觀品質(zhì)改良,同時,也可以嘗試通過選擇OsGluA2等能夠調(diào)控稻米蛋白質(zhì)含量的優(yōu)異等位基因來培育具有較低蛋白質(zhì)含量的品種來改善稻米食味品質(zhì)。在其它方面,育種家也應(yīng)當(dāng)關(guān)注消費者對稻米多樣化的需求,加強功能性品種如低谷蛋白水稻的培育和推廣以滿足特殊人群的需要。

6 結(jié)語與展望

育種技術(shù)的發(fā)展和優(yōu)質(zhì)新品種的培育為我國糧食安全和農(nóng)業(yè)可持續(xù)發(fā)展提供了重要保障。隨著分子遺傳學(xué)的發(fā)展,基因組選擇技術(shù)和轉(zhuǎn)基因技術(shù)越來越成熟,一大批的品質(zhì)基因被鑒定出來,稻米品質(zhì)的遺傳調(diào)控網(wǎng)絡(luò)也越來越清晰。盡管傳統(tǒng)的常規(guī)育種和分子標記輔助選擇育種一直是水稻品質(zhì)育種的主流方向,但是基于當(dāng)下豐富的有利基因信息,開展分子設(shè)計育種,有針對性的實現(xiàn)稻米品質(zhì)性狀的精準改良是未來水稻品質(zhì)遺傳育種的發(fā)展方向。因此,江蘇省的水稻品質(zhì)遺傳改良應(yīng)立足于育種現(xiàn)實,一方面在已有基礎(chǔ)上進一步對稻米品質(zhì)進行升級,如針對半糯品種的暗胚乳缺陷,通過引入新的基因或利用基因編輯等技術(shù)在保證優(yōu)良食味的前提下進一步提高稻米的透明度。另一方面,基于消費者多樣化的需求,應(yīng)努力推進具有特殊營養(yǎng)價值或特殊人群需求的功能性新品種的開發(fā)。

[1] Wu B, Hu W, Xing YZ. The history and prospect of rice genetic breeding in China., 2018, 40(10): 841–857.吳比, 胡偉, 邢永忠. 中國水稻遺傳育種歷程與展望, 遺傳, 2018, 40(10): 841–857.

[2] Zhang CQ, Zhao DS, Li QF, Gu MH, Liu QQ. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality., 2016, 49(22): 4267–4283.張昌泉, 趙冬生, 李錢峰, 顧銘洪, 劉巧泉. 稻米品質(zhì)性狀基因的克隆與功能研究進展.中國農(nóng)業(yè)科學(xué), 2016, 49(22): 4267–4283.

[3] Wang CL, Zhang YD, Zhu Z, Chen T, Zhao QY, Zhong WG, Yang J, Yao S, Zhou LH, Zhao L, Li YS. Research progress on the breeding of japonica super rice varieties in Jiangsu Province, China., 2017, 16(5): 992–999.

[4] Mo HD. Quality improvement of rice grain in China., 1993, 26(4): 8–14.莫惠棟. 我國稻米品質(zhì)的改良. 中國農(nóng)業(yè)科學(xué), 1993, 26(4): 8–14.

[5] Mo HD, Xu CW. Genetic analysis for qualitative- quantitative traits III. Endosperm characters under triploid genetic control., 1994, 20(5): 513–519.莫惠棟, 徐辰武. 質(zhì)量–數(shù)量性狀的遺傳分析Ⅲ. 受三倍體遺傳控制的胚乳性狀. 作物學(xué)報, 1994, 20(5): 513–519.

[6] Li X, Mo HD, Wang AM, Xu CW, Zhu YH, Yu HX. Genetic expression for quality traits of rice grain in japonica hybrids., 1999, 13(4): 197–204.李欣, 莫惠棟, 王安民, 徐辰武, 朱毅華, 于恒秀. 粳型雜種稻米品質(zhì)性狀的遺傳表達. 中國水稻科學(xué), 1999, 13(4): 1197–204.

[7] Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice: the quest for quality., 2009, 14(3): 133–139.

[8] Zhou H, Xia D,He YQ. Rice grain quality-traditional traits for high quality rice and health-plus substances., 2020, 40(1): 1–17.

[9] Yan CJ, Xu CW, Yi CD, Liang GH, Zhu LH, Gu MH. Genetic analysis of gelatinization temperature in rice via microsatellite (SSR) markers., 2001, 28(11): 1002–1005.嚴長杰, 徐辰武, 裔傳燈, 梁國華, 朱立煌, 顧銘洪. 利用SSR標記定位水稻糊化溫度的QTLs. 遺傳學(xué)報, 2001, 28(11): 1002–1005.

[10] Li ZF, Wan JM, Xia JF, Zhai HQ. Mapping quantitative trait loci underlying appearance quality of rice grains (L)., 2003,30(3): 251– 259.李澤福, 萬建民, 夏加發(fā), 翟虎渠. 水稻外觀品質(zhì)的數(shù)量性狀基因位點分析. 遺傳學(xué)報, 2003,30(3): 251– 259.

[11] Zhu CL, Jiang L, Zhang WW, Wang CM, Zhai HQ, Wan JM. Identifying QTLs for thermo-tolerance of amylose content and gel consistency in rice., 2006, 20(3): 248–252.朱昌蘭, 江玲, 張文偉, 王春明, 翟虎渠, 萬建民. 稻米直鏈淀粉含量和膠稠度對高溫耐性的QTL分析. 中國水稻科學(xué), 2006, 20(3): 248–252.

[12] Li Y, Wang JK, Qiu LJ, Ma YZ, Li XH, Wan JM. Crop molecular breeding in china: current status and perspectives., 2010, 36(9): 1425–1430.黎裕, 王建康, 邱麗娟, 馬有志, 李新海, 萬建民. 中國作物分子育種現(xiàn)狀與發(fā)展前景. 作物學(xué)報, 2010, 36(9): 1425–1430.

[13] Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities., 2009, 106(51): 21760–21765.

[14] Chen SH, Yang Y, Shi WW, Ji Q, He F, Zhang ZD, Cheng ZK, Liu XN, Xu ML., encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance., 2008, 20(7): 1850–1861.

[15] Liu LL, Ma XD, Liu SJ, Zhu CL, Jiang L, Wang YH, Shen Y, Ren YL, Dong H, Chen LM, Liu X, Zhao ZG, Zhai HQ, Wan JM. Identification and characterization of a novelallele from a Yunnan rice landrace., 2009, 71(6): 609–626.

[16] Liu QQ, Wang ZY, Chen XH, Cai XL, Tang SZ, Yu HX, Zhang JL, Hong MM, Gu MH. Stable inheritance of the antisensegene in transgenic rice with reduced amylose level and improved quality., 2003, 12(1): 71–82.

[17] Zhao CF, Yue HL, Huang SJ, Zhou LH, Zhao L, Zhang YD, Chen T, Zhu Z, Zhao QY, Yao S, Liang WH, Lu K, Wang CL. Eating quality and physicochemical properties in nanjing rice varieties., 2019, 52(5): 909–920.趙春芳, 岳紅亮, 黃雙杰, 周麗慧, 趙凌, 張亞東, 陳濤, 朱鎮(zhèn), 趙慶勇, 姚姝, 梁文化, 路凱, 王才林. 南粳系列水稻品種的食味品質(zhì)與稻米理化特性. 中國農(nóng)業(yè)科學(xué), 2019, 52(5): 909–920.

[18] Huang LC, Sreenivasulu N, Liu QQ.editing: Old meets new., 2020, 25(10): 963–966.

[19] Mo HD. Genetic models and generation means for endosperm traits., 1989, 16(2): 111– 117.莫惠棟. 胚乳性狀的遺傳模型和世代平均數(shù). 遺傳學(xué)報, 1989, 16(2): 111–117.

[20] Gong LH, Gao ZY, Ma BJ, Qian Q. Progress in genetic research into grain shape in rice., 2011, 46(6): 597–605.宮李輝, 高振宇, 馬伯軍, 錢前. 水稻粒形遺傳的研究進展. 植物學(xué)報, 2011, 46(6): 597–605.

[21] Wan XY, Liu SJ, Wang CM, Jiang L, Zhai HQ, Atsushi Y, Wan JM. Stable expression of QTL for grain shape of milled rice (L.) using a CSSLs population., 2004, 31(11): 1275–1283.

[22] Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects., 2006, 112(7): 1258–1270.

[23] Azizi P, Osman M, Hanafi MM, Sahebi M, Rafii MY, Taheri S, Harikrishna JA, Tarinejad AR, Mat Sharani S, Yusuf MN. Molecular insights into the regulation of rice kernel elongation., 2019, 39(7): 904–923.

[24] Guo T, Liu XL, Wan XY, Weng JF, Liu SJ, Liu X, Chen MJ, Li JJ, Su N, Wu FQ, Cheng ZJ, Guo XP, Lei CL, Wang JL, Jiang L, Wan JM. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice ()., 2011, 53(8): 598–607.

[25] Liu XL, Wan XY, Ma XD, Wan JM. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments., 2011, 54(1): 64–80.

[26] Zhou LJ, Jiang L, Zhai HQ, Wan JM. Current status and strategies for improvement of rice grain chalkiness., 2009, 31(6): 563–572.周立軍, 江玲, 翟虎渠, 萬建民. 水稻堊白的研究現(xiàn)狀與改良策略. 遺傳, 2009, 31(6): 563–572.

[27] Liu XL, Guo T, Wan XY, Wang HY, Zhu MZ, Li AL, Su N, Shen YY, Mao BG, Zhai HQ, Mao L, Wan JM. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice., 2010, 11: 730.

[28] Teng X, Zhong MS, Zhu XP, Wang CM, Ren YL, Wang YL, Zhang H, Jiang L, Wang D, Hao YY, Wu MM, Zhu JP, Zhang X, Guo XP, Wang YH, Wan JM. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice., 2019, 17(10): 1914–1927.

[29] Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, Hong MM. Nucleotide sequence of ricegene., 1990, 18(19): 5898.

[30] Xu CW, Mo HD, Ao Y. Maximum likelihood method for the qualitative-quantitative inheritance of endosperm traits and its application in the genetic analysis for amylose content inrice.,2000, 33(2): 23–29.徐辰武, 莫惠棟, 敖雁. 胚乳性狀質(zhì)量–數(shù)量遺傳的極大似然鑒別方法及其應(yīng)用. 中國農(nóng)業(yè)科學(xué), 2000, 33(2): 23–29.

[31] Zhang H, Duan L, Dai JS, Zhang CQ, Li J, Gu MH, Liu QQ, Zhu Y. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency ofpre-mRNA., 2014, 127(2): 273–282.

[32] Huang ZL, Tan XL, Xu CW, Vanavichit A. Molecular mapping QTLs for gel consistency in rice (L.)., 2000, 33(6): 1–5.黃祖六, 譚學(xué)林, 徐辰武, Vanavichit A. 稻米膠稠度基因位點的標記和分析. 中國農(nóng)業(yè)科學(xué), 2000, 33(6): 1–5.

[33] Li X, Tang SZ. Inheritance of gelatinization temperature in japonica rice., 1995, 16(1): 15–20.李欣, 湯述翥. 粳稻米糊化溫度的遺傳研究. 江蘇農(nóng)學(xué)院學(xué)報, 1995, 16(1): 15–20.

[34] Liu QQ, Zhou LH, Wang HM, Gu MH. Advances on biosynthesis of rice seed storageproteins in molecular biology., 2008, 6(1): 1–15.劉巧泉, 周麗慧, 王紅梅, 顧銘洪. 水稻種子貯藏蛋白合成的分子生物學(xué)研究進展. 分子植物育種, 2008, 6(1): 1–15.

[35] Zhou LH, Liu QQ, Zhang CQ, Xu Y, Tang SZ, Gu MH. Variation and distribution of seed storage protein content and composition among different rice varieties., 2009, 35(5): 884–891.周麗慧, 劉巧泉, 張昌泉, 徐勇, 湯述翥, 顧銘洪. 水稻種子蛋白質(zhì)含量及組分在品種間的變異與分布. 作物學(xué)報, 2009, 35(5): 884–891.

[36] Xu CW, Zhang AH, Zhu QS. Genetic analysis of quality traits in rice crosses betweenand., 1996, 22(5): 530–534.徐辰武, 張愛紅, 朱慶森. 秈粳雜交稻米品質(zhì)性狀的遺傳分析. 作物學(xué)報, 1996, 22(5): 530–534.

[37] Weng JF, Wan XY, Wu XJ, Wang HL, Zhai HQ, Wan JM. Stable expression of QTL for AC and PC of milled rice (L) using a CSSL population., 2006, 32(1): 14–19.翁建鋒, 萬向元, 吳秀菊, 王海蓮, 翟虎渠, 萬建民. 利用CSSL群體研究稻米AC和PC相關(guān)QTL表達穩(wěn)定性. 作物學(xué)報, 2006, 32(1): 14–19.

[38] Zhang WW, Bi JC, Chen LM, Zheng LN, Ji SL, Xia YM, Xie K, Zhao ZG, Wang YH, Liu LL, Jiang L, Wan JM. QTL mapping for crude protein and protein fraction contents in rice (L.)., 2008, 48(2): 539–547.

[39] Huang SJ, Zhao CF, Zhu Z, Zhou LH, Zheng QH, Wang CL. Characterization of eating quality and starch properties of twoalleles japonica rice cultivars under different nitrogen treatments.,2020, 19(4): 988–998.

[40] Wang CL. Substitutional mapping the cooked rice elongation by using chromosome segment substitution lines in rice., 2013, 4(13): 107–115.

[41] Yan CJ, Tian ZX, Fang YW, Yang YC, Li J, Zeng SY, Gu SL, Xu CW, Tang SZ, Gu MH. Genetic analysis of starch paste viscosity parameters in glutinous rice (L.)., 2011, 122(1): 63–76.

[42] Fan XY, Guo M, Li RD, Yang YH, Liu, M., Zhu Q, Tang SZ, Gu MH, Xu RG, Yan CJ. Allelic variations in the soluble starch synthase II gene family result in changes of grain quality and starch properties in rice (L.)., 2017, 155(1): 129–140.

[43] Li JJ, Zhang WW, Wu HK, Guo T, Liu XL, Wan XY, Jin JS, Hanh TTT, Thoa NTN, Chen MJ, Liu SJ, Chen LM, Liu X, Wang JK, Zhai HQ, Wan JM. Fine mapping of stable QTLs related to eating quality in rice (L.) by CSSLs harboring small target chromosomal segments., 2011, 61(4): 338–346.

[44] Zhao CF, Zhao L, Zhao QY, Chen T, Yao S, Zhu Z, Zhou LH, Nadaf AB, Liang WH, Lu K, Zhang YD, Wang CL. Genetic dissection of eating and cooking qualities in different subpopulations of cultivated rice (L.) through association mapping., 2020, 21(1): 119.

[45] Yao S, Zhang YD, Liu YQ, Zhao CF, Zhou LH, Chen T, Zhao QY, Pillay B, Wang CL. Effects of soluble starch synthase genes on eating and cooking quality in semi waxy japonica rice withWx., 2020, 2(1): 1–12.

[46] Zhu JH, Yu WW, Zhang CQ, Zhu YJ, Xu JL, Li EP, Gilbert RG, Liu QQ. New insights into amylose and amylopectin biosynthesis in rice endosperm., 2020, 230: 115656.

[47] Liu QQ, Yu HX, Chen XH, Cai XL, Tang SZ, Wang ZY, Gu MH. Field performance of transgenic indica hybrid rice with improved cooking and eating quality by down-regulation ofgene expression., 2005, 16(3): 199–208.

[48] Yu HX, Liu QQ, Xu L, Lu MF, Yang XJ, Gong ZY, Cai XL, Zhang YS, Zhang CQ, Wang ZY, Gu MH. Quality characteristics and field performance of selectable marker-free transgenic rice with antisensegene and improved quality derived from the elite parents of hybrid indica rice., 2009, 50(3): 370–375.

[49] Wang XQ, Yin LQ, Shen GZ, Xu L, Liu QQ. Determination of amylose content and its relationship with rva profile within genetically similar cultivars of rice (L. ssp.)., 2010, 9(8): 1101–1107.

[50] Zhang CQ, Chen SJ, Ren XY, Lu Y, Liu DR, Cai XL, Li QF, Gao JP, Liu QQ. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity., 2017, 65(10): 2222–2232.

[51] Wei CX, Qin FL, Zhu LJ, Zhou WD, Chen YF, Wang YP, Gu MH, Liu QQ. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme., 2010, 58(2): 1224–1232.

[52] Zhu LJ, Gu MH, Meng XL, Cheung SCK, Yu HX, Huang J, Sun Y, Shi YC, Liu QQ. High-amylose rice improves indices of animal health in normal and diabetic rats., 2012, 10(3): 353–362.

[53] Wang J, Hu P, Lin LS, Chen ZC, Liu QQ, Wei CX. Gradually decreasing Starch Branching Enzyme Exp-ression is responsible for the formation of hetero-geneous starch granules., 2018, 176(1): 582–595.

[54] Li QF, Liu XY, Zhang CQ, Jiang L, Ji , Zhong M, Fan XL, Gu MH, Liu QQ. Rice soluble starch synthase I: allelic variation, expression, function, and interaction with., 2018, 9: 1591.

[55] Li QF, Huang LC, Chu R, Li J, Jiang MY, Zhang CQ, Fan XL, Yu HX, Gu MH, Liu QQ. Down-regulation ofgene expression results in novel low-amylose rice with soft, transparent grains., 2018, 66(37): 9750–9760.

[56] Chen ZZ, Li XF, Zhong M, Ge JQ, Fan XL, Zhang CQ, Liu QQ. Grain quality as affected by down-regulation of expression of differentalleles in indica rice (L.)., 2019, 33(6): 513–522.陳專專, 李先鋒, 仲敏, 葛家奇, 范曉磊, 張昌泉, 劉巧泉. 秈稻背景下抑制不同等位基因表達對稻米品質(zhì)的影響. 中國水稻科學(xué), 2019, 33(6): 513–522.

[57] Zhang H, Zhou LH, Xu H, Wang LC, Liu HJ, Zhang CQ, Li QF, Gu MH, Wang CL, Liu QQ, Zhu Y. Thelocus from indica rice effectively increases amylose content under a variety of conditions., 2019, 19(1): 275.

[58] Chen ZZ, Lu Y, Feng LH, Hao WZ, Li C, Yang Y, Fan XL, Li QF, Zhang CQ, Liu QQ. Genetic dissection and functional differentiation ofALKandALK, two natural alleles of thegene, responding to low gelatinization temperature in rice., 2020, 13(1): 39.

[59] Chen ZZ, Yang Y, Feng LH, Sun Y, Zhang CQ, Fan XL, Li QF, Liu QQ. Effects of different combinations ofandmain alleles on rice grain quality., 2020, 34(3): 228–236.陳專專, 楊勇, 馮琳皓, 孫曄, 張昌泉, 范曉磊, 李錢峰, 劉巧泉.與主要等位基因不同組合對稻米品質(zhì)的影響. 中國水稻科學(xué), 2020, 34(3): 228–236.

[60] Zhang CQ, Yang YY, Chen ZZ, Chen F, Pan LX, Lu Y, Li QF, Fan XL, Sun ZZ, Liu QQ. Characteristics of grain physicochemical properties and the starch structure in rice carrying a mutatedgene., 2020, 68(47): 13950–13959.

[61] Tang XJ, Peng C, Zhang J, Cai Y, You XM, Kong F, Yan HG, Wang GX, Wang L, Jin J, Chen WW, Chen XG, Ma J, Wang P, Jiang L, Zhang WW, Wan JM. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm., 2016, 249: 70–83.

[62] Zhang CQ, Zhu JH, Chen SJ, Fan XL, Li QF, Lu Y, Wang M, Yu HX, Yi CD, Tang SZ, Gu MH, Liu QQ.Wx, the ancestral allele of ricegene., 2019, 12(8): 1157–1166.

[63] Zhang CQ, Yang Y, Chen SJ, Liu XJ, Zhu JH, Zhou LH, Lu Y, Li QF, Fan XL, Tang SZ, GuMH, Liu QQ. A rareallele coordinately improves rice eating and cooking quality and grain transparency., 2020. https://doi:10.1111/jipb. 13010.

[64] Yang Y, Lu Y, Guo SQ, Shi ZH, Zhao J, Fan XL, Li QF, Liu QQ, Zhang CQ. Improvement of rice eating quality and physicochemical properties by intro-gression ofWxallele in indica varieties., 2019, 45(11): 1628–1637.楊勇, 陸彥, 郭淑青, 石仲慧, 趙杰, 范曉磊, 李錢峰, 劉巧泉,張昌泉. 秈稻背景下導(dǎo)入Wx等位基因改良稻米食味和理化品質(zhì). 作物學(xué)報, 2019, 45(11): 1628– 1637.

[65] Huang LC, Li, QF, Zhang CQ, Chu R, Gu ZW, Tan HY, Zhao DS, Fan XL, Liu QQ. Creating novelalleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system., 2020, 18(11): 2164–2166.

[66] Xu Y, Lin QP, Li XF, Wang FQ, Chen ZH, Wang J, Li WQ, Fan FJ, Tao YJ, Jiang YJ, Wei XD, Zhang R, Zhu QH, Bu QY, Yang J, Gao CX. Fine-tuning the amylose content of rice by precise base editing of thegene., 2020, 19(1): 11–13.

[67] Peng C, Wang YH, Liu F, Ren YL, Zhou KN, Lv J, Zheng M, Zhao SL, Zhang L, Wang CM, Jiang L, Zhang X, Guo XP, Bao YQ, Wan JM.encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm., 2014, 77(6): 917–930.

[68] Zhang L, Ren YL, Lu BY, Yang CY, Feng ZM, Liu Z, Chen J, Ma WW, Wang Y, Yu XW, Wang YL, Zhang WW, Wang YH, Liu SJ, Wu FQ, Zhang X, Guo XP, Bao YQ, Jiang L, Wan JM.encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice., 2016, 67(3): 633–647.

[69] Duan EC, Wang YH, Liu LL, Zhu JP, Zhong MS, Zhang H, Li SF, Ding BX, Zhang X, Guo XP, Jiang L, Wan JM. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice., 2016, 35(6): 1321–1331.

[70] Li SF, Wei XJ, Ren YL, Qiu JH, Jiao GA, Guo XP, Tang SQ, Wan JM, Hu PS.encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm., 2017, 7: 40124.

[71] Cai Y, Zhang WW, Jin J, Yang XM, You XM, Yan HG, Wang L, Chen J, Xu JH, Chen WW, Chen XG, Ma J, Tang XJ, Kong F, Zhu XP, Wang GX, Jiang L, Terzaghi W, Wang CM, Wan JM.encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm., 2018, 60(11): 1097–1118.

[72] Hu TT, Tian YL, Zhu JP, Wang YL, Jing RN, Lei J, Sun YL, Yu YF, Li JF, Chen XL, Zhu XP, Hao YY, Liu LL, Wang YH, Wan JM.encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice., 2018, 37(12): 1667–1679.

[73] Zhu XP, Teng X, Wang YL, Hao YY, Jing RN, Wang YF, Liu Y, Zhu JP, Wu MM, Zhong MS, Chen XL, Zhang YY, Zhang WW, Wang CM, Wang YH, Wan JM.encoding a plastid heat shock protein 70 is essential for amyloplast deve-lopment in rice., 2018, 277: 89–99.

[74] Long WH, Wang YL, Zhu SS, Jing W, Wang YH, Ren YL, Tian YL, Liu SJ, Liu X, Chen LM, Wang D, Zhong MS, Zhang YY, Hu TT, Zhu JP, Hao YY, Zhu XP, Zhang WW, Wang CM, Zhang WH, Wan JM. FLOURY SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice., 2018, 177(2): 698–712.

[75] Wang J, Chen ZC, Zhang Q, Meng SS, Wei CX. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis., 2020, 184(4): 1775–1791.

[76] Chen C, Begcy K, Liu K, Folsom JJ, Wang Z, Zhang C, Walia H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity., 2016, 171(1): 606–622.

[77] E ZG, Li TT, Zhang HY, Liu ZH, Deng H, Sharma S, Wei XF, Wang L, Niu BX, Chen C. A group of nuclear factor Y transcription factors are sub-functionalized during endosperm development in monocots., 2018, 69(10): 2495–2510.

[78] Niu BX, Deng H, Li TT, Sharma S, Yun QB, Li QR, E ZG, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (). J Integr Plant Biol, 2020, 62(12): 1983–1996.

[79] Zhang L, Zhao LL, Zhang J, Cai XL, Liu QQ, Wei CX. Relationships between transparency, amylose content, starch cavity, and moisture of brown rice kernels., 2019, 90: 102854.

[80] Wan XY, Weng JF, Zhai HQ, Wang JK, Lei CL, Liu XL, Guo T, Jiang L, Su N, Wan JM. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allelein a recombination hotspot region on chromosome 5., 2008, 179(4): 2239–2252.

[81] Weng JF, Gu SH, Wan XY, Gao H, Guo T, Su N, Lei CL, Zhang X, Cheng ZJ, Guo XP, Wang JL, Jiang L, Zhai HQ, Wan JM. Isolation and initial characterization of, a major QTL associated with rice grain width and weight., 2008, 18(12): 1199–1209.

[82] Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM.acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice., 2017, 3: 17043.

[83] Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH. Deletion in a quantitative trait geneassociated with panicle erectness improves plant architecture during rice domestication., 2009, 183(1): 315–324.

[84] Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS. Rare allele ofassociated with grain length causes extra-large grain and a significant yield increase in rice., 2012, 109(52): 21534–21539.

[85] Gao XY, Zhang JQ, Zhang XJ, Zhou J, Jiang ZS, Huang P, Tang ZB, Bao YM, Cheng JP, Tang HJ, Zhang WH, Zhang HS, Huang J. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling., 2019, 31(5): 1077–1093.

[86] Zhou Y, Miao J, Gu HY, Peng XR, Leburu M, Yuan FH, Gu HW, Gao Y, Tao YJ, Zhu JY, Gong ZY, Yi CD, Gu MH, Yang ZF, Liang GH. Natural variations inregulate grain shape in rice., 2015, 201(4): 1591–1599.

[87] Feng ZM, Wu CY, Wang CM, Roh J, Zhang L, Chen J, Zhang SZ, Zhang H, Yang CY, Hu JL, You XM, Liu X, Yang XM, Guo XP, Zhang X, Wu FQ, Terzaghi W, Kim SK, Jiang L, Wan JM.controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice., 2016, 67(14): 4241–4253.

[88] Tao YJ, Wang J, Miao J, Chen J, Wu SJ, Zhu JY, Zhang DP, Gu HW, Cui H, Shi SY, Xu MY, Yao YL, Gong ZY, Yang ZF, Gu MH, Zhou Y, Liang GH. The spermine synthase OsSPMS1 regulates seed germination, grain size, and yield., 2018, 178(4): 1522–1536.

[89] Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ.acts as a transcriptional activator to regulate rice grain shape and appearance quality., 2018, 9(1): 1240.

[90] Yang XM, Ren YL, Cai Y, Niu M, Feng ZM, Jing RN, Mou CL, Liu X, Xiao LJ, Zhang X, Wu FQ, Guo XP, Jiang L, Wan JM. Overexpression of, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (L.)., 2018, 11(1): 41.

[91] Miao J, Yang ZF, Zhang DP, Wang YZ, Xu MB, Zhou LH, Wang J, Wu SJ, Yao YL, Du X, Gu FF, Gong ZY, Gu MH, Liang GH, Zhou Y. Mutation of, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice., 2019, 17(3): 650–664.

[92] Li XB, Shi SY, Tao QD, Tao YJ, Miao J, Peng XR, Li C, Yang ZF, Zhou Y, Liang GH.positively regulates grain size and yield in rice ()., 2019, 286: 17–27.

[93] Xu XY, Ren YL, Wang CM, Zhang H, Wang F, Chen J, Liu X, Zheng TH, Cai MH, Zeng ZQ, Zhou L, Zhu SS, Tang WJ, Wang JL, Guo XP, Jiang L, Chen SH, Wan JM.encodes a vacuolar acid invertase that affects grain size by altering sugar metabolism in rice., 2019, 38(10): 1273–1290.

[94] Lan J, Lin QB, Zhou CL, Ren YK, Liu X, Miao R, Jing RN, Mou CL, Nguyen T, Zhu XJ, Wang Q, Zhang X, Guo XP, Liu SJ, Jiang L, Wan JM. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice., 2020, 104(4–5): 429–450.

[95] Cheng XJ, Pan MY, E ZG, Zhou Y, Niu BX, Chen C. Functional divergence of two duplicated Fertilization independent endosperm genes in rice with respect to seed development. Plant J, 2020, 104(1):124–137.

[96] Zhang L, Ma B, Bian Z, Li XY, Zhang CQ, Liu JY, Li Q, Liu QQ, He ZH. Grain size selection using novel functional markers targeting 14 genes in rice., 2020, 13(1): 63.

[97] Jiang SM, Zhu SS, Liu SJ, Jiang L, Wan JM. Screening and genetic analysis of rice glutelin mutant., 2003, 30(7): 641–645.江紹玫, 朱速松, 劉世家, 江玲, 徐朗萊, 萬建民. 水稻谷蛋白突變體的篩選及遺傳分析. 遺傳學(xué)報, 2003, 30(7): 641–645.

[98] Wang YH, Liu SJ, Ji SL, Zhang WW, Wang CM, Jiang L, Wan JM. Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice., 2005, 15(8): 622–630.

[99] Yang YH, Guo M, Li RD, Shen L, Wang W, Liu M, Zhu Q, Hu Z, He QW, Xue Y, Tang SZ, Gu MH, Yan CJ. Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping ofin rice (L.)., 2015, 35(5): 1–9.

[100] Yang YH, Guo M, Sun SY, Zou YL, Yin SY, Liu YN, Tang SZ, Gu MH, Yang ZF, Yan CJ. Natural variation ofis involved in grain protein content regulation in rice., 2019, 10(1): 1949.

[101] Han XH, Wang YH, Liu X, Jiang L, Ren YL, Liu F, Peng C, Li JJ, Jin XM, Wu FQ, Wang JL, Guo XP, Zhang X, Cheng ZJ, Wan JM. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice., 2012, 63(1): 121–130.

[102] Wang YH, Liu F, Ren YL, Wang YL, Liu X, Long WH, Wang D, Zhu JP, Zhu XP, Jing RN, Wu MM, Hao YY, Jiang L, Wang CM, Wang HY, Bao YQ, Wan JM. GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells., 2016, 28(11): 2850–2865.

[103] Zhu JP, Ren YL, Wang YL, Liu F, Teng X, Zhang YY, Duan EC, Wu MM, Zhong MS, Hao YY, Zhu XP, Lei J, Wang YF, Yu YF, Pan T, Bao YQ, Wang YH, Wan JM. OsNHX5-mediated pH homeostasis is required for post-Golgi trafficking of seed storage proteins in rice endosperm cells., 2019, 19(1): 295.

[104] Wang YH, Ren YL, Liu X, Jiang L, Chen LM, Han XH, Jin MN, Liu SJ, Liu F, Lv J, Zhou KN, Su N, Bao YQ, Wan JM. OsRab5a regulates endomembrane organiza-tion and storage protein trafficking in rice endosperm cells., 2010, 64(5): 812–824.

[105] Liu F, Ren YL, Wang YH, Peng C, Zhou KN, Lv J, Guo XP, Zhang X, Zhong MS, Zhao SL, Jiang L, Wang HY, Bao YQ, Wan JM. OsVPS9A functions cooperatively with OsRAB5A to regulate post-Golgi dense vesicle- mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells., 2013, 6(6): 1918–1932.

[106] Ren YL, Wang YH, Liu F, Zhou KN, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma WW, Han XH, Zhang X, Guo XP, Wu FQ, Cheng ZJ, Wang JL, Lei CL, Lin QB, Jiang L, Wu CY, Bao YQ, Wang HY, Wan JM.encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm., 2014, 26(1): 410–425.

[107] Ren YL, Wang YH, Pan T, Wang YL, Wang YF, Gan L, Wei ZY, Wang F, Wu MM, Jing RN, Wang JC, Wan GX, Bao XH, Zhang BL, Zhang PC, Zhang Y, Ji Y, Lei CL, Zhang X, Cheng ZJ, Lin QB, Zhu SS, Zhao ZC, Wang J, Wu CY, Qiu LJ, Wang HY, Wan JM.Encodes a Rab5a effector required for post-golgi trafficking of rice storage proteins., 2020, 32(3): 758–777.

[108] Yang QQ, Zhao DS, Liu QQ. Connections between amino acid metabolisms in plants: lysine as an example., 2020, 11: 928.

[109] Liu X, Zhang CC, Wang XR, Liu QQ, Yuan DY, Pan G, Sun SSM, Tu JM. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene., 2016, 16(1): 147.

[110] Long XH, Liu QQ, Chan ML, Wang Q, Sun SSM. Metabolic engineering and profiling of rice with increased lysine., 2013, 11(4): 490–501.

[111] Wong HW, Liu Q, Sun SSM. Biofortification of rice with lysine using endogenous histones., 2015, 87(3): 235–248.

[112] Yang QQ, Zhang CQ, Chan ML, Zhao DS, Chen JZ, Wang Q, Li QF, Yu HX, Gu MH, Sun SSM, Liu QQ. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance., 2016, 67(14): 4285– 4296.

[113] Yang QQ, Suen PK, Zhang CQ, Mak WS, Gu MH, Liu QQ, Sun SSM. Improved growth performance, food efficiency, and lysine availability in growing rats fed with lysine-biofortified rice., 2017, 7(1): 1389.

[114] Yang QQ, Zhao DS, Zhang CQ, Wu HY, Li QF, Gu MH, Sun SSM, Liu QQ. A connection between lysine and serotonin metabolism in rice endosperm., 2018, 176(3): 1965–1980.

[115] Yang QQ, Yu WH, Wu HY, Zhang CQ, Sun SSM, Liu QQ. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydro-dipicolinate synthase., 2020. DOI: 10.1111/pbi.13478.

[116] Zhang CQ, Zhou LH, Zhu ZB, Lu HW, Zhou XZ, QianYT, Li QF, Lu Y, Gu MH, Liu QQ. Characterization of grain quality and starch fine structure of two Japonica rice () cultivars with good sensory properties at different temperatures during the filling stage., 2016, 64(20): 4048–4057.

Progress on inheritance and gene cloning for rice grain quality in Jiangsu province

Changquan Zhang, Linhao Feng, Minghong Gu, Qiaoquan Liu

In China, rice (L.) is a major cereal crop of great importance maintaining the food security and sustainable agricultural development. Jiangsu is one of the main provinces for rice production. After more than 40 years of development, the yield and quality of rice grain have made great progress. Rice grain quality is a complex trait involving production, processing, marketing and consumption of the grain. In this review, we summarize the progress on the genetic basis of main grain quality traits in the rice variety breeding in Jiangsu province and point out the achievement of each milestone.With a focus on the genetic regulation of grain appearance, eating and cooking quality and nutritional quality, we describe the classic genetic rules and molecular basis of rice grain quality traits and review the function of major genes that regulate corresponding traits. The genetics and improvement of grain quality achieved in Jiangsu province was highlighted on the domestic and international rice breeding programs.In particular, with the advance of breeding conception in terms of functional genomics and genetic regulatory networks, the specific molecular design for grain quality improvement will be the future direction of rice genetic breeding program of Jiangsu Province.

rice grain quality traits; inheritance; appearance quality; eating and cooking quality; nutritional quality

2020-11-28;

2021-01-29

國家自然科學(xué)基金(編號:31825019, 31872860);江蘇省科技計劃(編號:BE2018357, CX(20)3004)[Supported by the National Natural Science Foundation of China (Nos. 31825019, 31872860), and Programs from Jiangsu Government (Nos. BE2018357, CX(20)3004)]

張昌泉,博士,副教授,研究方向:水稻品質(zhì)遺傳改良。E-mail: cqzhang@yzu.edu.cn

劉巧泉,博士,教授,研究方向:水稻品質(zhì)遺傳改良。E-mail: qqliu@yzu.edu.cn

10.16288/j.yczz.20-324

2021/2/1 15:23:53

URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210201.1134.009.html

(責(zé)任編委: 儲成才)

猜你喜歡
胚乳食味稻米
隱藏于稻米花果中的酒香
稻米香噴噴
高粱種子胚乳完整程度對芽苗建成的影響
日本の寒地,北海道におけるうるち米良食味育種(日文)
食味知人:賈寶玉的三個飲食場景
發(fā)揮內(nèi)外因作用 促進稻米業(yè)發(fā)展
食味·食美·食空間——餐飲空間設(shè)計專輯
為什么種子含有豐富的營養(yǎng)?
小麥胚乳A、B型淀粉粒的形成與生長特征及氮素調(diào)節(jié)
阿維菌素在稻米中的殘留檢測