李 鎮(zhèn),齊志國,秦 偉,陳 馳,吳 可,馮 甜
利用高分立體影像構(gòu)建東北黑土山地丘陵區(qū)切溝體積估算模型
李 鎮(zhèn)1,2,齊志國2,秦 偉1,3※,陳 馳4,吳 可2,馮 甜2
(1. 中國水利水電科學(xué)研究院流域水循環(huán)模擬與調(diào)控國家重點實驗室,北京 100048; 2. 河北地質(zhì)大學(xué)土地科學(xué)與空間規(guī)劃學(xué)院,石家莊 050031;3. 水利部水土保持生態(tài)工程技術(shù)研究中心,北京 100048;4. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083)
分析侵蝕溝形態(tài)特征并構(gòu)建體積估算模型,對大空間尺度探究切溝侵蝕具有重要意義。該研究選取位于東北黑土山地丘陵區(qū)穆棱市的典型樣區(qū),基于WorldView-2高分立體像對影像(0.5 m分辨率),利用ENVI 5.3提取同分辨率DEM,選擇45條切溝,在ArcGIS10.3中提取并計算切溝頂寬(TW)、底寬(BW)、溝深()、斷面面積(CSA)、溝長()、面積()及體積()等參數(shù),分析形態(tài)特征及相互關(guān)系,構(gòu)建切溝體積估算模型。結(jié)果表明:1)切溝TW、BWCSA及均值分別為5.63 m、2.82 m、1.05 m、4.94 m2、81.90 m、470.54m2、428.53 m3。斷面BWTW均值為0.48,切溝以V~U型為主。TW/全部大于1,均值為5.95,表明溝道橫向侵蝕較下切侵蝕速率更快;2)切溝體積與溝長()、面積()間均有極顯著冪函數(shù)關(guān)系,相比-關(guān)系模型,-關(guān)系模型具有更小的平均相對誤差和更大的納什系數(shù),可更準(zhǔn)確有效預(yù)測切溝體積,建議將其作為東北山地丘陵區(qū)切溝體積估算模型;3)與黃土高原及干熱河谷地區(qū)相比,東北黑土區(qū)切溝體積與面積冪函數(shù)關(guān)系的指數(shù)更小,而區(qū)內(nèi)山地丘陵區(qū)較漫川漫崗區(qū)更大,反映出山地丘陵區(qū)更加強(qiáng)烈的切溝發(fā)育狀況;切溝形態(tài)特征影響-模型構(gòu)建的精度,建議將狹長度(/TW)作為切溝分類指標(biāo)構(gòu)建切溝體估算模型。研究結(jié)果可為東北黑土山地丘陵區(qū)大空間尺度切溝侵蝕的定量模擬提供方法和依據(jù)。
模型;遙感;切溝;形態(tài)特征;黑土;山地丘陵區(qū)
作為土地退化的主要過程及較嚴(yán)重的表現(xiàn)形式,侵蝕溝是降雨、土壤、地形及人類活動誘發(fā)的土地變化等因素共同作用的結(jié)果[1],亦是徑流泥沙輸送與污染物運(yùn)移的重要通道。溝蝕的發(fā)生、發(fā)展影響現(xiàn)代地貌發(fā)育及演化過程[2],使土地變得支離破碎,影響農(nóng)業(yè)生產(chǎn)、淤積江河湖庫、惡化下游生態(tài)環(huán)境,是小流域主要產(chǎn)沙源[3-4],嚴(yán)重制約著資源-環(huán)境-社會經(jīng)濟(jì)的可持續(xù)發(fā)展,已成為最受關(guān)注的具有普遍性、緊迫性和復(fù)雜性的全球環(huán)境問題[5]。東北黑土區(qū)是中國重要的商品糧基地,由于長期的過度墾殖,目前已存在侵蝕溝超過29.5萬條,侵蝕溝防治與治理已成為當(dāng)前乃至今后東北黑土區(qū)的重要問題[6-7]。
切溝作為東北黑土區(qū)主要的侵蝕溝類型,其形態(tài)是水力條件與環(huán)境因子相互作用的結(jié)果,亦是表征溝蝕強(qiáng)度的基本依據(jù),形態(tài)參數(shù)差異也反映了其演化發(fā)展的階段性及環(huán)境驅(qū)動,因此準(zhǔn)確測量切溝的形態(tài)是溝蝕研究的基礎(chǔ)和重點[8]。由于切溝形態(tài)復(fù)雜且不規(guī)則,傳統(tǒng)的測量方法不能滿足目前對侵蝕過程及機(jī)理的研究需求。隨著遙感技術(shù)的發(fā)展,高分辨率遙感影像成為大空間尺度切溝侵蝕研究的重要數(shù)據(jù)源[9-11],目視解譯法成為獲取切溝長度、寬度、面積、周長等參數(shù)常用手段,相對誤差可以控制在5%以內(nèi)[12],該方法被用于探究切溝空間分布特征[7]、溯源侵蝕和溝坡橫向侵蝕的監(jiān)測[10-11]。具有立體像對信息的高分影像(如WorldView、GeoEye等)的出現(xiàn),使得區(qū)域尺度探究切溝蝕積特征成為可能[13-14],為大范圍測量切溝線狀和面狀參數(shù)以及切溝體積提供了新的方法,也為區(qū)域溝蝕監(jiān)測提供了便捷且相對可靠的數(shù)據(jù)源[15]。
切溝侵蝕量常用其體積來表征,但體積在遙感影像上不易獲取,由于溝長能夠反映體積大小且易于獲取,因此,切溝體積()和溝長()的關(guān)系成為研究的熱點[16-17]。在國外,伊朗、澳大利亞、埃塞俄比亞等國家均開展相關(guān)研究,確定切溝體積模型(=aL)[16-19]。在中國,關(guān)于–關(guān)系的研究較少,Dong等[20]、李鎮(zhèn)等[21]和Wu等[22]分別確定了西南元謀干熱河谷和黃土高原區(qū)切溝體積和溝長之間的關(guān)系,Zhang等[23]建立了東北黑土漫川漫崗區(qū)切溝體積估算模型。研究[21-22, 24-26]發(fā)現(xiàn),與溝長相比,切溝面積()是切溝體積估算模型更有效的參數(shù),且在黃土高原、西南干熱河谷和埃塞俄比亞高原分別建立了以面積為參數(shù)的體積估算模型(=aA),但相關(guān)研究在東北黑土區(qū)鮮有報道,限制了區(qū)域全面土壤侵蝕普查與評價。另外,在中國,對切溝侵蝕的研究起步較晚,基礎(chǔ)數(shù)據(jù)欠缺,獲取不同區(qū)域及發(fā)展階段的切溝形態(tài)參數(shù)數(shù)據(jù),建立切溝侵蝕的長期數(shù)據(jù)庫,能夠為理解切溝侵蝕機(jī)理及建立不同區(qū)域切溝體積估算模型創(chuàng)造條件;探究不同區(qū)域切溝體積估算模型系數(shù)差異,對建立更具適用性的溝蝕模型具有重要意義。
本文基于WorldView-2高分立體像對影像(0.5 m分辨率),利用ENVI提取同分辨率DEM,選擇45條切溝,在ArcGIS10.3中提取并計算切溝頂寬、底寬、溝深、斷面面積、溝長、面積及體積等參數(shù)值,分析東北黑土山地丘陵區(qū)切溝形態(tài)特征及相互關(guān)系,并構(gòu)建體積估算模型。研究結(jié)果有助于理解切溝侵蝕進(jìn)程,亦可為大空間尺度切溝侵蝕的定量研究提供方法和依據(jù)。
研究區(qū)(44.57°~44.65°N,129.86°~129.98°E)位于東北黑土山地丘陵區(qū)穆棱市,屬于三江平原-興凱湖生態(tài)維護(hù)農(nóng)田防護(hù)區(qū)(圖1)。選擇WorldView-2高分立體像對數(shù)據(jù)(0.5 m分辨率)為數(shù)據(jù)源,拍攝時間為2018年5月,此時,農(nóng)地剛完成翻耕與播種,植被覆蓋率低,降低了植被對提取DEM精度的影響。參考唐杰等[15]的方法,基于ENVI 5.3 Terrain模塊的DEM Extraction功能,輸入立體像對數(shù)據(jù)的左、右影像,獲取同名點坐標(biāo)并輸入控制點,通過交互式定義連接點,使其均勻分布在立體像對影像上,查看連接點精度,使誤差最大值控制在1個像元內(nèi)。最終得到柵格大小為0.5 m的DEM(圖1),用于提取切溝形態(tài)參數(shù)。所有圖層數(shù)據(jù)采用橫軸墨卡托投影和WGS84坐標(biāo)。
注:Ι-1-1hw:大興安嶺山地水資源涵養(yǎng)生態(tài)維護(hù)區(qū);Ι-1-2wt:小興安嶺山地丘陵生態(tài)維護(hù)保土區(qū);Ι-2-1wn:三江中下游生態(tài)維護(hù)農(nóng)田防護(hù)區(qū);Ι-2-2hz:長白山山地水資源涵養(yǎng)減災(zāi)區(qū);Ι-2-3st:長白山山地丘陵水質(zhì)維護(hù)保土區(qū);Ι-3-1t:東北漫川漫崗?fù)寥辣3謪^(qū);Ι-4-1fn:松遼平原防沙農(nóng)田防護(hù)區(qū);Ι-5-1t:大興安嶺東南丘陵溝壑土壤保持區(qū);Ι-6-1fw:呼倫貝爾丘陵平原防沙生態(tài)維護(hù)區(qū)。
Note: Ι-1-1hw: Greater Hinggan mountainous water conservation and ecological protection section; Ι-1-2wt: Lesser Hinggan mountainous and hilly ecological protection section; Ι-2-1wn: Sanjiang middle and downstream ecological protection and farmland protection section; Ι-2-2hz: Changbai mountain water conservation and disaster prevention and mitigation section; Ι-2-3st: Changbai mountainous and hilly water quality protection section; Ι-3-1t: Northeast China rolling hills soil conservation section; Ι-4-1fn: Songliao Plain wind break and sand fixation and farmland protection section; Ι-5-1t: Southeast Greater Hinggan hilly and gully soil conservation section; Ι-6-1fw: Hulun Buir hilly and plain wind break and sand fixation and ecological protection section.
圖1 研究區(qū)位置
Fig.1 Location of study area
高分立體像對數(shù)據(jù)生成DEM過程中,因植被的存在難免會存在噪聲,為了降低因植被噪聲導(dǎo)致切溝形態(tài)參數(shù)提取的誤差,結(jié)合土地利用情況和Google Earth影像,選擇發(fā)育于農(nóng)地上的45條切溝?;贏rcGIS10.3軟件,采用目視解譯法提取溝緣線,分別計算溝長和面積,進(jìn)一步利用ArcGIS10.3中3D Analys模塊下的Profile Graph功能生成斷面圖,分別確定各切溝斷面頂寬、底寬、溝深,共計357個斷面,最后計算各斷面的面積,計算公式如下:
式中CSA為第個斷面面積,m2;TW為第個斷面頂寬,m;BW為第個斷面底寬,m;D為第個斷面溝深,m。
根據(jù)切溝形態(tài)和斷面參數(shù),采用劉寶元等[27]的研究方法計算切溝體積,公式如下:
式中為切溝體積,m3;V表示第和1個斷面之間的體積,m3;L表示第和1個斷面之間的距離,m。
分別用平均相對誤差(r)、納什系數(shù)(ns)[28]評估體積估算模型的有效性,采用如下公式計算:
式中m為利用DEM(0.5 m分辨率)獲取的體積平均值;M為第條切溝體積的測量值;P為第條切溝體積的預(yù)測值。r越小或ns越大,說明模型預(yù)測值與測量值越接近。
最后,將所有數(shù)據(jù)導(dǎo)入SPSS22.0中進(jìn)行統(tǒng)計分析,在Origin 2016 Pro 中繪制統(tǒng)計圖。
切溝的平均頂寬(TW)、底寬(BW)、溝深()、斷面面積(CSA)、溝長()、面積()和體積()等參數(shù)統(tǒng)計如表1所示。研究區(qū)切溝的頂寬在2.92~10.76 m之間,均值為5.63 m;底寬在1.33~5.40 m范圍,均值為2.82 m,溝深分布于0.64~2.09 m,均值1.05 m;斷面面積在1.72~17.13 m2范圍,均值為4.94 m2;溝長在22.52~208.20 m之間,均值為81.90 m;面積分布于100.32~1 505.23 m2之間,均值為470.54m2;體積在46.67~2 338.43 m3范圍,均值為428.53 m3。其中,Kolmogorov-Smirnov檢驗結(jié)果顯示,切溝溝長、面積、斷面面積及體積均服從對數(shù)正態(tài)分布。
表1 切溝形態(tài)特征統(tǒng)計(n=45)
注:TW為切溝頂寬;BW為切溝底寬;為切溝溝深;CSA為切溝斷面面積;為切溝溝長;為切溝面積;為切溝體積。下同。
Note: TW is the top width of gully; BW is the bottom width of gully;is the gully depth; CSA is the cross-sectional area of gully;is the gully length;is the gully area;is the gully volume. The same below.
/TW反映了切溝的狹長度,/TW值越大,切溝越細(xì)長。研究區(qū)/TW值在4.48~41.39范圍,均值為15.28。從溝蝕發(fā)育過程來看,/TW均大于1,說明與溝壁橫向侵蝕速率相比,研究區(qū)切溝溝頭溯源侵蝕速率更快[7]。進(jìn)一步,基于/TW值進(jìn)行K-均值聚類分析,最終將切溝分為2類(圖2),其中/TW≤20的切溝所占比例最大,超過了70%。
切溝斷面主要參數(shù)頻率分布特征如圖3所示。可以看出,切溝頂寬集中分布在2~8 m范圍,累積頻率超過80%(圖3a)。從底寬分級結(jié)果來看(圖3b),主要分布于0~4 m范圍,累積頻率均超過76%。溝深主要分布在0~2 m范圍,累積頻率超過90%,其中以0~1 m比例最大,達(dá)到56.58%(圖3c)。最后,斷面面積主要分布在0~5 m2范圍,頻率為64.43%,小于10 m2的累積頻率達(dá)到了88%(圖3d)。
切溝的BW/TW和TW/是反映切溝斷面形態(tài)的重要指標(biāo)[16],亦反映了切溝發(fā)展的環(huán)境特征,在特定集水區(qū)內(nèi),溝道形狀和尺度因巖性、土地利用及局部坡度等限制而自發(fā)調(diào)整[16-17]。研究區(qū)BW/TW在0.02~0.96范圍之間,均值為0.48,主要集中于0.40~0.60范圍,所占比例為30.53%。參考Deng等[29]研究結(jié)果,據(jù)BW/TW值將切溝斷面形狀分為V型(0~0.4),V~U型(0.4~0.6),U型(0.6~1.0),本研究中切溝以V~U型為主。圖4反映了切溝頂寬和溝深之間的關(guān)系,TW/在2.10~20.63之間,均值為5.95。可以看出,所有點均落在1:1線左上方,這表明從切溝的發(fā)育過程來看,與溝底下切相比,溝壁橫向侵蝕速率更快[29]。
圖5顯示,東北山地丘陵區(qū)切溝體積與頂寬、底寬、溝深、斷面面積、溝長及面積之間存在顯著線性關(guān)系。溝長在遙感影像上較容易獲取,因此已被作為主要參數(shù)來估算切溝的體積[16-17, 21-23]。切溝溝長、面積及體積均服從對數(shù)正態(tài)分布,切溝體積和溝長的回歸分析結(jié)果如圖5e所示,表達(dá)式為
考慮到切溝面積也易從高分辨率遙感影像獲取,進(jìn)而建立了切溝體積和面積之間的回歸關(guān)系(圖5f)。表達(dá)式為
回歸方程的2表明,與溝長相比,切溝的面積與體積之間具有更好的冪函數(shù)關(guān)系。進(jìn)一步分別基于–和–關(guān)系預(yù)測切溝體積,繪制其與通過高分立體像對數(shù)據(jù)獲取的體積(測量體積)的散點圖(圖6),計算預(yù)測與測量體積線性回歸方程的決定系數(shù)(2)、相對誤差(r)和納什系數(shù)(ns),結(jié)果如表2所示。與關(guān)系相比,依據(jù)關(guān)系預(yù)測切溝與測量體積建立直線回歸方程的2值更大,表明–關(guān)系在預(yù)測切溝體積上更有優(yōu)勢;基于–和–關(guān)系預(yù)測的切溝體積與測量體積的r和ns分別為0.51、0.23和0.34、0.83,較小的r及更大的ns進(jìn)一步表明,經(jīng)驗?zāi)P通C比–在預(yù)測切溝體積上有更高精度。因此,建議將回歸方程=0.181.25(2=0.90)作為東北黑土山地丘陵區(qū)切溝估算體積的模型。
表2 切溝體積預(yù)測值與測量值的的相對誤差(Er)和納什系數(shù)(Ens)
以Web of Science數(shù)據(jù)庫和CNKI作為數(shù)據(jù)源,獲取中國已有侵蝕溝體積估算模型的相關(guān)數(shù)據(jù)。對比發(fā)現(xiàn),當(dāng)前研究主要集中于-關(guān)系;對-關(guān)系研究較少,且研究區(qū)主要在黃土高原和西南干熱河谷,東北黑土區(qū)尚鮮有報道。對于同類型侵蝕溝來說,相比東北黑土區(qū),黃土高原及干熱河谷區(qū)的侵蝕溝體積估算模型(V=aA或V=aL)的值更大,說明這2個區(qū)域環(huán)境更脆弱,溝蝕更嚴(yán)重[16]。但并不能忽視東北黑土區(qū)的切溝侵蝕問題。東北黑土區(qū)侵蝕溝超過29.5萬條,且近89%為活躍侵蝕溝[6],侵蝕溝防治與治理已是該區(qū)域水土保持工作的重點。
不同研究區(qū)不同類型侵蝕溝之間的-參數(shù)存在較大差異,反映了不同環(huán)境下侵蝕溝的侵蝕程度不同。與淺溝相比(表3),切溝體積估算模型(=ab)的值更大,說明切溝斷面尺寸更大,侵蝕更嚴(yán)重。其中,被看作是單位溝長上切溝斷面面積的增長率[18],接近1,說明從溝頭到溝口斷面面積近乎恒定[30-31]。相比黃土高原、干熱河谷區(qū),東北黑土區(qū)值最?。ū?)。本研究區(qū),從溝頭、溝中到溝口切溝斷面面積均值分別為3.58,9.35和4.89 m2,晉西黃土區(qū)該值分別為26.3,45.1和53.9 m2[21],相比晉西黃土區(qū)切溝的平均溝長(=12.54 m),溝長更長(=81.90 m)的東北黑土區(qū)切溝單位溝長上切溝斷面面積的增長率更小,因此,值更小。與漫川漫崗區(qū)相比,山地丘陵區(qū)切溝具有更大的斷面面積及更短的溝長,即隨切溝的增長,斷面面積對切溝體積更重要,因此,山地丘陵區(qū)-關(guān)系中值更大。–關(guān)系(=aA)反映了切溝體積隨著面積的增長以冪函數(shù)的形式增加。b可以被看作為單位切溝面積上溝深的增長率,接近1,說明溝深近似為定值[21]。本研究中切溝從溝頭、溝中到溝口,平均溝深較接近,分別為0.88,1.20和1.02 m,因此值接近1。不同研究區(qū)的值在1.14~1.47之間,相比于–關(guān)系變幅較?。ū?)??傊?,從擬合方程的決定系數(shù)來看,相比-,-關(guān)系預(yù)測切溝體積更具優(yōu)勢。另外,探究不同環(huán)境下切溝體積估算模型的系數(shù)差異,仍是未來需要解決的問題,對于深入理解切溝侵蝕進(jìn)程具有重要意義。
表3 中國不同侵蝕區(qū)域V-L和V-A關(guān)系中參數(shù)a、b及侵蝕溝斷面主要參數(shù)值
注:、為體積估算模型參數(shù)(=aL或=aA)。
Notes: a and b are the parameter of the model (=aLor=aA).
通過測量數(shù)據(jù)構(gòu)建以易于從高分辨率遙感影像(二維)獲取的切溝參數(shù)為自變量的體積估算模型,對于大尺度上進(jìn)行切溝發(fā)育侵蝕定量模擬及空間分布制圖有重要意義[21],但其未考慮切溝斷面特征。參考Deng等[29]的研究結(jié)果,將研究區(qū)切溝斷面形狀分為V型、V~U型及U型;進(jìn)一步,分別建立不同斷面形狀的切溝體積估算模型(-),統(tǒng)計結(jié)果如表4所示。
表4 不同斷面形狀的切溝體積估算模型(V-A)
Note:is the average of gully area;is the average of gully volume;is the average of gully depth; CVDis the average coefficient of variation of gully depth from gully head to gully mouth.
可以看出,與未考慮斷面形狀的-關(guān)系相比,V型及U型切溝體積估算模型的決定系數(shù)有所提高,可以提高模擬精度,且2種斷面形狀的切溝(尤其是U型切溝),從溝頭到溝口的溝深平均變異系數(shù)更小,值更接近于1。但V~U型切溝體積估算模型的決定系數(shù)并未提高,這可能因不同環(huán)境條件或發(fā)育階段切溝的寬深比、斷面尺度及形狀等形態(tài)特征不盡相同,以此構(gòu)建的切溝體積估算模型系數(shù)可能存在差異,預(yù)測模型的適應(yīng)范圍及模擬精度亦受到影響[21,24]。
狹長度(/TW)反映了切溝溝頭溯源侵蝕與橫向侵蝕的速率差異,亦表征切溝不同的細(xì)長程度[7]。據(jù)圖3結(jié)果將研究區(qū)的狹長度分為2類,分別建立-關(guān)系,結(jié)果如圖7所示?;貧w方程的決定系數(shù)顯示,與圖5f的結(jié)果相比,考慮狹長度建立的切溝體積估算模型更有優(yōu)勢。因此,以易于從二維高分辨率遙感影像提取的切溝參數(shù),考慮/TW建立-關(guān)系,能夠為較大空間尺度的切溝侵蝕定量模擬提供更優(yōu)模型。/TW亦反映了切溝不同的發(fā)育階段性及環(huán)境條件差異。本研究中(圖7),與/TW>20的切溝相比,/TW≤20的切溝具有更大的斷面尺度,且2種類型切溝的溝深之間具有顯著性差異(<0.01),這也就解釋了狹長度小于等于20的切溝體積估算模型曲線位于狹長度大于20的模型曲線之上的原因。但構(gòu)建其他區(qū)域切溝體積估算模型時狹長度的閾值劃分仍需進(jìn)一步討論。加強(qiáng)不同環(huán)境條件、不同發(fā)育階段的切溝形態(tài)特征及體積估算模型,對于提高模型精度及適用范圍具有重要的意義。
此外,高分立體像對數(shù)據(jù)為大空間尺度上獲取切溝形態(tài)參數(shù)提供了新方法,為溝蝕監(jiān)測提供了便捷且相對可靠的數(shù)據(jù)源[15],但影像價格昂貴。數(shù)字?jǐn)z影測量、三維激光掃描及無人機(jī)等技術(shù)的發(fā)展,使溝蝕監(jiān)測進(jìn)入精準(zhǔn)測量階段,為獲取高精度DEM提供了條件,在監(jiān)測不同時空尺度溝蝕過程中發(fā)揮各自優(yōu)勢[34-36],充分探究侵蝕溝的三維發(fā)育特征。鄭粉莉等[8]強(qiáng)調(diào),建立攝影測量、三維激光掃描和無人機(jī)等測量技術(shù)動態(tài)監(jiān)測溝蝕過程的標(biāo)準(zhǔn)與規(guī)范,是未來溝蝕研究的重點內(nèi)容。由于缺少實地測量數(shù)據(jù),本研究中并未對切溝形態(tài)參數(shù)進(jìn)行精度分析。因此,融合各數(shù)據(jù)源優(yōu)勢,選擇典型樣區(qū)建立野外溝蝕監(jiān)測體系,獲取高精度DEM數(shù)據(jù),以構(gòu)建適用范圍更廣、精度更高的切溝體積估算模型。
基于WorldView-2高分立體像對影像(0.5 m),利用ENVI軟件生成同分辨率DEM,在ArcGIS10.3中提取并計算切溝頂寬(TW)、底寬(BW)、溝深()、斷面面積(CSA)、溝長()、面積()及體積()等參數(shù)值,分析東北黑土山地丘陵區(qū)切溝形態(tài)特征并構(gòu)建體積估算模型。研究結(jié)果顯示:
1)切溝斷面BW/TW集中分布于0.40~0.60范圍,均值為0.48,切溝以V~U型為主。/TW值在4.48~41.39范圍,均值為15.28;TW/均值為5.95 m,且全部大于1,表明橫向侵蝕速率比下切侵蝕更快。
2)切溝體積與溝長()、面積()之間均有極顯著冪函數(shù)關(guān)系,回歸方程分別為=1.601.23(2=0.57)、=0.181.25(2=0.90)。相比-模型,更小的平均相對誤差和更大的納什系數(shù)亦表明用-模型來預(yù)測切溝體積更加準(zhǔn)確有效。因此,建議將回歸方程=0.181.25(2=0.90)作為東北黑土山地丘陵區(qū)切溝體積估算的模型。
3)相比于黃土高原及干熱河谷區(qū)的切溝體積估算模型(=ab),東北黑土區(qū)值更小;相對于漫川漫崗區(qū)相比,山地丘陵區(qū)值更大,表明隨切溝的增長,該區(qū)域斷面面積對切溝體積更重要;切溝形態(tài)特征影響-模型構(gòu)建的精度,建議將狹長度(/TW)作為切溝分類指構(gòu)建切溝體估算模型。
[1] Castillo C, Gomez J. A century of gully erosion research: Urgency, complexity and study approaches[J]. Earth-Science Reviews, 2016, 160: 300-319.
[2] 劉宇. 土壤侵蝕研究中的景觀連通度:概念、作用及定量[J]. 地理研究,2016,35(1):195-202.
Liu Yu. Landscape connectivity in soil erosion research: Concepts, implication and quantification[J]. Geographical Research, 2016, 35(1): 195-202. (in Chinese with English abstract)
[3] Poesen J, Nachtergale J, Verstraeten G, et al. Gully erosion and environmental change: Importance and research needs[J]. Catena, 2003, 50(2/3/4): 91-133.
[4] Valentin C, Poesen J, Li Y. Gully erosion: Impacts, factors and control[J]. Catena, 2005, 63(2): 132-153.
[5] Poesen J. Soil erosion in the Anthropocene: Research needs[J]. Earth Surface Processes and Landforms, 2018, 43(1): 64-84.
[6] 中華人民共和國水利部. 第一次全國水利普查水土保持情況公報[J]. 中國水土保持,2013(10):2-3,11.
[7] 李鎮(zhèn),秦偉,齊志國,等. 東北漫川漫崗和山地丘陵黑土區(qū)侵蝕溝形態(tài)特征遙感分析[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(14):133-140.
Li Zhen, Qin Wei, Qi Zhiguo, et al. Remote sensing analysis on gully morphology and spatial distribution in rolling hilly region and mountainous and hilly region of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 133-140. (in Chinese with English abstract)
[8] 鄭粉莉,徐錫蒙,覃超. 溝蝕過程研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(8):48-59,116.
Zheng Fenli, Xu Ximeng, Qin Chao. A review of gully erosion process research[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 48-59, 116. (in Chinese with English abstract)
[9] Desprats J F, Raclot D, Rousseau M, et al. Mapping linear erosion features using high and very high resolution satellite imagery[J]. Land Degrad. Develop, 2013, 24: 22-32.
[10] Tebebu T Y, Abiy A Z, Zegeye A D, et al. Surface and subsurface flow effect on permanent gully formation and upland erosion near Lake Tana in the northern highlands of Ethiopia[J]. Hydrology and Earth System Sciences, 2010, 14(11): 2207-2217.
[11] Li Z, Zhang Y, Zhu Q, et al. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau[J]. Geomorphology, 2015, 228: 462-469.
[12] 李鎮(zhèn),張巖,楊松,等. QuickBird影像目視解譯法提取切溝形態(tài)參數(shù)的精度分析[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(20):179-186.
Li Zhen, Zhang Yan, Yang Song, et al. Error assessment of extracting morphological parameters of bank gullies by manual visual interpretation based on QuickBird imagery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 179-186. (in Chinese with English abstract)
[13] Hu F, Gao X M, Li G Y, et al. DEM extraction from WORLDVIEW-3 stereo-images and accuracy evaluation[J]. International Archives of the Photogrammetry Remote Sensing, 2016, XLI-B1: 327-332.
[14] Dong Y S, Chen W T, Chang H C, et al. Assessment of orthoimage and DEM derived from ZY-3 stereo image in Northeastern China[J]. Survey Review, 2016, 48(349): 247-257.
[15] 唐杰,張巖,范聰慧,等. 使用高分遙感立體影像提取黃土丘陵區(qū)切溝參數(shù)的精度分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(18):111-117.
Tang Jie, Zhang Yan, Fan Conghui, et al. Accuracy assessment of gully morphological parameters from high resolution remote sensing stereoscopic satellite images on hilly Loess Plateau Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 111-117. (in Chinese with English abstract)
[16] Frankl A, Poesen J, Scholiers N, et al.Factors controlling the morphology and volume (V)-length (L) of permanent gullies in the northern Ethiopian Highlands[J]. Earth Surface Processes and Landforms, 2013, 38(14): 1672-1684.
[17] Yibeltal M, Tsunekawa A, Haregeweyn N, et al. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments[J]. Geomorphology, 2019, 341: 15-27.
[18] Kompani-Zare M, Soufi M, Hamzehzarghani H, et al. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran[J]. Catena, 2011, 86(3): 150-159.
[19] Mu?oz-Robles C, Reid N, Frazier P, et al.Factors related to gully erosion in woody encroachment in south-eastern Australia[J]. Catena, 2010, 83(2): 148-157.
[20] Dong Y F, Xiong D H, Su Z A, et al. Critical topographic threshold of gully erosion in Yuanmou Dry-hot Valley in southwestern China[J]. Physical Geography, 2016, 34(1): 50-59.
[21] 李鎮(zhèn),張巖,尚國琲,等. 晉西黃土區(qū)切溝斷面特征及體積估算模型[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(6):152-159.
Li Zhen, Zhang Yan, Shang Guofei, et al. Characterizing gully cross section and modeling gully volume in hilly loess region of western Shanxi Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 152-159. (in Chinese with English abstract)
[22] Wu H Y, Xu X M, Zheng F L, et al. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique[J]. Earth Surface Processes and Landforms, 2018, 43(8): 1701-1710.
[23] Zhang T Y, Liu G, Duan X W, et a. Spatial distribution and morphologic characteristics of gullies in the Black Soil Region of Northeast China: Hebei watershed[J]. Physical Geography, 2016, 37(3/4): 228-250.
[24] Li Z, Zhang Y, Zhu Q K, et al. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area[J]. Catena, 2017,148: 195-203.
[25] Belayneh M, Yirgu T, Tsegaye D. Current extent, temporal trends, and rates of gully erosion in the Gumara watershed, Northwestern Ethiopia[J]. Global Ecology and Conservation, 2020, 24: e01255.
[26] 劉承栩. 元謀干熱河谷沖溝體積與一二維形態(tài)參數(shù)的關(guān)系[D]. 南充:西華師范大學(xué),2017.
Liu Chengxu. Relationship Between the Volume of Gully and the First and Second Dimension Parameters in Yuanmou Dry-hot Valley[D]. Nanchong: China West Normal University, 2017. (in Chinese with English abstract)
[27] 劉寶元,劉剛,王大安,等. 區(qū)域溝蝕野外調(diào)查方法:以東北地區(qū)為例[J]. 中國水土保持科學(xué),2018,16(4):34-40.
Liu Baoyuan, Liu Gang, Wang Da’an, et al. A field survey method for regional gully erosion: A case study in northeastern China[J]. Science of Soil and Water Conservation, 2018, 16(4): 34-40. (in Chinese with English abstract)
[28] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models[J]. Journal of Hydrology, 1970, 10(3): 282-290.
[29] Deng Q C, Qin F C, Zhang B, et al. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-Hot Valley[J]. Geomorphology, 2015, 228: 703-713.
[30] Nachtergaele J, Poesen J, Steegen A, et al. The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils[J]. Geomorphology, 2001, 40(3/4): 237-252.
[31] Nachtergaele J, Poesen J, Vandekerckhove L, et al. Testing the ephemeral gully erosionmodel (EGEM) for two Mediterranean environments[J]. Earth Surface Processes and Landforms, 2001, 26(1): 17-30.
[32] 楊波,王文龍,張闖娟,等. “7·26”暴雨下不同土地利用坡面淺溝溝槽發(fā)育特征及體積估算[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):121-128.
Yang Bo, Wang Wenlong, Zhang Chuangjuan, et al. Development characteristics and volume estimation of ephemeral gully groove for different land use slopes undergoing “7·26” torrential rain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 121-128. (in Chinese with English abstract)
[33] Zhang Y G, Wu Y Q, Liu B Y, et al. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China[J]. Soil & Tillage Research, 2007, 96(1/2): 28-41.
[34] Kaiser A, Neugirg F, Rock G, et al. Small-scale surface reconstruction and volume calculation of soil erosion in complex moroccan gully morphology using structure from motion[J]. Remote Sensing, 2014, 6(8): 7050-7080.
[35] Koci J, Sidle R C, Jarihani B, et al. Linking hydrological connectivity to gully erosion in savanna rangelands tributary to the Great Barrier Reef using structure from motion photogrammetry[J]. Land Degradation & Development, 2020: 31(1): 20-36.
[36] Tarolli P, Mudd S M. Remote Sensing of Geomorphology[M]. Developments in Earth Surface Process (Volume 23), Elsevier, 2020: 271-315.
Gully volume estimation model using high-resolution satellite imaging in mountainous and hilly regions with black soil of Northeast China
Li Zhen1,2, Qi Zhiguo2, Qin Wei1,3※, Chen Chi4, Wu Ke2, Feng Tian2
(1.,,100048,; 2.,050031,;3.,100048,; 4.,,100083,)
Severe gully erosion has posed a threat to food security in the black soil region of northeastern China, one of the largest grain-producing areas. Therefore, the prevention and control of gully erosion have become the top priority of soil and water conservation in recent years. Consequently, an estimation model of gully volume is a key step in modeling and mapping the gully erosion over a large scale, thereby to determining the erosive prone areas for better control of gully erosion. However, few researches were focused on modeling gully volume in this area. This study aims to explore the gully features, and then to build a gully volume model, finally assess the erosion parameters using the high-resolution remote sensing stereoscopic satellite imaging. The same high-resolution digital elevation model (DEM) was extracted from ENVI software using WorldView-2 stereoscopic satellite images (0.5 m resolution). ArcGIS 10.3 was selected to calculate gully morphological parameters of 45 gullies in a catchment located in the mountainous and hilly region of northeast China. The specific parameters included the top width (TW, m), bottom width (BW, m), depth (, m), cross-sectional area (CSA, m2), gully length (, m), gully area (, m2), and the volume (, m3). The results showed that the average values of TW,BW,, CSA,,, andwere 5.63 m, 2.82 m, 1.05 m, 4.94 m2, 81.90 m, 470.54 m2, and 428.53 m3, respectively. The means of the width ratio between the gully top and bottom was 0.48, indicating that the cross-section of the gully was mainly in an intermediate shape (V-U shape). The mean of the ratio between gully top width and depth was 5.95, where all of gullies were greater than 1, indicating that the collapse of gully-wall was faster than that of deep-cutting in the study area. There was an extreme significance in the gully volume and the length () or area () of study areas. A very prominent relationship of power function was also found between the gully volume and length/area, and the determination coefficients (2) of the volume estimation model were 0.57 and 0.90, respectively. Furthermore, the mean relative error and Nash coefficient further verified that themodel was more accurate and effective to predict the gully volume. Thevalue of power function was smaller in the black soil region of northeast China, compared with the Loess Plateau and the dry/hot valley regions, whereas, thevalue was larger in the mountainous and hilly regions than in the rolling and hilly regions of Northeast China, indicating that the gully erosion was more serious in the mountainous and hilly region of Northeast China. The precision of the-model depended mainly on the gully features. Correspondingly, the ratio between gully length and top width can serve as an index of classification for better performance in modeling gully erosion. The finding can provide a scientific basis to assess the gully volume over a large scale in the mountainous and hilly regions of Northeast China.
models; remote sensing; gullies; morphological parameters; black soil; mountainous and hilly region
2020-12-12
2021-03-15
國家重點研發(fā)計劃課題(2018YFC0507002);中央基本科研業(yè)務(wù)費專項重點項目(SE0145B132017);國家自然科學(xué)基金項目(41601274)
李鎮(zhèn),博士,副教授,研究方向為土壤侵蝕與水土保持。Email:lizhen@hgu.edu.cn
秦偉,博士,教授級高工,研究方向為土壤侵蝕與水土保持。Email:qinwei_office@sina.com
10.11975/j.issn.1002-6819.2021.07.015
S157
A
1002-6819(2021)-07-0122-09
李鎮(zhèn),齊志國,秦偉,等. 利用高分立體影像構(gòu)建東北黑土山地丘陵區(qū)切溝體積估算模型[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(7):122-130. doi:10.11975/j.issn.1002-6819.2021.07.015 http://www.tcsae.org
Li Zhen, Qi Zhiguo, Qin Wei, et al. Gully volume estimation model using high-resolution satellite imaging in mountainous and hilly regions with black soil of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 122-130. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.015 http://www.tcsae.org