滕建輝 喻奇?zhèn)? 熊晶 莫澤君 柯漁洲 陳倩 羅雯 張倩 王飛雁 劉仁祥
摘要:【目的】探究煙草葉片數(shù)雜交優(yōu)勢表現(xiàn),并分析煙草葉片數(shù)相關(guān)基因的差異表達(dá)情況及雜種優(yōu)勢形成的原因,為深入研究煙草葉片數(shù)的分子遺傳基礎(chǔ)和選育葉片數(shù)較多的雜交種提供理論依據(jù)?!痉椒ā恳匀~片數(shù)差異較大的 9個煙草品種(系)為親本,按照NCⅡ遺傳交配設(shè)計組配20個雜交組合,并測定親本和雜交組合的葉片數(shù),計算其雜種優(yōu)勢,從中篩選出強、弱優(yōu)勢組合,利用實時熒光定量PCR檢測其葉片相關(guān)基因BRI1、BSK3、FLC、FPF1和PHYC的相對表達(dá)量。最后,對葉片數(shù)相關(guān)基因中親表達(dá)優(yōu)勢間及其與葉片數(shù)中親優(yōu)勢進(jìn)行相關(guān)分析?!窘Y(jié)果】9個親本材料的葉片數(shù)為20.33~33.22片,以GDH94的葉片數(shù)最多,其次是南江三號和畢納1號,三者間無顯著差異(P>0.05,下同),但GDH94顯著高于其余6個親本(P<0.05,下同),表明供試親本間的葉片數(shù)存在真實的遺傳差異。20個雜交組合的葉片數(shù)存在明顯差異,為20.89~31.33片,以GDH94×南江三號的葉片數(shù)最多,以NC82×青梗的葉片數(shù)最少,說明采用雜種優(yōu)勢育種方法可選育出煙草葉片數(shù)較多的雜交種。20個雜交組合葉片數(shù)的雜種優(yōu)勢差異較大,其中中親優(yōu)勢為 -14.71%~11.77%,表現(xiàn)為正向中親優(yōu)勢和負(fù)向中親優(yōu)勢的組合分別占25%和75%,其中,以K326×GDH88葉片數(shù)的正向中親優(yōu)勢最強,為11.77%,以GDH94×湄潭大蠻煙葉片數(shù)的負(fù)向中親優(yōu)勢最強,為-14.71%;NC82×南江三號葉片數(shù)的中親優(yōu)勢最弱,為-0.22%,故選擇K326×GDH88和GDH94×湄潭大蠻煙為強優(yōu)勢組合、NC82×南江三號為弱優(yōu)勢組合。不同葉片數(shù)相關(guān)基因的中親表達(dá)優(yōu)勢之間存在一定的相關(guān)性,其中BRI1和BSK3基因的中親表達(dá)優(yōu)勢之間存在顯著正相關(guān);FPF1和PHYC基因的中親表達(dá)優(yōu)勢與葉片數(shù)雜種優(yōu)勢存在顯著負(fù)相關(guān)。FPF1基因在正向強優(yōu)勢雜交組合K326×GDH88和弱優(yōu)勢組合NC82×南江三號中較其相應(yīng)親本下調(diào)表達(dá),但負(fù)向強優(yōu)勢組合GDH94×湄潭大蠻煙較其親本上調(diào)表達(dá)。PHYC基因在正向強優(yōu)勢組合K326×GDH88和弱優(yōu)勢組合NC82×南江三號中較其相應(yīng)親本下調(diào)表達(dá),但在負(fù)向強優(yōu)勢組合GDH94×湄潭大蠻煙較其親本上調(diào)表達(dá)?!窘Y(jié)論】K326×GDH88組合的葉片數(shù)雜種優(yōu)勢最大,具有較大的高產(chǎn)潛力。FPF1和PHYC基因參與調(diào)控?zé)煵萑~片數(shù)雜種優(yōu)勢的形成,其下調(diào)表達(dá)是煙草葉片數(shù)性狀雜種優(yōu)勢形成的分子基礎(chǔ),可指導(dǎo)親本選配,提高煙草雜交選育效率。
關(guān)鍵詞: 煙草;葉片數(shù);雜種優(yōu)勢;基因表達(dá)
中圖分類號: S572.035.1? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2021)02-0420-09
Abstract:【Objective】To explore the performance of heterosis of tobacco leaf number, analyze the differential expression of leaf number related genes and the causes of heterosis, so as to provide a theoretical basis for further research on the molecular genetic basis of tobacco leaf number and breeding of hybrid varieties with more leaves. 【Method】Nine tobacco varieties(lines) with large difference in leaf number were as parents,20 hybrid combinations were set according to the NCⅡ genetic mating,and leaf number of parents and hybrid combinations were measure. Calculated the heterosis,the strong and weak dominant combinations were selected. The relative expression of leaf genes BRI1,BSK3,F(xiàn)LC,F(xiàn)PF1 and PHYC were detected using real-time fluorescent quantitative PCR. Finally,the correlation between leaf number related gene expression dominance and leaf number over-parent heterosis was analyzed. 【Result】The number of leaves of the nine parents was 20.33-33.22,and GDH94 had the most,followed by Nanjiang No.3 and Bina No.1. There was no significant difference among the three parents(P>0.05,the same below),but GDH94 was significantly higher than that of the other six parents(P<0.05,the same below), indicating that there was real genetic difference in the number of leaves among the tested parents. There were significant differences in the number of leaves among the 20 hybrid combinations, ranging from 20.89 to 31.33,with the highest number of leaves in GDH94×Nanjiang No.3 and the lowest number of leaves in NC82×Qinggeng,indicating that the hybridization method could be used to breed the hybrid with the appropriate number of leaves. Among the 20 hybrid combinations,the heterosis of the number of leaves was significantly different,of which the over-parent heterosis was -14.71%-11.77%,and the combinations showing positive over-parent heterosis and negative over-parent heterosis accounted for 25% and 75%,respectively. The positive over-parent heterosis of the number of leaves of K326×GDH88 was the strongest(11.77%),and the negative over-parent heterosis of the leaf number of GDH94×Meitandaman tobacco was the strongest(-14.71%). Over-parent heterosis of the leaf number of NC82×Nanjiang No.3 was the weakest(-0.22%). Therefore,K326×GDH88 and GDH94×Meitandaman tobacco were selected as the representative combinations of strong dominance,while NC82×Nanjiang No.3 was selected as the representative combination of weak dominance. There was a certain correlation in the over-parent heterosis among different leaf number related genes, and there was a significant positive correlation between the over-parent heterosis of BRI1 and BSK3 genes.There was a significant negative correlation between the over-parent heterosis of FPF1 and PHYC genes and leaf number heterosis. The expression of FPF1 gene was down-regulated in positive strong dominant hybrid K326×GDH88 and weak dominant hybrid NC82×Nanjiang No.3 compared with their parents,but up-regulated in negative strong dominant hybrid GDH94×Meitandaman tobacco compared with their parents. The PHYC gene expression was down-regulated in positive strong dominance combination K326×GDH88 and weak dominant combination NC82×Nanjiang No.3 compared with their parents,but up-regulated in negative strong dominant combination GDH94×Meitandaman tobacco compared with their parents.【Conclusion】The combination of K326×GDH88 has the highest leaf number heterosis and high yield potential. FPF1 and PHYC genes are involved in the regulation of the formation of tobacco leaf number heterosis,and their down-regulated expression is the molecular basis for the formation of tobacco leaf number heterosis,which can guide the selection of parents and improve the efficiency of tobacco hybrid breeding.
Key words: tobacco; leaf number; heterosis; gene expression
Foundation item: High-level Innovative Talent Training Plan of Guizhou(QKHPTRC〔2016〕5663);Science and Technology Project of Guizhou Tobacco Company(201602,201904,2020XM07)
0 引言
【研究意義】煙草是我國重要的葉用經(jīng)濟作物。葉片數(shù)是煙葉產(chǎn)量的主要構(gòu)成指標(biāo)之一,直接影響煙農(nóng)的經(jīng)濟收益和卷煙原料的市場供應(yīng)(左偉標(biāo)等,2020)。雜種優(yōu)勢是生物界的一種普通現(xiàn)象,可提高作物產(chǎn)量和品質(zhì),在水稻、玉米等作物中已廣泛利用(Chen,2010;王昆等,2018)。雜種優(yōu)勢形成的原因極其復(fù)雜,作物雜種優(yōu)勢不僅在不同作物間及不同性狀間存在差異,而且同一作物同一性狀也可能因雜交組合和雜交方式及栽培環(huán)境不同而存在差異,很難明確顯性、超顯性和上位性效應(yīng)中哪個在作物雜種優(yōu)勢中占主導(dǎo)作用(Patrick et al.,2013;Shang et al.,2016;商連光等,2017),難以有效指導(dǎo)優(yōu)良雜交種的選育和利用。基因型雜合化是雜種優(yōu)勢產(chǎn)生的物質(zhì)基礎(chǔ),雜交種的基因及其互作對雜種優(yōu)勢表現(xiàn)起決定性作用,但基因必須通過轉(zhuǎn)錄和蛋白翻譯才能對性狀起調(diào)控作用,從mRNA水平上和基因表達(dá)調(diào)控角度來分析研究雜種優(yōu)勢的形成機理更為直接和科學(xué)(凌亮等,2007;許晨璐等,2013)。因此,研究煙草葉片數(shù)雜種優(yōu)勢表現(xiàn)及相關(guān)基因差異表達(dá)分析對研究煙草雜種優(yōu)勢形成的機理具有十分重要的意義?!厩叭搜芯窟M(jìn)展】目前大量研究結(jié)果表明,煙草葉片數(shù)受遺傳因素(張興偉等,2012;李顯航,2019;蒲媛媛等,2020)、栽培措施(周俊學(xué)等;2016;信俊峰等,2018)、生長調(diào)節(jié)劑(林姍姍等,2017;蘇暢濤,2020)和生態(tài)環(huán)境(王紅鋒等,2019;王廷賢等,2019)等因素的影響。煙草葉片數(shù)是核基因控制的數(shù)量性狀,由2對主效基因與微效多基因共同作用,以加性效應(yīng)和顯性×顯性上位性效應(yīng)為主,其遺傳力較高(張興偉等,2012;徐航等,2013;李顯航,2019;蒲媛媛等,2020)。植物葉片數(shù)是通過眾多基因在特定遺傳背景和環(huán)境條件下相互作用的結(jié)果。擬南芥FLC基因在低溫處理下的表達(dá)量明顯升高,延遲了開花時間,導(dǎo)致擬南芥葉片數(shù)明顯增加(Kim et al.,2004);PHYC基因在短日照條件下高表達(dá)抑制了擬南芥開花,增加植株最終葉片數(shù)(Franklin et al.,2003);BRI1、BSK3、FLC、FPF1和PHYC基因不僅在擬南芥的花芽分化過程中發(fā)揮調(diào)控作用,還參與葉片數(shù)的調(diào)控從而有效影響葉片數(shù)(Balasubramanians et al.,2006;羅占春等,2009;王楠,2019)?!颈狙芯壳腥朦c】本研究課題組前期研究發(fā)現(xiàn)煙草葉片數(shù)有較強的雜種優(yōu)勢,采用雜種優(yōu)勢利用育種方法育成了品質(zhì)優(yōu)良、葉片數(shù)具有超親優(yōu)勢的2個雜交種(劉仁祥等,2016),但對煙草葉片數(shù)雜種優(yōu)勢形成的原因尚不明確,雜交組合的配制仍較盲目。目前鮮見有關(guān)煙草葉片數(shù)雜種優(yōu)勢表現(xiàn)及相關(guān)基因差異表達(dá)分析的研究報道?!緮M解決的關(guān)鍵問題】以葉片數(shù)差異較大的煙草品種(系)為材料,采用NCⅡ遺傳設(shè)計組配雜交組合,分析煙草葉片數(shù)的雜種優(yōu)勢表現(xiàn),篩選強、弱優(yōu)勢雜交組合,在基因表達(dá)水平上探究煙草葉片數(shù)雜種優(yōu)勢形成與基因差異表達(dá)間的關(guān)系,為合理選配親本從而選育出葉片數(shù)較多的雜交種提供指導(dǎo),以提高煙草雜交種的選育效率,可為闡明作物雜種優(yōu)勢形成的分子機理打下理論基礎(chǔ)。
1 材料與方法
1. 1 試驗材料
供試親本材料共9個,其中GDH94、南江三號和畢納1號的葉片數(shù)較多,湄潭大蠻煙、NC82和青梗的葉片數(shù)較少,K326、GDH88和Va116的葉片數(shù)居中,均由貴州大學(xué)貴州省煙草品質(zhì)研究重點實驗室提供。RNAprep Pure Plant Kit試劑盒、FastKing gDNA Dispelling RT SuperMix試劑盒和Talent qPCR PreMix(SYBR Green)試劑盒購自天根生化科技(北京)有限公司。主要儀器設(shè)備:CFX96 Real-Time System(Bio-Rad,美國)、凝膠成像系統(tǒng)(Bio-Rad,美國)、冷凍離心機(Thermo,美國)和DYCP-44N電泳儀(新諾,中國)。
1. 2 雜交組合配制及田間試驗設(shè)計
隨機抽取4個材料為母本,另外5個材料為父本,按照NCⅡ設(shè)計配制20個雜交組合(表1),并記錄親本和雜交組合的現(xiàn)蕾時間。試驗于2020年在貴州大學(xué)煙草科研基地(安順市西秀區(qū)楊武鄉(xiāng)石平村)進(jìn)行,煙地的土壤肥力中等。于5月3日進(jìn)行井窖式移栽,田間試驗采用隨機區(qū)組設(shè)計,3次重復(fù),每小區(qū)3行,每行15株,行、株距為1.10 m×0.55 m。四周設(shè)保護(hù)行,每行第1株和最后1株不進(jìn)行數(shù)據(jù)測定,其余栽培管理技術(shù)按照《安順市西秀區(qū)優(yōu)質(zhì)煙葉生產(chǎn)技術(shù)方案》執(zhí)行。
1. 3 葉片數(shù)測定方法
待供試材料均進(jìn)入初花期時,按照YC/T 142—2010《煙草農(nóng)藝性狀調(diào)查測量方法》進(jìn)行調(diào)查記載(中國煙草總公司青州煙草研究所,2010)。每小區(qū)隨機選取3株,測定其葉片數(shù),計算平均值。
1. 4 雜種優(yōu)勢的計算方法
參照陳澤輝(2009)方法計算煙草F1代葉片數(shù)的雜種優(yōu)勢,計算公式如下
中親優(yōu)勢(%)=(F1-MP)/MP×100
超高親優(yōu)勢(%)=(F1-HP)/HP×100;
超低親優(yōu)勢(%)=(F1-LP)/LP×100;
式中,MP表示雙親平均值,HP表示高親值,LP表示低親值,F(xiàn)1表示雜種一代葉片數(shù)的平均值。
1. 5 基因表達(dá)量的測定
1. 5. 1 樣品采集 參照高凱悅等(2016)的取樣方法,于移栽后25 d(花芽分化關(guān)鍵時期),每個材料選定正常生長且長勢一致的3株煙,取其長度為5 cm的莖尖均勻混合,并進(jìn)行液氮速凍,設(shè)置3個生物學(xué)重復(fù),樣品保存于-86 ℃的超低溫冰箱中備用。
1. 5. 2 總RNA提取及cDNA合成 采用RNAprep Pure Plant Kit試劑盒提取總RNA,按FastKing gDNA Dispelling RT SuperMix試劑盒說明反轉(zhuǎn)錄合成cDNA第一鏈。
1. 5. 3 實時熒光定量PCR 在NCBI數(shù)據(jù)庫中搜索葉片數(shù)相關(guān)基因,根據(jù)其cDNA全長序列,利用Pri-mer 6.0設(shè)計各基因引物(表2),并委托北京擎科生物科技有限公司合成。按照Talent qPCR PreMix(SYBR Green)試劑盒說明對這些基因進(jìn)行實時熒光定量PCR檢測。反應(yīng)體系20.0 ?L:2×Talent qPCR PreMix 10.0 ?L,上、下引物(10 μmol/L)各0.6 ?L,cDNA模板2.0 ?L,ddH2O補足至20.0 ?L。擴增程序:95 ℃預(yù)變性3 min;95 ℃ 5 s;退火溫度(表2)10 s,75 ℃ 15 s,進(jìn)行40個循環(huán)。每個樣品設(shè)3次技術(shù)重復(fù)。
1. 5. 4 表達(dá)量的統(tǒng)計方法 以K326為對照,采用比較閾值法(2-ΔΔCt)計算葉片數(shù)相關(guān)基因(王秀莉等,2009)。根據(jù)實時熒光定量PCR測定的Ct值,計算強、弱優(yōu)勢組合中葉片數(shù)相關(guān)基因的相對表達(dá)量,并據(jù)此計算各基因的中親表達(dá)優(yōu)勢,分析其與葉片數(shù)雜種優(yōu)勢的相關(guān)性。
中親表達(dá)優(yōu)勢=(F1-雙親平均值)/雙親平均值
式中,F(xiàn)1表示雜交種的相對表達(dá)量,雙親平均值表示父本和母本相對表達(dá)量的平均值。
1. 6 統(tǒng)計分析
采用Excel 2010和SPSS 20.0對葉片數(shù)及其雜種優(yōu)勢、葉片數(shù)相關(guān)基因的表達(dá)量等進(jìn)行單因素方差分析和Pearson相關(guān)分析。
2 結(jié)果與分析
2. 1 親本和雜交組合的現(xiàn)蕾時間測定結(jié)果
由表3和表4可知,9個親本材料的現(xiàn)蕾時間為59~62 d;20個雜交組合的現(xiàn)蕾時間為60~64 d,可見,親本與雜交組合材料的現(xiàn)蕾時間無明顯差異,說明各材料花芽分化進(jìn)程基本一致。由于煙草花芽分化的早晚直接影響其總?cè)~片數(shù),現(xiàn)蕾后才完成煙株花芽分化(胡榮海,2007)。因此,應(yīng)在煙株花芽分化關(guān)鍵時期(移栽后25 d)進(jìn)行取樣用于基因差異表達(dá)研究。
2. 2 親本間及雜交組合葉片數(shù)的差異分析結(jié)果
由表5可知,9個親本材料的葉片數(shù)為20.33~33.22片,以GDH94的葉片數(shù)最多,其次是南江三號和畢納1號,三者間無顯著差異(P>0.05,下同),但GDH94顯著高于其余6個親本(P<0.05,下同),以青梗的葉片數(shù)最少,表明供試親本間的葉片數(shù)存在真實的遺傳差異,可用于葉片數(shù)性狀的遺傳利用研究。
由表6可知,20個雜交組合的葉片數(shù)為20.89~31.33片,以GDH94×南江三號的葉片數(shù)最多,以NC82×青梗的葉片數(shù)最少??梢?,20個雜交組合葉片數(shù)存在明顯差異,說明采用雜種優(yōu)勢育種方法可選育出煙草葉片數(shù)較多的雜交種。
2. 3 煙草葉片數(shù)的雜種優(yōu)勢表現(xiàn)及強、弱優(yōu)勢材料篩選
20個雜交組合葉片數(shù)的雜種優(yōu)勢如表7所示。不同雜交組合葉片數(shù)的雜種優(yōu)勢差異較大。中親優(yōu)勢為-14.71%~11.77%,表現(xiàn)為正向中親優(yōu)勢和負(fù)向中親優(yōu)勢的組合分別占25%和75%,表明煙草葉片數(shù)的雜種優(yōu)勢表現(xiàn)以負(fù)向優(yōu)勢為主。其中,以K326×GDH88葉片數(shù)的正向中親優(yōu)勢最強,為11.77%,以GDH94×湄潭大蠻煙葉片數(shù)的負(fù)向中親優(yōu)勢最強,為-14.71%;NC82×南江三號葉片數(shù)的中親優(yōu)勢最弱,為-0.22%,故選擇K326×GDH88和GDH94×湄潭大蠻煙為強優(yōu)勢組合,NC82×南江三號為弱優(yōu)勢組合,用于葉片數(shù)相關(guān)基因的差異表達(dá)分析。超高親優(yōu)勢為-25.69%~8.75%,僅K326×GDH88、Va116×湄潭大蠻煙和Va116×GDH88表現(xiàn)出正向超高親優(yōu)勢,說明只要親本選擇得當(dāng)可育成葉片數(shù)較多的雜交種。
2. 4 煙草葉片數(shù)雜種優(yōu)勢及相關(guān)基因的表達(dá)分析結(jié)果
以K326為對照,利用實時熒光定量PCR檢測5個葉片數(shù)相關(guān)基因在強、弱優(yōu)勢組合及其親本中的相對表達(dá)量,并計算各基因的中親表達(dá)優(yōu)勢,結(jié)果分別如表8和表9所示。不同優(yōu)勢組合中同一基因的中親表達(dá)優(yōu)勢具有明顯的差異。在正向強優(yōu)勢組合K326×GDH88中,F(xiàn)LC、BRI1、FPF1和PHYC基因表現(xiàn)為負(fù)向優(yōu)勢;在負(fù)向強優(yōu)勢組合GDH94×湄潭大蠻煙中,5個相關(guān)基因均表現(xiàn)為正向優(yōu)勢;在弱優(yōu)勢組合NC82×南江三號中,F(xiàn)LC和FPF1基因表現(xiàn)為正向優(yōu)勢,BRI1、BSK3和PHYC基因表現(xiàn)為負(fù)向優(yōu)勢。表明不同葉片數(shù)相關(guān)基因在葉片數(shù)雜種優(yōu)勢中的差異表達(dá)模式較復(fù)雜,無明顯的規(guī)律性。
采用簡單相關(guān)性方法分析葉片數(shù)相關(guān)基因中親表達(dá)優(yōu)勢間及其與葉片數(shù)雜種優(yōu)勢的關(guān)系,結(jié)果如表10所示。不同葉片數(shù)相關(guān)基因的中親表達(dá)優(yōu)勢之間存在一定的聯(lián)系。其中,BRI1與BSK3基因中親表達(dá)優(yōu)勢的相關(guān)系數(shù)為0.79,呈顯著正相關(guān),說明這2個基因的表達(dá)存在互作關(guān)系;FPF1和PHYC基因的中親表達(dá)優(yōu)勢與葉片數(shù)雜種優(yōu)勢呈顯著負(fù)相關(guān),相關(guān)系數(shù)分別為-0.67和-0.71,說明FPF1和PHYC基因中親表達(dá)優(yōu)勢的正向表現(xiàn)抑制了煙草葉片數(shù)雜種優(yōu)勢的形成,故推測FPF1和PHYC基因是煙草葉片數(shù)雜種優(yōu)勢形成的關(guān)鍵基因。
2. 5 FPF1和PHYC基因在強、弱優(yōu)勢組合及其親本中的表達(dá)分析結(jié)果
煙草葉片數(shù)雜種優(yōu)勢形成的關(guān)鍵基因FPF1和PHYC在強、弱優(yōu)勢組合及其親本中的表達(dá)情況,如圖1所示。FPF1基因在正向強優(yōu)勢雜交組合K326×GDH88和弱優(yōu)勢組合NC82×南江三號中較其相應(yīng)親本下調(diào)表達(dá),但負(fù)向強優(yōu)勢組合GDH94×湄潭大蠻煙較其親本上調(diào)表達(dá)。PHYC基因在正向強優(yōu)勢組合K326×GDH88和弱優(yōu)勢組合NC82×南江三號中較其相應(yīng)親本下調(diào)表達(dá),但在負(fù)向強優(yōu)勢組合GDH94×湄潭大蠻煙較其親本上調(diào)表達(dá)。故推測FPF1和PHYC基因通過下調(diào)表達(dá)調(diào)控?zé)煵萑~片數(shù)雜種優(yōu)勢的形成。
3 討論
3. 1 煙草葉片數(shù)及其雜種優(yōu)勢表現(xiàn)
親本材料間的性狀差異是品種改良的物質(zhì)基礎(chǔ)。彭韜屹(2019)、李迪秦等(2020)研究發(fā)現(xiàn),烤煙葉片數(shù)因品種不同而存在一定差異,且受遺傳的影響較大。本研究結(jié)果表明,煙草親本及雜交組合間煙草葉片數(shù)存在明顯差異,說明供試材料的遺傳背景豐富,適于葉片數(shù)的遺傳研究和優(yōu)良品種的雜交選育。煙草葉片數(shù)雜種優(yōu)勢總體表現(xiàn)為負(fù)向群體中親優(yōu)勢,表明采用雜種優(yōu)勢育種方法選育葉片數(shù)較多雜交種的難度較大,與徐航等(2013)、Shu(2016)對葉片數(shù)雜種優(yōu)勢的研究結(jié)果一致。本研究發(fā)現(xiàn),有15%的雜交組合表現(xiàn)為正向超高親優(yōu)勢,說明只要親本選擇適宜也可育成葉片數(shù)較多的雜交種。
3. 2 葉片數(shù)相關(guān)基因表達(dá)與煙草葉片數(shù)雜種優(yōu)勢的關(guān)系
基因協(xié)同表達(dá)導(dǎo)致植物性狀表型的變化。雜種優(yōu)勢的產(chǎn)生是由2個遺傳背景不同的親本相互作用的結(jié)果。采用基因差異表達(dá)方法,了解相同基因在親本與雜交組合中的表達(dá)差異,尋找與雜種優(yōu)勢形成相關(guān)的基因,探討雜種優(yōu)勢形成與基因表達(dá)調(diào)控的關(guān)系,有望更直接、更科學(xué)地從分子水平上解析雜種優(yōu)勢的形成機理(呂有軍和張愛芹,2008;王艷欣等,2018)。本研究結(jié)果顯示,F(xiàn)PF1和PHYC基因的中親表達(dá)優(yōu)勢與葉片數(shù)中親優(yōu)勢呈顯著負(fù)相關(guān),說明FPF1和PHYC基因中親表達(dá)優(yōu)勢的正向表現(xiàn)抑制了煙草葉片數(shù)雜種優(yōu)勢的形成,故推測FPF1和PHYC基因是煙草葉片數(shù)雜種優(yōu)勢形成的關(guān)鍵基因。對FPF1和PHYC基因在各雜交種及其親本中的相對表達(dá)情況進(jìn)一步檢測分析,結(jié)果發(fā)現(xiàn)煙草葉片數(shù)雜種優(yōu)勢主要通過FPF1和PHYC基因的下調(diào)表達(dá)而實現(xiàn),其下調(diào)表達(dá)是煙草葉片數(shù)雜種優(yōu)勢形成的分子基礎(chǔ),進(jìn)一步證明二者是煙草葉片數(shù)雜種優(yōu)勢形成的關(guān)鍵基因。在今后煙草雜種育種中,應(yīng)優(yōu)先選擇FPF1和PHYC基因低表達(dá)類型的材料為親本,以獲得煙草葉片數(shù)較多的雜交種。
4 結(jié)論
K326×GDH88組合的葉片數(shù)雜種優(yōu)勢最大,具有較大的高產(chǎn)潛力。FPF1和PHYC基因參與調(diào)控?zé)煵萑~片數(shù)雜種優(yōu)勢的形成,其下調(diào)表達(dá)是煙草葉片數(shù)性狀雜種優(yōu)勢形成的分子基礎(chǔ),可指導(dǎo)親本選配,提高煙草雜交選育效率。
參考文獻(xiàn):
陳澤輝. 2009. 群體與數(shù)量遺傳學(xué)[M]. 貴陽:貴州科技出版社. [Chen Z H. 2009. Population and quantitative genetics[M]. Guiyang:Guizhou Science and Technology Press.]
高凱悅,李淑久,江錫瑜,楊昌達(dá),廖海民. 2016. 烤煙南江3號的花芽分化[J]. 煙草科技,49(7):31-35. doi:10.16135/j.issn1002-0861.20160705. [Gao K Y,Li S J,Jiang X Y,Yang C D,Liao H M. 2016. Flower bud differentiation of flue-cured tobacco cv. Nanjiang No.3[J]. Tobacco Science & Technology,49(7):31-35.]
胡榮海. 2007. 云南煙草栽培學(xué)[M]. 北京:科學(xué)出版社. [Hu R H. 2007. Tobacco cultivation in Yunnan[M]. Beijing:Science Press.]
李迪秦,劉伊蕓,胡亞杰,韋建玉,楊全柳,李強. 2020. 不同基因型烤煙農(nóng)藝性狀與質(zhì)量指標(biāo)評價及灰色關(guān)聯(lián)分析[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)),35(4):643-650. doi:10.12101/j.issn.1004-390X(n).201903056. [Li D Q,Liu Y Y,Hu Y J,Wei J Y,Yang Q L,Li Q. 2020. Evaluation and grey relational analysis between the agronomic chara-cters and quality indicators of different genotypes flue-cured tobacco[J]. Journal of Yunnan Agricultural University(Natural Science),35(4):643-650.]
李顯航. 2019. 烤煙葉片數(shù)連鎖分子標(biāo)記篩選[D]. 貴陽:貴州大學(xué). doi:10.16213/j.cnki.scjas.2018.9.027. [Li X H. 2019. Screening of linkage molecular markers for number of flue-cured tobacco leaves[D]. Guiyang:Guizhou University.]
林姍姍,陳健,程森,王生才,尹紅慧,徐天養(yǎng),竇玉青,張偉峰. 2017. 植物生長調(diào)節(jié)劑對烤煙經(jīng)濟性狀與質(zhì)量的影響[J]. 貴州農(nóng)業(yè)科學(xué),45(10):44-47. doi:10.3969/j.issn.1001-3601.2017.10.010. [Lin S S,Chen J,Cheng S,Wang S C,Yin H H,Xu T Y,Dou Y Q,Zhang W F. 2017. Effects of plant growth regulators on economic characters and quality of flue-cured tobacco[J]. Guizhou Agricultural Sciences,45(10):44-47.]
凌亮,王瑞,尚春樹,代永齊. 2007. 作物雜種優(yōu)勢分子遺傳基礎(chǔ)研究進(jìn)展[J]. 山西農(nóng)業(yè)科學(xué),(6):111-116. doi:10. 3969/j.issn.1002-2481.2007.06.034. [Ling L,Wang R,Shang C S,Dai Y Q. 2007. Research advance on the molecular genetics basis of heterosis in crops[J]. Journal of Shanxi Agricultural Sciences,(6):111-116.]
劉仁祥,夏志林,崔慶偉,喻奇?zhèn)?,張慶明,聶瓊,徐秀紅,劉洋. 2016. 貴州烤煙育種工作進(jìn)展與對策探討[J]. 山地農(nóng)業(yè)生物學(xué)報,35(4):1-6. doi:10.15958/j.cnki.sdnyswxb.2016.04. 001. [Liu R X,X Z L,Cui Q W,Yu Q W,Zhang Q M,Nie Q,Xu X H,Liu Y. 2016. Progress in tobacco breeding in Guizhou Province and discussion for solutions[J]. Journal of Mountain Agriculture and Bio-logy,35(4):1-6.]
羅占春,杜偉,張衛(wèi)星. 2009. 土壤水分與煙草生長發(fā)育和生理代謝的相關(guān)研究進(jìn)展[J]. 山地農(nóng)業(yè)生物學(xué)報,28(5):446-451. doi:10.3969/j.issn.1008-0457.2009.05.016. [Luo Z C,Du W,Zhang W X. 2009. The progress on the effect of soil water on growth and development and physiological metabolism of tobacco[J]. Journal of Mountain Agriculture and Biology,28(5):446-451.]
呂有軍,張愛芹. 2005. 基因差異表達(dá)與作物雜種優(yōu)勢分子機理研究[J]. 種子,(12):33-38. doi:10.16590/j.cnki.1001-4705.2005.12.045. [Lü Y J,Zhang A Q. 2005. Molecular mechanism of gene differential expression and crop hetero-sis[J]. Seed,(12):33-38.]
彭韜屹. 2019. 烤煙新品系09011在廣元煙區(qū)的生態(tài)適應(yīng)性評價[D]. 雅安:四川農(nóng)業(yè)大學(xué). doi:10.27345/d.cnki.gsnyu. 2019.000806. [Peng T Y. 2019. Evaluation of ecological adaptability of new flue-cured tobacco strain 09011 in Guangyuan Tobacco area[D]. Yaan:Sichuan Agricultural University.]
蒲媛媛,鄭宏斌,李顯航,喻奇?zhèn)ィ芫?,夏忠文,羅家俊,李星悅,陳誼然,劉仁祥. 2020. 烤煙NC82和畢納1號品種葉片數(shù)的遺傳模式分析及分子標(biāo)記篩選[J]. 山地農(nóng)業(yè)生物學(xué)報,39(3):17-22. doi:10.15958/j.cnki.sdnyswxb. 2020.03.003. [Pu Y Y,Zheng H B,Li X H,Yu Q W,Xiong J,Xia Z W,Luo J J,Li X Y,Chen Y R,Liu R X. 2020. The genetic analysig and molecular marker scree-ning of leaf number of flue-cured tobacco varieties NC82 and Bina 1[J]. Journal of Mountain Agriculture and Bio-logy,39(3):17-22.]
商連光,高振宇,錢前. 2017. 作物雜種優(yōu)勢遺傳基礎(chǔ)的研究進(jìn)展[J]. 植物學(xué)報,52(1):10-18. doi:10.11983/CBB16187. [Shang L G,Gao Z Y,Qian Q. 2017. Progress in understanding the genetic basis of heterosis in crops[J]. Chinese Bulletin of Botany,52(1):10-18.]
蘇暢濤. 2020. 植物生長調(diào)節(jié)劑在烤煙上的應(yīng)用效果試驗[J]. 現(xiàn)代農(nóng)業(yè)科技,(6):120-121. doi:10.19383/j.cnki.nyzhyj.2020.08.003. [Su C T. 2020. Effect of plant growth regulator on flue-cured tobacco[J]. Modern Agricultural Science and Technology,(6):120-121.]
王紅鋒,孫曙光,楊曉亮,付小紅,楊紅柯,秦平偉. 2019. 重慶煙區(qū)烤煙生態(tài)環(huán)境與農(nóng)藝性狀的典型相關(guān)分析[J]. 湖南農(nóng)業(yè)科學(xué),(2):29-33. doi:10.16498/j.cnki.hnnykx. 2019.002.009. [Wang H F,Sun S S,Yang X L,F(xiàn)u X H,Yang H K,Qin P W. 2019. Canonical correlation analysis of ecological environment and agronomic traits of flue-cured tobacco in Chongqing tobacco area[J]. Hunan Agricultural Sciences,(2):29-33.]
王昆,于海龍,曹亞從,張正海,王立浩,張寶璽. 2018. 辣椒雜種優(yōu)勢相關(guān)研究進(jìn)展及其展望[J]. 辣椒雜志,16(3):1-7. doi:10.16847/j.cnki.issn.1672-4542.2018.03.001. [Wang K,Yu H L,Cao Y C,Zhang Z H,Wang L H,Zhang B X. 2018. Progress and perspective of heterosis researches on pepper[J]. Journal of China Capsicum,16(3):1-7.]
王楠. 2019. 煙草BR信號通路與成花相關(guān)基因在花芽分化響應(yīng)苗期低溫中的表達(dá)分析[D]. 重慶:西南大學(xué). [Wang N. 2019. Expression analysis of the gene in tobacco BR signaling pathway and flower-related in flower bud diffe-rentiation in response to low temperature in seedling stage[D]. Chongqing:Southwest University.]
王廷賢,鄭小雨,張廣東,王剛,楊占偉. 2019. 烤煙生態(tài)環(huán)境和紋理特征的典型相關(guān)分析[J]. 昆明學(xué)院學(xué)報,41(6):18-23. doi:10.14091/j.cnki.kmxyxb.2019.06.004. [Wang T X,Zheng X Y,Zhang G D,Wang G,Yang Z W. 2019. Typical correlation analysis between flue-cured tobacco ecological environment and texture characteristics[J]. Journal of Kunming University,41(6):18-23.]
王秀莉,姚穎垠,彭惠茹,張一,逯臘虎,倪中福,孫其信. 2009. 赤霉素代謝及其調(diào)控相關(guān)基因的差異表達(dá)與小麥株高雜種優(yōu)勢的關(guān)系研究[J]. 科學(xué)通報,54(16):2320-2324. doi:10.1007/s11434-009-0518-3. [Wang X L,Yao Y Y,Peng H R,Zhang Y,Lu L H,Ni Z F,Sun Q X. 2009. The relationship of differential expression of genes in GA biosynthesis and response pathways with heterosis of plant height in a wheat diallel cross[J]. Chinese Science Bulletin,54 (16):2320-2324.]
王艷欣,王月星,王位,王建蒙,柴圓,戴豪楊,張文廣. 2018. 雜種優(yōu)勢的應(yīng)用及基因表達(dá)的特點[J].畜牧與飼料科學(xué),39(4):32-34. doi:10.16003/j.cnki.issn1672-5190. 2018.04.009. [Wang Y X,Wang Y X,Wang W,Wang J M,Chai Y,Dai H Y,Zhang W G. 2018. Application of heterosis and its gene expression characteristics[J]. Animal Husbandry and Feed Science,39(4):32-34.]
信俊峰,范曉琪,杜衛(wèi)民,陳利平,顧會戰(zhàn),張啟莉,何佶弦,蔣垚,魯黎明. 2018. 留葉數(shù)對烤煙新品系09011生長及產(chǎn)質(zhì)量的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,(22):1-2. doi:10.3969/j.issn.1007-5739.2018.22.001. [Xin J F,F(xiàn)an X Q,Du W M,Chen L P,Gu H Z,Zhang Q L,He J X,Jiang Y,Lu L M. 2018. Effects of leaf numbers on growth,yield and quality of new flue-cured tobacco line 09011[J]. Modern Agricultural Science and Technology,(22):1-2.]
許晨璐,孫曉梅,張守攻. 2013. 基因差異表達(dá)與雜種優(yōu)勢形成機制探討[J]. 遺傳,35(6):714-726. doi:10.3724/SP.J.1005.2013.00714. [Xu C L,Su X M,Zhang S G. 2013. Gene differential expression and heterosis formation mechanism[J]. Hereditas(Beijing),35(6):714-726.]
徐航,劉仁祥,徐如宏,袁富,吳祖玄. 2013. 烤煙主要農(nóng)藝性狀的遺傳分析[J]. 中國煙草科學(xué),34(5):62-66. doi:10.3969/j.issn.1007-5119.2013.05.013. [Xu H,Liu R X,Xu R H,Yuan F,Wu Z X. 2013. Genetic analysis of the main agronomic traits of flue-cured tobacco[J]. Chinese Tobacco Science,34(5):62-66.]
張興偉,王志德,孫玉合,任民,劉艷華,牟建民,徐軍. 2012. 烤煙葉數(shù)、葉面積的遺傳分析[J]. 植物遺傳資源學(xué)報,13(3):467-472. doi:10.13430/j.cnki.jpgr.2012.03.017. [Zhang X W,Wang Z D,Sun Y H,Ren M,Liu Y H,Mou J M,Xu J. 2012. Genetic analysis of leaf number and leaf area in flue-cured tobacco[J]. Journal of Plant Genetic Resources,13(3):467-472.]
中國煙草總公司青州煙草研究所. 2010. YC/T 142—2010? 煙草農(nóng)藝性狀調(diào)查測量方法[S]. 北京:中國標(biāo)準(zhǔn)出版社. [Qingzhou Tobacco Research Institute,China National Tobacco Corporation. 2010. YC/T 142—2010? Survey and measurement methods of tobacco agronomic traits[S]. Beijing:China Standard Press.]
周俊學(xué),王艷芳,劉杉,李繼偉,趙世民,王慧,王小東,劉領(lǐng). 2016. 留葉數(shù)目和方式對烤煙生長及光合特性的影響[J]. 湖北農(nóng)業(yè)科學(xué),55(22):5868-5874. doi:10.14088/j.cnki.issn0439-8114.2016.22.036. [Zhou J X,Wang Y F,Liu S,Li J W,Zhao S M,Wang H,Wang X D,Liu L. 2016. Effects of number and pattern of remained leaf on growth and photosynthetic characteristics of flue-cured tobacco[J]. Hubei Agricultural Sciences,55(22):5868-5874.]
左偉標(biāo),洪天龍,高遠(yuǎn),郭芳陽,魯松霖,葉諶睿,安銀立,畢樂樂,王永齊,柏永超. 2020. 農(nóng)藝措施調(diào)控烤煙營養(yǎng)吸收利用的研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),48(22):4-6. doi:103969/j.Issn.0517-6611.2020.22.002. [Zuo W B,Hong T L,Gao Y,Guo F Y,Lu S L,Ye C R,An Y L,Bi L L,Wang Y Q,Bai Y C. 2020. Research progress on the regu-lation of agronomic measures for absorption and utilization of nutrients in flue-cured tobacco[J]. Journal of Anhui Agricultural Sciences,48(22):4-6.]
Balasubramanians S,Sureshkumar S,Agrawal M,Michael T P,Wessinger C,Maloof J N,Clark R,Warthmann N,Chory J,Weigel D. 2006. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana[J]. Nature Genetics,38(6):711-715. doi:10.1038/ng1818.
Chen Z J. 2010. Molecular mechanisms of polyploidy and hybrid vigor[J]. Trends in Plant Science,15(2):57-71. doi:10.1016/j.tplants.2009.12.003.
Franklin K A,Davis S J,Stoddart W M,Vierstra R D,Whitelam G C. 2003. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogene-sis[J]. The Plant Cell,15(9):1981-1989. doi:10.1105/tpc. 015164.
Kim H J,Hyun Y,Park J Y,Park M J,Kim J. 2004. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana[J]. Nature Genetics,36(2):167-171. doi:10.1038/ng1298.
Patrick S,Schnable,Nathan M,Springer. 2013. Progress toward understanding heterosis in crop plants[J]. Annual Review of Plant Biology,64:71-88. doi:10.1146/annurev-arplant-042110-103827.
Shang L G,Wang Y M,Cai S H. 2016. Genetic analysis of upland cotton dynamic heterosis for boll number per plant at multiple developmental stages[J]. Scientific Reports,6:35515. doi:10.1038/srep35515.
Shu H W. 2016. Phenotypic diversity of important agronomic traits in Sichuan sun-cured tobacco local variety[J]. Journal of Agricultural Sciences,6(2):23-30. doi:10.12677/HJAS.2016.62004.
(責(zé)任編輯 陳 燕)