国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

肉類(lèi)低溫保鮮技術(shù)研究進(jìn)展

2021-07-11 03:18吳明黃曉紅楊勇高夢(mèng)祥
肉類(lèi)研究 2021年5期
關(guān)鍵詞:肉類(lèi)研究進(jìn)展影響因素

吳明 黃曉紅 楊勇 高夢(mèng)祥

摘 要:低溫保鮮是肉類(lèi)食品重要的保藏方式,肉類(lèi)經(jīng)低溫保鮮能夠在一定時(shí)間內(nèi)維持其原有品質(zhì),但在低溫條件下保鮮也不能完全避免品質(zhì)劣變甚至腐敗變質(zhì)。肉類(lèi)在低溫保鮮中出現(xiàn)的品質(zhì)變化是多種因素共同作用的結(jié)果,因此,在低溫貯藏的基礎(chǔ)上結(jié)合其他技術(shù)對(duì)肉類(lèi)進(jìn)行保鮮很有必要。本文概括肉類(lèi)低溫保鮮中的品質(zhì)變化以及影響肉類(lèi)低溫保鮮性能的因素,同時(shí)對(duì)其他低溫保鮮技術(shù)的研究進(jìn)行綜述,旨在為肉類(lèi)低溫保鮮提供參考。

關(guān)鍵詞:肉類(lèi);低溫保鮮;品質(zhì)變化;影響因素;研究進(jìn)展

A Review of Preservation Technologies for Meat Products Stored under Low-Temperature Conditions

WU Ming1, HUANG Xiaohong2, YANG Yong2, GAO Mengxiang1,*

(1. College of Life Science, Yangtze University, Jingzhou 404325, China;

2. College of Food Science, Sichuan Agricultural University, Yaan 625014, China)

Abstract: Low-temperature storage is an important way to maintain the quality of meat products for a certain period of time. However, meat quality deterioration and spoilage cannot be completely avoided even under low-temperature conditions. Meat quality changes under low-temperature conditions are the result of many factors. Therefore, it is necessary to combine low-temperature storage and preservation technologies in order to keep meat quality. This article summarizes meat quality changes and the factors affecting meat preservation during low-temperature storage. Besides, it reviews various preservation technologies. The aim is to provide a reference for the low-temperature preservation of meat products.

Keywords: meat; low-temperature preservation; quality change; influential factors; progress

DOI:10.7506/rlyj1001-8123-20210203-029

中圖分類(lèi)號(hào):TS251.5? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8123(2021)05-0060-10

引文格式:

吳明, 黃曉紅, 楊勇, 等. 肉類(lèi)低溫保鮮技術(shù)研究進(jìn)展[J]. 肉類(lèi)研究, 2021, 35(5): 60-69. DOI:10.7506/rlyj1001-8123-20210203-029.? ? http://www.rlyj.net.cn

WU Ming, HUANG Xiaohong, YANG Yong, et al. A review of preservation technologies for meat products stored under low-temperature

conditions[J]. Meat Research, 2021, 35(5): 60-69. DOI:10.7506/rlyj1001-8123-20210203-029.? ? http://www.rlyj.net.cn

肉是人類(lèi)必需的動(dòng)物性食品,能為人類(lèi)提供優(yōu)質(zhì)蛋白質(zhì)。近年來(lái),肉類(lèi)因其風(fēng)味、營(yíng)養(yǎng)等方面的優(yōu)勢(shì),其消費(fèi)市場(chǎng)迅速增長(zhǎng)[1],但由于肉類(lèi)中含有豐富的必需氨基酸、維生素和礦物質(zhì),極易發(fā)生腐敗變質(zhì)[2]。低溫貯藏和冷凍是2 種最常用的肉類(lèi)食品保存技術(shù)。微生物的生命活動(dòng)和酶的催化作用都需要適當(dāng)?shù)臏囟葪l件和水分。低溫條件下,微生物的生長(zhǎng)繁殖減慢;酶的活性減弱,其催化的生化反應(yīng)變慢,食品的貯藏期得以延長(zhǎng)[3]。

低溫貯藏肉在一定時(shí)間內(nèi)可以保持其原有品質(zhì),但隨著貯藏時(shí)間的延長(zhǎng),冷藏肉類(lèi)中腐敗微生物的生長(zhǎng)繁殖、冷凍肉類(lèi)脂肪和蛋白質(zhì)的氧化造成營(yíng)養(yǎng)損失和安全隱患,其所導(dǎo)致的經(jīng)濟(jì)損失也越來(lái)越受到人們關(guān)注。因此,探究低溫貯藏肉類(lèi)品質(zhì)的影響因素、保鮮方法,盡可能延長(zhǎng)保質(zhì)期非常重要。

1 肉類(lèi)在低溫貯藏中的品質(zhì)變化

低溫貯藏是保持肉類(lèi)品質(zhì)和控制微生物生長(zhǎng)的常用方法。經(jīng)過(guò)長(zhǎng)期低溫貯藏,肉的色澤會(huì)變差,同時(shí)出現(xiàn)蛋白質(zhì)氧化、脂肪氧化和保水能力下降等現(xiàn)象,使得肉類(lèi)營(yíng)養(yǎng)價(jià)值降低,品質(zhì)發(fā)生劣變。

肉類(lèi)是優(yōu)質(zhì)蛋白質(zhì)的重要來(lái)源。當(dāng)活性氧(reactive oxygen species,ROS)超過(guò)內(nèi)源性抗氧化能力的防御時(shí),ROS會(huì)導(dǎo)致蛋白質(zhì)氧化。與此同時(shí),一些氨基酸在氧化過(guò)程中可能會(huì)獲得或失去質(zhì)子,使蛋白質(zhì)分子的凈電荷發(fā)生變化,導(dǎo)致肌原纖維膨脹,影響持水能力[4]。肌肉蛋白質(zhì)的氧化損傷包括蛋白質(zhì)結(jié)構(gòu)的改變、氨基酸衍生物的形成、持水能力等功能性質(zhì)的改變等。另外,在冷凍條件下,鈣蛋白酶抑制劑活性喪失,蛋白質(zhì)分解增加[5];肌肉組織中未凍水相的溶質(zhì)濃度增加,引起蛋白質(zhì)變性。

脂質(zhì)包括脂肪及類(lèi)脂。脂質(zhì)氧化是通過(guò)自由基反應(yīng)發(fā)生的,自由基反應(yīng)攻擊脂肪酸的不飽和鍵,導(dǎo)致食物顏色、香味和質(zhì)地改變,還可能形成有毒化合物(如丙二醛和膽固醇氧化產(chǎn)物)以及揮發(fā)性羰基、醇類(lèi)和酸類(lèi)物質(zhì)的積累。多不飽和脂肪酸自氧化引發(fā)的脂質(zhì)氧化是冷凍肉變質(zhì)的主要形式[6]。脂肪氧化是肉類(lèi)工業(yè)非常關(guān)注的問(wèn)題,因?yàn)槠洳粌H會(huì)導(dǎo)致異味和酸敗,而且還會(huì)為ROS的形成提供潛在前體或催化劑,導(dǎo)致肉類(lèi)進(jìn)一步發(fā)生有害變化[7]。此外,冷凍肉的脂質(zhì)氧化還與冰晶的生長(zhǎng)和分布相關(guān)[8]。

水分含量在肌肉組織中約占75%,肌纖維中的大部分水分位于肌原纖維內(nèi)部和纖維之間[9]。保水性是重要的肉類(lèi)品質(zhì)特性,對(duì)肉類(lèi)的感官品質(zhì)和經(jīng)濟(jì)價(jià)值有重要影響[12]。低溫貯藏會(huì)導(dǎo)致肉類(lèi)的解凍損失、滴水損失和烹飪損失增加[10-11]。低溫貯藏過(guò)程中肉類(lèi)保水性降低可能由以下幾種原因引起:1)巰基或二硫化物的氧化形成二硫鍵,引起蛋白質(zhì)聚集,從而降低蛋白質(zhì)的溶解度,這可能是肉保水性降低的一個(gè)重要原因[13];2)胞內(nèi)離子強(qiáng)度增加引起蛋白質(zhì)變性[14],使肌原纖維蛋白失去保水性,從而釋放出滲液或游離水分;3)靜電斥力影響蛋白質(zhì)與肌漿的相互作用[15];4)肉在冷凍過(guò)程中,其中的水分發(fā)生冷凍和肌肉結(jié)構(gòu)內(nèi)形成冰晶,由此引起的機(jī)械損傷可能導(dǎo)致肉保水性降低。另外,保水能力的下降與蛋白質(zhì)氧化有關(guān)的研究報(bào)道也較多[16]。

顏色是判斷肉品新鮮與否的重要屬性,也是影響消費(fèi)者購(gòu)買(mǎi)欲的主要因素。顏色通常是由鮮肉中紫紅色的脫氧肌紅蛋白、櫻桃紅色的氧合肌紅蛋白和棕褐色的高鐵肌紅蛋白分布和相對(duì)比例決定的[17]。冷凍過(guò)程中,脂質(zhì)氧化會(huì)增加自由基的數(shù)量,加快肌紅蛋白氧化速率,進(jìn)而影響顏色變化[18]。同時(shí),冰晶形成所造成的物理?yè)p傷促使促氧化劑與肌紅蛋白接觸,進(jìn)一步加速了氧化過(guò)程。此外,牛肉顏色還受到高鐵肌紅蛋白還原酶活性的影響[19]??梢哉J(rèn)為,肉品的色澤變化與脂質(zhì)氧化和高鐵肌紅蛋白還原酶系統(tǒng)密切相關(guān)[20]。

2 低溫貯藏肉類(lèi)品質(zhì)變化的影響因素

低溫貯藏是廣泛使用的保持食品品質(zhì)的方法。低溫貯藏過(guò)程中影響肉品質(zhì)量變化的因素有很多,如飼養(yǎng)與運(yùn)輸方式、屠宰方式、肉的種類(lèi)與性質(zhì)、冷凍條件、微生物及解凍方式等。

2.1 飼養(yǎng)方式

多不飽和脂肪酸對(duì)人類(lèi)健康具有許多積極影響。許多功能性食品的開(kāi)發(fā)是通過(guò)添加富含多不飽和脂肪酸的膳食油脂來(lái)實(shí)現(xiàn)的。多不飽和脂肪酸多來(lái)自動(dòng)物性食品,對(duì)于家禽而言,多不飽和脂肪酸含量的增加會(huì)提高家禽的氧化應(yīng)激反應(yīng)[21],這對(duì)禽肉氧化穩(wěn)定性提出了更高的要求。在食品工業(yè)中,防止或延緩食品氧化的常規(guī)處理方法是將抗氧化劑直接添加到食品或用抗氧化劑制備涂層包裝。通過(guò)在動(dòng)物飼料中添加抗氧化劑增加內(nèi)源性抗氧化劑水平,也可作為防止肉類(lèi)氧化損傷的另一策略,并且在降低氧化速率的同時(shí)也可以改善肉品品質(zhì)。與人工合成抗氧化劑相比,人們?cè)絹?lái)越關(guān)注在動(dòng)物飼料中使用富含抗氧化劑的天然提取物,以提高肉類(lèi)氧化穩(wěn)定性。氧化過(guò)程遵循多種機(jī)制,2 種及2 種以上膳食抗氧化劑的組合相比單一抗氧化劑可能具有協(xié)同或加和效果。

Leskovec等[22]發(fā)現(xiàn),飼糧單獨(dú)添加VC或硒(Se)對(duì)雞肉品質(zhì)指標(biāo)無(wú)影響,單獨(dú)使用VE和聯(lián)合使用Se+VC

均能提高雞胸肉中α-生育酚含量,進(jìn)而抑制富含多不飽和脂肪酸飼糧及低溫貯藏導(dǎo)致的雞肉脂質(zhì)過(guò)氧化。Fellenberg等[23]發(fā)現(xiàn),日糧中添加VE能夠抑制雞肉的脂質(zhì)氧化,但對(duì)蛋白質(zhì)氧化的保護(hù)效果因雞肉部位不同而有所區(qū)別。Carballo等[24]研究發(fā)現(xiàn),在含丁基羥基甲苯的商業(yè)代乳品中添加蝦青素飼喂羔羊,不僅能顯著提高冷凍羔羊肉的脂質(zhì)穩(wěn)定性,而且能降低肉中丁基羥基甲苯的積累。Mariana等[25]在山羊日糧中加入富含鞣質(zhì)的木本植物葉,發(fā)現(xiàn)木本植物葉的添加不僅能降低宰后肉的氧化狀態(tài),還能提高肉在冷藏或冷凍條件下的脂質(zhì)抗氧化能力。Arowolo等[26]分別用標(biāo)準(zhǔn)飼料、標(biāo)準(zhǔn)飼料+餐館回收油和標(biāo)準(zhǔn)飼料+玉米油作為豬飼料,發(fā)現(xiàn)用標(biāo)準(zhǔn)飼料+餐館回收油飼養(yǎng)的豬制成的肉制品在低溫貯藏過(guò)程中的氧化敏感性顯著增加,與不良風(fēng)味有關(guān)化合物的積累速率加快。

2.2 微生物

腐敗是一個(gè)復(fù)雜的過(guò)程,與食品的初始帶菌量和內(nèi)源性酶活力有關(guān)。動(dòng)物宰后與外界微生物接觸,微生物產(chǎn)生的多種酶首先作用于肌肉的碳水化合物和蛋白質(zhì)。一般來(lái)說(shuō),當(dāng)微生物數(shù)量達(dá)到107~108 CFU/cm2時(shí),肉品出現(xiàn)多種腐敗跡象,如異味、變色和黏液形成。隨著貯藏時(shí)間的延長(zhǎng),微生物代謝物的積累和釋放導(dǎo)致食品商品價(jià)值降低甚至喪失。自然變質(zhì)食品中通常多種細(xì)菌共存,微生物的相互作用決定了產(chǎn)品的最終腐敗特性。對(duì)肉類(lèi)來(lái)說(shuō),即使是在大型肉類(lèi)工廠的規(guī)?;a(chǎn)中,肉類(lèi)宰后的微生物污染在實(shí)際情況下仍不可避免。有氧冷藏肉中分離出的常見(jiàn)微生物包括假單胞菌、環(huán)絲菌、不動(dòng)桿菌和希瓦氏菌,最主要的微生物是嗜冷假單胞菌;而在冷凍條件下,彎曲菌屬、大腸桿菌和沙門(mén)氏菌是常見(jiàn)的微生物。

乙酸、檸檬酸等有機(jī)酸被廣泛應(yīng)用于食品工業(yè)中,特別是肉類(lèi)食品中,以減少食品中的食源性病原體和腐敗微生物。Zheng Ruishen等[27]用噴涂法研究不同濃度苯乳酸對(duì)牛肉中產(chǎn)志賀毒素大腸桿菌和鼠傷寒沙門(mén)氏菌的殺菌效果,結(jié)果發(fā)現(xiàn),在-20 ℃冷凍時(shí),1.5%苯乳酸處理可顯著減少牛肉中大腸桿菌O157:H7和沙門(mén)氏菌的數(shù)量,冷凍增強(qiáng)了苯乳酸對(duì)牛肉的殺菌作用。高壓滅活病原體和腐敗細(xì)菌已被普遍認(rèn)為是高溫滅菌處理的理想替代方法,可用于提高肉制品保質(zhì)期。Porto-Fett等[28]研究高壓處理對(duì)肉丸中產(chǎn)志賀毒素大腸桿菌的滅活效果,結(jié)果發(fā)現(xiàn),殺菌效果與肉丸所用肉的種類(lèi)和低溫貯藏條件之間沒(méi)有相關(guān)性,但與400 MPa(至少9 min)處理相比,在600 MPa下滅活相同數(shù)量大腸桿菌所需的時(shí)間更少,僅需1~3 min。Cap等[29]探討高靜水壓處理壓力水平和處理時(shí)間對(duì)冷凍雞胸肉中沙門(mén)氏菌滅活的影響,結(jié)果表明,500 MPa處理1 min或400 MPa處理5 min能夠完全滅活冷凍雞胸肉中的沙門(mén)氏菌,但前者更能有效保持雞胸肉的顏色。電離輻射滅菌主要通過(guò)破壞DNA、RNA和蛋白質(zhì)等大分子來(lái)破壞微生物細(xì)胞。Arshad等[30]研究認(rèn)為,3 kGy劑量的電子束輻照可以在不影響冷凍鴨肉感官特性的情況下,使細(xì)菌總數(shù)和大腸菌群數(shù)分別減少2 個(gè)和1 個(gè)對(duì)數(shù)級(jí)。

2.3 解凍方法

解凍過(guò)程是大多數(shù)冷凍食品在進(jìn)一步加工或食用前必不可少的步驟,解凍過(guò)程與冷凍過(guò)程對(duì)冷凍肉品質(zhì)同樣重要。一般來(lái)講,解凍過(guò)程比冷凍過(guò)程較為緩慢,較長(zhǎng)的解凍時(shí)間可能導(dǎo)致肉品味道[31]、質(zhì)地、顏色[32]改變以及蛋白質(zhì)和脂質(zhì)氧化等[33]。解凍肉品的質(zhì)量損失程度取決于許多因素,如解凍溫度、解凍時(shí)間,特別是解凍方法。靜水解凍、冷卻解凍和空氣解凍等傳統(tǒng)解凍方法存在解凍時(shí)間長(zhǎng)、微生物滋生、交叉污染、可溶性營(yíng)養(yǎng)成分流失、對(duì)環(huán)境不友好等缺點(diǎn),因此,微波、超聲波、射頻、真空、高壓和歐姆解凍等一些新型解凍方法被提出,這些新的解凍方法具有解凍時(shí)間短和解凍后肉類(lèi)質(zhì)量較好等優(yōu)點(diǎn)。

Cevik等[34]發(fā)現(xiàn),歐姆解凍后的冷凍肉糜與4 ℃空氣解凍和4 ℃流水解凍相比,具有相似的流變特性,這說(shuō)明歐姆解凍可以作為一種替代解凍方法。Qian Shuyi等[35]認(rèn)為,與冰箱解凍相比,低壓靜電場(chǎng)解凍能有效降低解凍過(guò)程中牛肉的品質(zhì)損失,顯著縮短解凍時(shí)間;不僅如此,冷凍誘導(dǎo)的肌原纖維蛋白變性及其溶解度和表面疏水性均隨解凍時(shí)間的延長(zhǎng)而逐漸恢復(fù)。Jia Guoliang等[36]發(fā)現(xiàn),空氣解凍和高壓靜電場(chǎng)解凍肉中代謝產(chǎn)物譜存在差異,另一方面,高壓靜電場(chǎng)解凍沒(méi)有引起脂質(zhì)進(jìn)一步氧化。Wang等[37]發(fā)現(xiàn),在真空、超聲、微波、14 ℃水浸漬及4 ℃冰箱解凍5 種解凍方法中,除真空解凍外,其他4 種解凍方法對(duì)豬背最長(zhǎng)肌熱穩(wěn)定性和結(jié)構(gòu)變化均有顯著影響,其中微波解凍影響最為顯著。Zhu Mingming等[38]將微波解凍分別與超聲、35 ℃靜水、4 ℃冷藏、空氣對(duì)流和流水解凍方式結(jié)合,探究不同解凍方法對(duì)豬背最長(zhǎng)肌理化性質(zhì)和蛋白質(zhì)變性的影響,結(jié)果顯示,除單一微波解凍外,微波解凍與其他方法結(jié)合使用均避免了局部過(guò)熱,其中微波與空氣對(duì)流結(jié)合的解凍方式最能有效縮短解凍時(shí)間,保持肉的原有品質(zhì)。

2.4 其他

養(yǎng)殖方式、動(dòng)物年齡、宰前運(yùn)輸和屠宰方式會(huì)影響肉的低溫貯藏性能。Yamak等[39]發(fā)現(xiàn),谷倉(cāng)中飼養(yǎng)的鷓鴣具有較高的活體質(zhì)量和胴體質(zhì)量,而自由放養(yǎng)的鷓鴣肉質(zhì)更好。Fisinin等[40]證實(shí)了這一結(jié)果,同時(shí)發(fā)現(xiàn)不同飼養(yǎng)方式和不同屠宰日齡的雞肉持水能力存在顯著差異。Smiecinska等[41]報(bào)道發(fā)現(xiàn),豬在宰前靜養(yǎng)24 h能減輕屠宰時(shí)的應(yīng)激反應(yīng)。DAgata等[42]發(fā)現(xiàn),屠宰方式對(duì)牛肉冷藏期間的滴水損失有影響,但這與Agbeniga等[43]的結(jié)論相反。

宰后較高的溫度與低pH值影響肉類(lèi)低溫貯藏中的品質(zhì)。高溫與低pH值相互作用會(huì)導(dǎo)致肌球蛋白變性,使得肌球蛋白頭部收縮和肌絲間距減小,誘導(dǎo)水分排出到細(xì)胞外間隙[44],同時(shí),肌漿蛋白變性和肌節(jié)縮短可能會(huì)增加表面反射光強(qiáng)度,使肉品外觀蒼白。此外,屠宰期間電刺激、血管沖洗、開(kāi)膛、熱脂肪修剪和熱去骨等處理也會(huì)影響肉品宰后及成熟過(guò)程中的溫度和pH值[45]。

屠宰后的冷卻方法也會(huì)影響肉的品質(zhì)和貨架期。宰后胴體冷卻的傳統(tǒng)方法是空氣冷卻,空氣溫度通常為1~2 ℃、風(fēng)速為1~5 m/s。除傳統(tǒng)冷卻外,目前肉品工業(yè)中還使用噴霧冷卻、急速冷卻、冷凍室冷卻和液體浸泡冷卻等加速冷卻方法。Janiszewski等[46]報(bào)道,與直接放入1 ℃常規(guī)冷卻室24 h相比,宰后胴體經(jīng)隧道(-26 ℃)冷卻1 h再放入1 ℃常規(guī)冷卻室24 h處理,質(zhì)量損失和滴水損失存在顯著差異,但其他品質(zhì)特性和貨架期差異并不顯著,認(rèn)為宰后胴體直接進(jìn)入常規(guī)冷卻室成熟更為經(jīng)濟(jì)。

3 低溫貯藏肉類(lèi)品質(zhì)保鮮技術(shù)研究進(jìn)展

低溫貯藏中營(yíng)養(yǎng)成分的變化、冰晶的形成和微生物的滋生等嚴(yán)重破壞了肉品品質(zhì),低溫貯藏期間的肉類(lèi)品質(zhì)控制具有重要意義。

3.1 微凍保鮮

微凍是一種基于部分冰結(jié)晶的方法,可以用來(lái)延長(zhǎng)新鮮食品的保質(zhì)期[47]。在冷卻過(guò)程中產(chǎn)品溫度通常要求低于產(chǎn)品初始冰點(diǎn)1~2 ℃,使產(chǎn)品表面形成一層薄冰。在進(jìn)一步貯存過(guò)程中,產(chǎn)品內(nèi)部溫度達(dá)到平衡,由于貯存條件的不同,冰殼可能會(huì)保留或不保留。因此,微凍也被稱(chēng)為“深冷”“超冷”“殼凍結(jié)”或“部分結(jié)冰”。

微凍保鮮主要是利用低溫環(huán)境來(lái)抑制酶的活性和微生物的生長(zhǎng)繁殖。在微凍貯藏條件下,細(xì)胞中部分水發(fā)生凍結(jié),酶活動(dòng)所需的自由水減少,細(xì)胞液溶質(zhì)濃度增大,微生物細(xì)胞的生理生化性質(zhì)發(fā)生改變,部分細(xì)菌開(kāi)始死亡,未死亡細(xì)菌的活動(dòng)受到嚴(yán)重阻礙,幾乎不能繁殖,進(jìn)而使產(chǎn)品保持較好的新鮮度。與傳統(tǒng)冷藏相比,微凍貯藏可以將食品的保質(zhì)期延長(zhǎng)1.5~4.0 倍。微凍貯藏介于冷藏和凍藏之間,因其僅部分水分凍結(jié),導(dǎo)致蛋白質(zhì)的冷凍變性程度較低,對(duì)組織結(jié)構(gòu)的機(jī)械損傷更小,因此微凍過(guò)程對(duì)產(chǎn)品品質(zhì)影響也更小;此外,由于微凍處理產(chǎn)生了冰殼,在配送過(guò)程中可能不需要額外的冷卻措施,從而降低了整體運(yùn)輸成本。因此,與冷凍貯藏相比,微凍貯藏可能更具吸引力。微凍保鮮已被廣泛應(yīng)用于海產(chǎn)品,并取得了很好的效果,但在肉品保鮮方面的研究相對(duì)較少(表1)。

此外,Ding Daming等[53]發(fā)現(xiàn),-3 ℃的微凍貯藏在抑制豬肉微生物生長(zhǎng)、降低脂肪和蛋白質(zhì)氧化方面比-1 ℃更具有優(yōu)勢(shì)。微凍貯藏溫度對(duì)最終食品質(zhì)量有很大影響。然而,準(zhǔn)確定義既能延長(zhǎng)保質(zhì)期又能滿足生產(chǎn)工藝和食品質(zhì)量要求的微凍貯藏溫度仍是一個(gè)挑戰(zhàn)。

3.2 高壓輔助保鮮

高壓加工是一種能夠在保持食品新鮮度和營(yíng)養(yǎng)特性的同時(shí)延長(zhǎng)貨架期的非熱加工技術(shù)[54],高壓預(yù)處理中,液態(tài)水的冰點(diǎn)在加壓時(shí)降低,在隨后的低溫貯藏過(guò)程中冰核形成速率加快,利于小冰晶的形成[55]。表2列出了高壓技術(shù)在肉類(lèi)保鮮中的部分應(yīng)用研究。

低溫貯藏前的高壓預(yù)處理抗菌作用研究較多,如Porto-Fett等[56]驗(yàn)證了加壓可用于控制碎牛肉餅中產(chǎn)志賀毒素大腸桿菌和單核細(xì)胞增生李斯特菌。一般來(lái)說(shuō),具有抗菌作用的壓力水平會(huì)導(dǎo)致食品中酶的分子結(jié)構(gòu)和活性發(fā)生變化,但這是否會(huì)對(duì)低溫貯藏過(guò)程中的氧化過(guò)程、質(zhì)地和顏色產(chǎn)生影響還需探究。不同的壓力水平和作用時(shí)間會(huì)使肌原纖維蛋白變性,并在不同程度上改變肌肉的蛋白質(zhì)功能、外觀和機(jī)械性能[62],這與Cartagena[57]、Pita-Calvo[58]等的發(fā)現(xiàn)一致,即高壓預(yù)處理導(dǎo)致顯著的蛋白質(zhì)變性和鹽溶性蛋白聚集,引起質(zhì)構(gòu)變化。另外,高壓處理是否會(huì)誘導(dǎo)肉類(lèi)中的脂質(zhì)氧化說(shuō)法并不統(tǒng)一。Bolumar等[63]認(rèn)為,高壓處理誘導(dǎo)的肉類(lèi)脂質(zhì)氧化與血紅蛋白鐵的溶出性增加、膜破裂和高壓條件下自由基的形成有關(guān)。而Cartagena[57]、Mizi[59]等的研究結(jié)果顯示加壓對(duì)脂肪氧化具有抑制作用,這可能與壓力的作用時(shí)間、肉的種類(lèi)等有關(guān)。

3.3 電磁輔助保鮮

磁場(chǎng)和電場(chǎng)在食品保鮮上具有很好的應(yīng)用前景。微生物對(duì)磁場(chǎng)具有感受效應(yīng)[64],磁場(chǎng)對(duì)微生物的生化作用(如酶活性)有影響,會(huì)導(dǎo)致微生物生長(zhǎng)受到抑制甚至死亡,從而產(chǎn)生抑菌效果。磁場(chǎng)對(duì)微生物的作用機(jī)制及生物學(xué)效應(yīng)目前還沒(méi)有較為全面的研究,已有研究表明,磁場(chǎng)對(duì)微生物的作用可能與DNA分子的變化、微生物的遷移方向、改變微生物的生長(zhǎng)和繁殖、細(xì)胞膜變化以及ATP合成有關(guān)[64]。

脈沖電場(chǎng)是一種非熱食品加工技術(shù),它通過(guò)將高壓短脈沖傳遞到置于2 個(gè)導(dǎo)電電極之間的食品中,使細(xì)胞膜滲透性增加[65]。脈沖電場(chǎng)處理可以改變?nèi)獾慕Y(jié)構(gòu)和質(zhì)地,潛在改善其功能特性或有助于新產(chǎn)品的開(kāi)發(fā)。在肌肉類(lèi)食品,尤其是牛肉中使用脈沖電場(chǎng),可以通過(guò)電穿孔增強(qiáng)細(xì)胞的通透性,從而增強(qiáng)蛋白質(zhì)水解。表3簡(jiǎn)要總結(jié)了近幾年磁場(chǎng)和電場(chǎng)在肉品保鮮中的部分研究。

此外,Wowk[70]、Mok[71]等發(fā)現(xiàn),電場(chǎng)和磁場(chǎng)聯(lián)合處理會(huì)影響水分子的流動(dòng)性。Otero等[72]研究認(rèn)為,磁場(chǎng)有助于在整個(gè)冷凍產(chǎn)品中生成微小冰晶,防止細(xì)胞被破壞,并在解凍后能夠較好保持產(chǎn)品質(zhì)量。

3.4 氣調(diào)保鮮

通過(guò)包裝也可對(duì)肉類(lèi)進(jìn)行保鮮,其中作用最為突出的是氣調(diào)包裝。該技術(shù)是用已知的氣體(O2、CO2、N2和CO等)去除或置換產(chǎn)品周?chē)諝?,抑制食品的生理生化過(guò)程,實(shí)現(xiàn)保鮮目的。真空包裝是氣調(diào)包裝的一種類(lèi)型,通過(guò)維持產(chǎn)品周?chē)婵窄h(huán)境,抑制需氧菌的生長(zhǎng)。表4列出了氣調(diào)包裝在肉類(lèi)保鮮中應(yīng)用的部分研究。

70%~80% O2+20%~30% CO2的氣調(diào)包裝在抑制微生物生長(zhǎng)和保持良好色澤方面成效顯著,因此被廣泛使用。但是,高氧氣調(diào)包裝可能會(huì)加速脂質(zhì)氧化,導(dǎo)致不良味化合物的形成[79],以及誘導(dǎo)蛋白質(zhì)分子之間的交叉連接[80],對(duì)紅肉制品的嫩度和多汁性造成不利影響[81],同時(shí)降低顏色穩(wěn)定性[82]。此外,微生物代謝產(chǎn)生的氣體分壓和溶解度因CO2和O2比例不同而有所差異,每種產(chǎn)品都有其最佳的氣體成分,這是氣調(diào)包裝成功應(yīng)用的關(guān)鍵因素和主要挑戰(zhàn)。

3.5 涂膜保鮮

涂膜保鮮是將具有成膜性的物質(zhì),如海藻酸鹽,經(jīng)浸漬、涂布、噴灑等方法涂敷在食品表面,使其在食品表面形成一層能夠抑制食品內(nèi)外氣體、水分和溶質(zhì)交換及阻礙微生物對(duì)食品侵害等作用的薄膜,從而達(dá)到防止食品腐敗變質(zhì)、保持其原有新鮮度的食品保鮮技術(shù)。

烴類(lèi)衍生物合成的聚合物薄膜具有不能生物降解和不能循環(huán)利用的特點(diǎn),且這些塑料制品的積累會(huì)導(dǎo)致嚴(yán)重的環(huán)境污染,因此現(xiàn)在的研究多是基于生物來(lái)源的可食性涂膜和涂材??墒秤猛磕な且缘鞍踪|(zhì)、多糖或脂類(lèi)為基礎(chǔ)應(yīng)用于食品表面的薄膜,這些材料具有生物相容性、可生物降解性、廣泛可得性和易處理性,使其能滿足現(xiàn)代食品工業(yè)和消費(fèi)者的需求。可食用涂膜被廣泛應(yīng)用于肉類(lèi)、水產(chǎn)、水果和蔬菜的保鮮[83],其可直接在食品表面形成保護(hù)層,以抑制質(zhì)量劣化,延長(zhǎng)保質(zhì)期。殘留在產(chǎn)品上的涂膜可以在后續(xù)加工過(guò)程中分解或被食用,因此被認(rèn)為是保護(hù)食品質(zhì)量和安全的一種有效、環(huán)保的技術(shù)。此外,在可食用薄膜中加入天然的抗菌劑、抗氧化劑、香料和色素等添加劑來(lái)提高食品質(zhì)量特性的研究備受關(guān)注。表5列出了可食性涂膜技術(shù)在肉類(lèi)保鮮中的部分應(yīng)用研究。

4 殼聚糖和明膠 Nisin、

葡萄籽提取物 殼聚糖-明膠-葡萄籽提取物涂膜能進(jìn)一步提高肉的抗氧化活性;而殼聚糖-明膠-Nisin和殼聚糖-明膠-Nisin-葡萄籽提取物涂膜

并沒(méi)有進(jìn)一步提高抗菌和抗氧化效果 [89]

橄欖葉提取物和榛子皮被認(rèn)為具有良好的抗氧化活性,Ozvural[90]發(fā)現(xiàn)冷藏21 d后,相較于使用含這2 種物質(zhì)可食性涂膜處理,直接添加這2 種物質(zhì)處理肉餅的硫代巴比妥酸反應(yīng)物值更低;但對(duì)于冷凍樣品,2 種處理方式均可有效延緩肉餅脂質(zhì)氧化。Shankar等[91]將含精油和柑橘提取物的可食用涂膜分別與臭氧和輻照處理結(jié)合,探究不同保鮮方法對(duì)4 ℃貯藏鱈魚(yú)片貨架期的影響,結(jié)果發(fā)現(xiàn),經(jīng)涂膜和輻照處理的魚(yú)片貨架期達(dá)28 d以上,經(jīng)涂膜和臭氧處理的魚(yú)片貨架期為21 d,均明顯高于未經(jīng)任何處理魚(yú)片的貨架期(7 d),表明通過(guò)優(yōu)化組合可使有效延長(zhǎng)魚(yú)片保質(zhì)期。Nisin是一種抗菌肽,對(duì)革蘭氏陽(yáng)性菌具有有效的抗菌活性[92],已在食品工業(yè)中被廣泛應(yīng)用。納米技術(shù)為生物聚合物薄膜在不同方面的改性提供了新的可能性。Mohammadi等[93]評(píng)估基于羧甲基纖維素、秋葵膠和氧化鋅(ZnO)鈉米顆粒的納米復(fù)合膜對(duì)4 ℃條件下貯藏12 d包裝雞胸肉貨架期的影響,發(fā)現(xiàn)薄膜中秋葵膠的含量與雞肉品質(zhì)具有劑量依賴(lài)性,羧甲基纖維素/50%秋葵膠/ZnO薄膜包裝的雞胸肉不僅具有良好感官評(píng)分,且微生物生長(zhǎng)和化學(xué)變化的抑制效果最佳。

3.6 糖(醇)類(lèi)抗凍劑

抗凍劑是一種通過(guò)減緩冰晶生長(zhǎng)從而保護(hù)生物組織免受冷凍損傷的物質(zhì),它可以降低肌原纖維蛋白在冷凍保存過(guò)程中的變性和(或)聚集性,從而保持蛋白質(zhì)的功能特性,如凝膠形成能力、保水能力和溶解度。糖(醇)類(lèi)抗凍劑是抗凍劑的一種。傳統(tǒng)的商業(yè)抗凍劑是指質(zhì)量分?jǐn)?shù)4%蔗糖和質(zhì)量分?jǐn)?shù)4%山梨醇的共混物。蔗糖能通過(guò)穩(wěn)定蛋白質(zhì)周?chē)呐R界水分來(lái)達(dá)到維持蛋白質(zhì)空間結(jié)構(gòu)和減少冰晶形成的目的。盡管傳統(tǒng)抗凍劑的作用效果較好,但由于甜度和熱量較高不能滿足特定人群需求,因此,許多研究轉(zhuǎn)向?qū)ふ业吞鸲鹊睦鋬霰Wo(hù)劑。海藻糖、麥芽糖、聚葡萄糖、木糖、殼聚糖和葡甘露聚糖作為可能的替代對(duì)象,探究它們的保護(hù)作用已成為研究方向。一方面,這些糖類(lèi)物質(zhì)可以與蛋白質(zhì)的活性基團(tuán)結(jié)合,使其處于飽和狀態(tài),從而能夠避免蛋白質(zhì)之間的聚集變性。另一方面,糖類(lèi)游離的羥基還可以促進(jìn)自由水轉(zhuǎn)化成結(jié)合水,從而降低“共晶點(diǎn)”的溫度,減少冰晶體的形成,減緩蛋白質(zhì)的相互聚集,防止蛋白質(zhì)的聚集變性。此外,糖類(lèi)分子中含有的羥基數(shù)目越多,對(duì)蛋白質(zhì)冷凍變性的抑制效果也越明顯。目前,糖(醇)類(lèi)抗凍劑的應(yīng)用研究多集中在水產(chǎn)品方向,在畜禽肉方面的應(yīng)用有限。表6列出了幾種糖類(lèi)抗凍劑在水產(chǎn)品保鮮中的應(yīng)用研究。

另外,English等[100]從消費(fèi)者的角度出發(fā),比較氯化鈉、三聚磷酸鈉和一種新型碳水化合物的兩兩組合對(duì)龍蝦肉的冷凍保藏效果,結(jié)果發(fā)現(xiàn),以氯化鈉和新型碳水化合物為抗凍劑的冷凍保藏效果最佳。與多數(shù)研究不同的是,Zhang Bin等[101]較為系統(tǒng)地研究以木糖醇、山梨醇、赤蘚醇、乳糖醇、甘露醇、麥芽糖醇、異麥芽糖醇溶液浸漬處理對(duì)太平洋白對(duì)蝦冷藏品質(zhì)的影響,發(fā)現(xiàn)經(jīng)木糖醇和甘露醇浸漬處理的太平洋白對(duì)蝦理化指標(biāo)和微觀結(jié)構(gòu)較好,這可能是由于木糖醇和甘露醇分子可能通過(guò)與肌肉蛋白形成大的氫鍵取代了水分子,從而在沒(méi)有水的冷凍狀態(tài)下穩(wěn)定其結(jié)構(gòu),并抑制組織結(jié)構(gòu)的破壞;而乳糖醇、異麥芽糖醇和麥芽糖醇對(duì)蝦肉低溫保護(hù)沒(méi)有顯著作用。

3.7 抑菌劑

肉在低溫貯藏中的微生物污染主要與屠宰后肉的初始微生物群有關(guān),屠宰前健康家畜的肉是無(wú)菌的,屠宰過(guò)程中胴體會(huì)通過(guò)工人和加工環(huán)境等各種途徑受到微生物污染。屠宰過(guò)程中動(dòng)物皮、腳、蹄、毛、胃腸道和呼吸道中的微生物也會(huì)污染胴體肌肉,增加肉中的微生物含量。胴體表面細(xì)菌污染水平與感官變化發(fā)生的時(shí)間和肉的保質(zhì)期存在相關(guān)性。根據(jù)歐洲委員會(huì)(EC)1441/2007號(hào)進(jìn)一步修訂的要求,豬胴體冷卻前的表面總好氧菌數(shù)量不應(yīng)超過(guò)4.0 (lg(CFU/cm2))。另外,盡管病原微生物,如沙門(mén)氏菌、產(chǎn)氣莢膜梭菌、大腸埃希氏菌和空腸彎曲桿菌等在初始微生物群中數(shù)量很少,但與肉表面直接接觸可能導(dǎo)致蛋白質(zhì)降解,并在肉中產(chǎn)生某些有毒化合物,最終導(dǎo)致食物中毒,嚴(yán)重影響人體健康。因此,采用抑菌劑降低初始微生物群數(shù)量,對(duì)保障低溫貯藏肉類(lèi)安全性以及延長(zhǎng)保質(zhì)期非常必要。表7列出了抑菌劑在肉類(lèi)保鮮中的部分應(yīng)用研究。

天然植物,如肉豆蔻[107]、景天[108]、桉樹(shù)[109]、百里香[110]和牛蒡[111]等對(duì)大腸桿菌、金黃色葡萄球菌、乳酸菌、假單胞菌、沙門(mén)氏菌的抑制作用均有報(bào)道。另外,不同處理方法的組合也適用于屠宰體的表面凈化,包括用熱水結(jié)合抗菌劑清洗,然后用冷水沖洗[112]以及用含抑菌劑溶液噴淋胴體[113]等。

4 結(jié) 語(yǔ)

肉類(lèi)食品是現(xiàn)代飲食生活不可或缺的一部分。目前,低溫貯藏仍然是保持肉類(lèi)食品品質(zhì)最為經(jīng)濟(jì)、可行的方式。因此,盡可能維持肉類(lèi)原有品質(zhì)仍是需要不斷探索的方向。影響低溫貯藏肉類(lèi)品質(zhì)的因素很多,現(xiàn)有的研究對(duì)宰前因素研究相對(duì)較少,且多是圍繞對(duì)冷藏肉的肉質(zhì)影響開(kāi)展。國(guó)內(nèi)外對(duì)于肉類(lèi)保鮮方式的研究較多且在一定程度上取得了成效,因而,應(yīng)進(jìn)一步探究低溫貯藏與其他柵欄技術(shù)的聯(lián)用。同時(shí),積極改進(jìn)生產(chǎn)設(shè)備性能和采用新的保鮮技術(shù)也是對(duì)低溫貯藏肉類(lèi)品質(zhì)進(jìn)行有效控制的重要方向。

參考文獻(xiàn):

[1] ZHAO Shengming, LI Ningning, LI Zhao, et al. Shelf life of fresh chilled pork as affected by antimicrobial intervention with nisin, tea polyphenols, chitosan, and their combination[J]. International Journal of Food Properties, 2019, 22(1): 1047-1063. DOI:10.1080/10942912.2019.1625918.

[2] CHOI E J, PARK H W, CHUNG Y B, et al. Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion[J]. Meat Science, 2017, 124: 69-76. DOI:10.1016/j.meatsci.2016.11.003.

[3] LI Dongmei, ZHU Zhiwei, SUN Dawen. Effects of freezing on cell structure of fresh cellular food materials: a review[J]. Trends in Food Science and Technology, 2018, 75: 46-55. DOI:10.1016/j.tifs.2018.02.019.

[4] UTRERA M, ESTEVEZ M. Oxidation of myofibrillar proteins and impaired functionality: underlying mechanisms of the carbonylation pathway[J]. Journal of Agricultural and Food Chemistry, 2012, 60(32): 8002-8011. DOI:10.1021/jf302111j.

[5] SETYABRATA D, KIM Y H B. Impacts of aging/freezing sequence on microstructure, protein degradation and physico-chemical properties of beef muscles[J]. Meat Science, 2019, 151: 64-74. DOI:10.1016/j.meatsci.2019.01.007.

[6] FIGUEIREDO B C, TRAD I J, BARROS MARIUTTI L R, et al. Effect of annatto powder and sodium erythorbate on lipid oxidation in pork loin during frozen storage[J]. Food Research International, 2014, 65: 137-143. DOI:10.1016/j.foodres.2014.07.016.

[7] FAUSTMAN C, SUN Qun, MANCINI R, et al. Myoglobin and lipid oxidation interactions: mechanistic bases and control[J]. Meat Science, 2010, 86(1): 86-94. DOI:10.1016/j.meatsci.2010.04.025.

[8] CHEN Weiwei, SORENSEN K M, ENGELSEN S B, et al. Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: effect of ice crystal growth and distribution[J]. Journal of Food Engineering, 2019, 263: 311-319. DOI:10.1016/j.jfoodeng.2019.07.013.

[9] HUFF-LONERGAN E, LONERGAN S M. Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes[J]. Meat Science, 2005, 71(1): 194-204. DOI:10.1016/j.meatsci.2005.04.022.

[10] AROEIRA C N, TORRES FILHO R A, FONTES P R, et al. Freezing, thawing and aging effects on beef tenderness from Bos indicus and Bos taurus cattle[J]. Meat Science, 2016, 116: 118-125. DOI:10.1016/j.meatsci.2016.02.006.

[11] KIM H W, KIM J H, SEO J K, et al. Effects of aging/freezing sequence and freezing rate on meat quality and oxidative stability of pork loins[J]. Meat Science, 2018, 139: 162-170. DOI:10.1016/j.meatsci.2018.01.024.

[12] BAO Yulong, ERTBJERG P. Effects of protein oxidation on the texture and water-holding of meat: a review[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(22): 3564-3578. DOI:10.1080/10408398.2018.1498444.

[13] CHEUNG I W Y, LICEAGA A M, LI-CHAN E C Y. Pacific hake (Merluccius productus) hydrolysates as cryoprotective agents in frozen pacific cod fillet mince[J]. Journal of Food Science, 2009, 74(8): C588-C594. DOI:10.1111/j.1750-3841.2009.01307.x.

[14] LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: review[J]. Meat Science, 2012, 91(2): 93-98. DOI:10.1016/j.meatsci.2012.01.013.

[15] ERTBJERG P, PUOLANNE E. Muscle structure, sarcomere length and influences on meat quality: a review[J]. Meat Science, 2017, 132: 139-152. DOI:10.1016/j.meatsci.2017.04.261.

[16] CHEN Lin, ZHOU Guanghong, ZHANG Wangang. Effects of high oxygen packaging on tenderness and water holding capacity of pork through protein oxidation[J]. Food and Bioprocess Technology, 2015, 8(11): 2287-2297. DOI:10.1007/s11947-015-1566-0.

[17] LIVINGSTON D J, MCLACHLAN S J, LA MAR G N, et al. Myoglobin: cytochrome b5 interactions and the kinetic mechanism of metmyoglobin reductase[J]. The Journal of Biological Chemistry, 1985, 260(29): 15699-15707.

[18] JEONG J Y, KIM G D, YANG H S, et al. Effect of freeze-thaw cycles on physicochemical properties and color stability of beef Semimembranosus muscle[J]. Food Research International, 2011, 44(10): 3222-3228. DOI:10.1016/j.foodres.2011.08.023.

[19] SORHEIM O, WESTAD F, LARSEN H, et al. Colour of ground beef as influenced by raw materials, addition of sodium chloride and low oxygen packaging[J]. Meat Science, 2009, 81(3): 467-473. DOI:10.1016/j.meatsci.2008.09.010.

[20] NASSU R T, UTTARO B, AALHUS J L, et al. Type of packaging affects the colour stability of vitamin E enriched beef[J]. Food Chemistry, 2012, 135(3): 1868-1872. DOI:10.1016/j.foodchem.2012.06.055.

[21] JUSKIEWICZ J, JANKOWSKI J, ZIELINSKI H, et al. The fatty acid profile and oxidative stability of meat from turkeys fed diets enriched with n-3 polyunsaturated fatty acids and dried fruit pomaces as a source of polyphenols[J]. PLoS One, 2017, 12(1): e0170074. DOI:10.1371/journal.pone.0170074.

[22] LESKOVEC J, LEVART A, PERIC L, et al. Antioxidative effects of supplementing linseed oil-enriched diets with alpha-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers[J]. Poultry Science, 2019, 98(12): 6733-6741. DOI:10.3382/ps/pez389.

[23] FELLENBERG M A, PENA I, IBANEZ R A, et al. Effect of dietary vitamin E supplementation on glutathione concentration and lipid and protein oxidation of refrigerated broiler meat[J]. European Poultry Science, 2019, 83: 283-. DOI:10.1399/eps.2019.283.

[24] CARBALLO D E, JAVIER GIRALDEZ F, ANDRES S, et al. Effects of dietary astaxanthin supplementation on the oxidative stability of meat from suckling lambs fed a commercial milk-replacer containing butylated hydroxytoluene[J]. Meat Science, 2019, 156: 68-74. DOI:10.1016/j.meatsci.2019.03.020.

[25] MARIANA GARCIA E, LOPEZ A, ZIMERMAN M, et al. Enhanced oxidative stability of meat by including tannin-rich leaves of woody plants in goat diet[J]. Asian-Australasian Journal of Animal Sciences, 2019, 32(9): 1439-1447. DOI:10.5713/ajas.18.0537.

[26] AROWOLO F K, YANG Xing, BLASER M E, et al. Presence of lipid oxidation products in swine diet lowers pork quality and stability during storage[J]. Meat Science, 2020, 160: 107946. DOI:10.1016/j.meatsci.2019.107946.

[27] ZHENG Ruisheng, ZHAO Tong, HUNG Yencon, et al. Evaluation of bactericidal effects of phenyllactic acid on Escherichia coli O157:H7 and Salmonella typhimurium on beef meat[J]. Journal of Food Protection, 2019, 82(12): 2016-2022. DOI:10.4315/0362-028x.Jfp-19-217.

[28] PORTO-FETT A C S, JACKSON-DAVIS A, KASSAMA L S, et al. Inactivation of shiga toxin-producing Escherichia coli in refrigerated and frozen meatballs using high pressure processing[J]. Microorganisms, 2020, 8(3): 360. DOI:10.3390/microorganisms8030360.

[29] CAP M, FLEITAS PAREDES P, FERNANDEZ D, et al. Effect of high hydrostatic pressure on Salmonella spp. inactivation and meat-quality of frozen chicken breast[J]. LWT-Food Science and Technology, 2020, 118: 108873. DOI:10.1016/j.lwt.2019.108873.

[30] ARSHAD M S, KWON J H, AHMAD R S, et al. Influence of E-beam irradiation on microbiological and physicochemical properties and fatty acid profile of frozen duck meat[J]. Food Science and Nutrition, 2020, 8(2): 1020-1029. DOI:10.1002/fsn3.1386.

[31] JIA Guoliang, SHA Kun, MENG Jin, et al. Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of lightly salted, frozen pork tenderloin[J]. LWT-Food Science and Technology, 2019, 99: 268-275. DOI:10.1016/j.lwt.2018.09.064.

[32] ALVARENGA T I R C, HOPKINS D L, RAMOS E M, et al. Ageing-freezing/thaw process affects blooming time and myoglobin forms of lamb meat during retail display[J]. Meat Science, 2019, 153: 19-25. DOI:10.1016/j.meatsci.2019.02.016.

[33] JIA Guoliang, NIRASAWA S, JI Xiaohua, et al. Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field[J]. Food Chemistry, 2018, 240: 910-916. DOI:10.1016/j.foodchem.2017.07.138.

[34] CEVIK M, ICIER F. Characterization of viscoelastic properties of minced beef meat thawed by ohmic and conventional methods[J]. Food Science and Technology International, 2019, 26(4) 277-290. DOI:10.1177/1082013219888300.

[35] QIAN Shuyi, LI Xia, WANG Hang, et al. Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle[J]. Journal of Food Engineering, 2019, 261: 140-149. DOI:10.1016/j.jfoodeng.2019.06.013.

[36] JIA Guoliang, SHA Kun, FENG Xudong, et al. Post-thawing metabolite profile and amino acid oxidation of thawed pork tenderloin by HVEF: a short communication[J]. Food Chemistry, 2019, 291: 16-21. DOI:10.1016/j.foodchem.2019.03.154.

[37] WANG B, KONG B, LI F, et al. Changes in the thermal stability and structure of protein from porcine Longissimus dorsi induced by different thawing methods[J]. Food Chemistry, 2020, 316. DOI:10.1016/j.foodchem.2020.126375.

[38] ZHU Mingming, PENG Zeyu, LU Sen, et al. Physicochemical properties and protein denaturation of pork Longissimus dorsi muscle subjected to six microwave-based thawing methods[J]. Foods, 2020, 9(1): 26-42. DOI:10.3390/foods9010026.

[39] YAMAK U S, SARICA M, BOZ M A, et al. The effect of production system (barn and free-range), slaughtering age and gender on carcass traits and meat quality of partridges (Alectoris chukar)[J]. British Poultry Science, 2016, 57(2): 185-192. DOI:10.1080/00071668.2016.1144920.

[40] FISININ V I, LUKASHENKO V S, SALEYEVA I P, et al. Meat quality in broilers reared in different housing systems[J]. Voprosy Pitaniia, 2018, 87(5): 77-84. DOI:10.24411/0042-8833-2018-10056.

[41] SMIECINSKA K, DENABURSKI J, SOBOTKA W. Slaughter value, meat quality, creatine kinase activity and cortisol levels in the blood serum of growing-finishing pigs slaughtered immediately after transport and after a rest period[J]. Polish Journal of Veterinary Sciences, 2011, 14(1): 47-54. DOI:10.2478/v10181-011-0007-x.

[42] DAGATA M, RUSSO C, PREZIUSO G. Effect of Islamic ritual slaughter on beef quality[J]. Italian Journal of Animal Science, 2009, 8: 489-491. DOI:10.4081/ijas.2009.s2.489.

[43] AGBENIGA B, WEBB E C, ONEILL H A. Influence of kosher (shechita) and conventional slaughter techniques on shear force, drip and cooking loss of beef[J]. South African Journal of Animal Science, 2013, 43(5): S98-S102. DOI:10.4314/sajas.v43i5.18.

[44] OFFER G. Modelling of the formation of pale, soft and exudative meat: effects of chilling regime and rate and extent of glycolysis[J]. Meat Science, 1991, 30(2): 157-184. DOI:10.1016/0309-1740(91)90005-b.

[45] JACOB R H, HOPKINS D L. Techniques to reduce the temperature of beef muscle early in the post mortem period: a review[J]. Animal Production Science, 2014, 54(4): 482-493. DOI:10.1071/AN12338.

[46] JANISZEWSKI P, BORZUTA K, LISIAK D, et al. The quality of pork and the shelf life of the chosen carcass elements during storage depending on the method of carcass chilling[J]. Journal of Food Processing and Preservation, 2018, 42(1): e13390. DOI:10.1111/jfpp.13390.

[47] 胡玥, 吳春華, 姜晴晴, 等. 微凍技術(shù)在水產(chǎn)品保鮮中的研究進(jìn)展[J]. 食品工業(yè)科技, 2015, 36(9): 384-390. DOI:10.13386/j.issn1002-0306.2015.09.075.

[48] LIU Dasong, LIANG Liang, XIA Wenshui, et al. Biochemical and physical changes of grass carp (Ctenopharyngodon idella) fillets stored at –3 and 0 ℃[J]. Food Chemistry, 2013, 140(1/2): 105-114. DOI:10.1016/j.foodchem.2013.02.034.

[49] KAEWTHONG P, POMPONIO L, CARRASCAL J R, et al. Changes in the quality of chicken breast meat due to superchilling and temperature fluctuations during storage[J]. Journal of Poultry Science, 2019, 56(4): 308-317. DOI:10.2141/jpsa.0180106.

[50] LU Xiao, ZHANG Yimin, ZHU Lixian, et al. Effect of superchilled storage on shelf life and quality characteristics of M. longissimus lumborum from Chinese Yellow cattle[J]. Meat Science, 2019, 149: 79-84. DOI:10.1016/j.meatsci.2018.11.014.

[51] POMPONIO L, RUIZ-CARRASCAL J. Oxidative deterioration of pork during superchilling storage[J]. Journal of the Science of Food and Agriculture, 2017, 97(15): 5211-5215. DOI:10.1002/jsfa.8403.

[52] LAN Yang, SHANG Yongbiao, SONG Ying, et al. Changes in the quality of superchilled rabbit meat stored at different temperatures[J]. Meat Science, 2016, 117: 173-181. DOI:10.1016/j.meatsci.2016.02.017.

[53] DING Daming, ZHOU Changyu, GE Xiaoyin, et al. The effect of different degrees of superchilling on shelf life and quality of pork during storage[J]. Journal of Food Processing and Preservation, 2020, 44(4): e14394. DOI:10.1111/jfpp.14394.

[54] DE OLIVEIRA F A, CABRAL NETO O, DOS SANTOS L M R, et al.

Effect of high pressure on fish meat quality: a review[J]. Trends in Food Science and Technology, 2017, 66: 1-19. DOI:10.1016/j.tifs.2017.04.014.

[55] LI Bing, SUN Dawen. Novel methods for rapid freezing and thawing of foods: a review[J]. Journal of Food Engineering, 2002, 54(3): 175-182. DOI:10.1016/S0260-8774(01)00209-6.

[56] PORTO-FETT A C S, SHANE L E, SHOYER B A, et al. Inactivation of shiga toxin-producing Escherichia coli and Listeria monocytogenes within plant versus beef burgers in response to high pressure processing[J]. Journal of Food Protection, 2020, 83(5): 865-873. DOI:10.4315/jfp-19-558.

[57] CARTAGENA L, PUERTOLAS E, DE MARANON I M. Evolution of quality parameters of high pressure processing (HPP) pretreated albacore (Thunnus alalunga) during long-term frozen storage[J]. Innovative Food Science and Emerging Technologies, 2020, 62: 102334. DOI:10.1016/j.ifset.2020.102334.

[58] PITA-CALVO C, GUERRA-RODRIGUEZ E, SARAIVA J A, et al.

Effect of high-pressure processing pretreatment on the physical properties and colour assessment of frozen European hake (Merluccius merluccius) during long term storage[J]. Food Research International, 2018, 112: 233-240. DOI:10.1016/j.foodres.2018.06.042.

[59] MIZI L, COFRADES S, BOU R, et al. Antimicrobial and antioxidant effects of combined high pressure processing and sage in beef burgers during prolonged chilled storage[J]. Innovative Food Science and Emerging Technologies, 2019, 51: 32-40. DOI:10.1016/j.ifset.2018.04.010.

[60] PEREZ-BALTAR A, SERRANO A, BRAVO D, et al. Combined effect of high pressure processing with enterocins or thymol on the inactivation of Listeria monocytogenes and the characteristics of sliced dry-cured ham[J]. Food and Bioprocess Technology, 2019, 12(2): 288-297. DOI:10.1007/s11947-018-2212-4.

[61] MONTEIRO M L G, MARSICO E T, ROSENTHAL A, et al. Synergistic effect of ultraviolet radiation and high hydrostatic pressure on texture, color, and oxidative stability of refrigerated tilapia fillets[J]. Journal of the Science of Food and Agriculture, 2019, 99(9): 4474-4481. DOI:10.1002/jsfa.9685.

[62] URESTI R M, VELAZQUEZ G, VáZQUEZ M, et al. Effect of sugars and polyols on the functional and mechanical properties of pressure-treated arrowtooth flounder (Atheresthes stomias) proteins[J]. Food Hydrocolloids, 2005, 19(6): 964-973. DOI:10.1016/j.foodhyd.2004.12.006.

[63] BOLUMAR T, LAPENA D, SKIBSTED L H, et al. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties[J]. Food Packaging and Shelf Life, 2016, 7: 26-33. DOI:10.1016/j.fpsl.2016.01.002.

[64] FILIPIC J, KRAIGHER B, TEPUS B, et al. Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida[J]. Bioresource Technology, 2012, 120: 225-232. DOI:10.1016/j.biortech.2012.06.023.

[65] PU?RTOLAS E, LUENGO E, ?LVAREZ I, et al. Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications[J]. Annual Review Food Science Technology, 2012, 3: 263-282. DOI:10.1146/annurev-food-022811-101208.

[66] LINS P G, SILVA A A, PICCOLI PUGINE S M, et al. Effect of exposure to pulsed magnetic field on microbiological quality, color and oxidative stability of fresh ground beef[J]. Journal of Food Process Engineering, 2017, 40(2): e12405. DOI:10.1111/jfpe.12405.

[67] MOK J H, HER J Y, KANG T, et al. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) combination technology on the extension of supercooling for chicken breasts[J]. Journal of Food Engineering, 2017, 196: 27-35. DOI:10.1016/j.jfoodeng.2016.10.002.

[68] MA Qianli, HAMID N, OEY I, et al. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats[J]. Innovative Food Science and Emerging Technologies, 2016, 37: 359-374. DOI:10.1016/j.ifset.2016.04.009.

[69] KANTONO K, HAMID N, OEY I, et al. Physicochemical and sensory properties of beef muscles after pulsed electric field processing[J]. Food Research International, 2019, 121: 1-11. DOI:10.1016/j.foodres.2019.03.020.

[70] WOWK B. Electric and magnetic fields in cryopreservation[J]. Cryobiology, 2012, 64(3): 301-303. DOI:10.1016/j.cryobiol.2012.02.003.

[71] MOK J H, CHOI W, PARK S H, et al. Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing[J]. International Journal of Refrigeration, 2015, 50: 137-145. DOI:10.1016/j.ijrefrig.2014.10.025.

[72] OTERO L, RODRIGUEZ A C, PEREZ-MATEOS M, et al. Effects of magnetic fields on freezing: application to biological products[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(3): 646-667. DOI:10.1111/1541-4337.12202.

[73] 韓吉娜, KOMLA S H, 楊鴻博, 等. 氣調(diào)包裝對(duì)冷卻鴨肉的保鮮效果研究[J]. 食品與發(fā)酵工業(yè), 2019, 45(9): 159-164. DOI:10.13995/j.cnki.11-1802/ts.018894.

[74] ORKUSZ A, MICHALCZUK M. Research note: effect of packaging atmosphere on the fatty acid profile of intramuscular, subcutaneous fat, and odor of goose meat[J]. Poultry Science, 2020, 99(1): 647-652. DOI:10.3382/ps/pez528.

[75] 亞本勤, 熊偉, 李根正, 等. 氣調(diào)冷藏對(duì)牦牛肉保鮮效果的影響[J]. 食品研究與開(kāi)發(fā), 2020, 41(8): 50-54. DOI:10.12161/j.issn.1005-6521.2020.08.008

[76] RODRIGUES I, TRINDADE M A, PALU A F, et al. Modified atmosphere packaging for lamb meat: evaluation of gas composition in the extension of shelf life and consumer acceptance[J]. Journal of Food Science and Technology-Mysore, 2018, 55(9): 3547-3555. DOI:10.1007/s13197-018-3280-1.

[77] CONTE-JUNIOR C A, MONTEIRO M L G, PATRICIA R, et al. The effect of different packaging systems on the shelf life of refrigerated ground beef[J]. Foods, 2020, 9(4):495. DOI:10.3390/foods9040495.

[78] JAKOBSEN A N, SHUMILINA E, LIED H, et al. Growth and spoilage metabolites production of a mesophilic Aeromonas salmonicida strain in Atlantic salmon (Salmo salar L.) during cold storage in modified atmosphere[J]. Journal of Applied Microbiology, 2020, 129(4): 935-946. DOI:10.1111/jam.14680.

[79] LUND M N, LAMETSCH R, HVIID M S, et al. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine Longissimus dorsi during chill storage[J]. Meat Science, 2007, 77(3): 295-303. DOI:10.1016/j.meatsci.2007.03.016.

[80] JONGBERG S, WEN Jinzhu, TORNGREN M A, et al. Effect of high-oxygen atmosphere packaging on oxidative stability and sensory quality of two chicken muscles during chill storage[J]. Food Packaging and Shelf Life, 2014, 1(1): 38-48. DOI:10.1016/j.fpsl.2013.10.004.

[81] CANTO A C V C S, COSTA-LIMA B R C, SUMAN S P, et al. Color attributes and oxidative stability of Longissimus lumborum and Psoas major muscles from Nellore bulls[J]. Meat Science, 2016, 121: 19-26. DOI:10.1016/j.meatsci.2016.05.015.

[82] VITALE M, PEREZ-JUAN M, LLORET E, et al. Effect of aging time in vacuum on tenderness, and color and lipid stability of beef from mature cows during display in high oxygen atmosphere package[J]. Meat Science, 2014, 96(1): 270-277. DOI:10.1016/j.meatsci.2013.07.027.

[83] GHIDELLI C, PEREZ-GAGO M B. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(4): 662-679. DOI:10.1080/10408398.2016.1211087.

[84] WANG Fengping, ZHANG Huijun, JIN Wwengang, et al. Effects of tartary buckwheat polysaccharide combined with nisin edible coating on the storage quality of tilapia (Oreochromis niloticus) fillets[J]. Journal of the Science of Food and Agriculture, 2018, 98(8): 2880-2888. DOI:10.1002/jsfa.8781.

[85] HAGER J V, RAWLES S D, XIONGYouling, et al. Listeria monocytogenes is inhibited on fillets of cold-smoked sunshine bass, Morone chrysops × Morone saxatilis, with an edible corn zein-based coating incorporated with lemongrass essential oil or nisin[J]. Journal of the World Aquaculture Society, 2019, 50(3): 575-592. DOI:10.1111/jwas.12573.

[86] GUERRERO A, FERRERO S, BARAHONA M, et al. Effects of active edible coating based on thyme and garlic essential oils on lamb meat shelf life after long-term frozen storage[J]. Journal of the Science of Food and Agriculture, 2019, 100(2): 656-664. DOI:10.1002/jsfa.10061.

[87] RUAN Chengcheng, ZHANG Yumeng, SUN Yue, et al. Effect of sodium alginate and carboxymethyl cellulose edible coating with epigallocatechin gallate on quality and shelf life of fresh pork[J]. International Journal of Biological Macromolecules, 2019, 141: 178-184. DOI:10.1016/j.ijbiomac.2019.08.247.

[88] XIONG Yun, LI Shumin, WARNER R D, et al. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging[J]. Food Control, 2020, 114: 107226. DOI:10.1016/j.foodcont.2020.107226.

[89] XIONG Yun, CHEN Meng, WARNER R D, et al. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork[J]. Food Control, 2020, 110: 10718. DOI:10.1016/j.foodcont.2019.107018.

[90] OZVURAL E B. Fabrication of olive leaf extract and hazelnut skin incorporated films to improve the quality of nuggets during refrigerated and deep freeze storage[J]. British Poultry Science, 2019, 60(6): 708-715. DOI:10.1080/00071668.2019.1656799.

[91] SHANKAR S, DANNEELS F, LACROIX M. Coating with alginate containing a mixture of essential oils and citrus extract in combination with ozonation or gamma irradiation increased the shelf life of Merluccius sp. fillets[J]. Food Packaging and Shelf Life, 2019, 22: 100434. DOI:10.1016/j.fpsl.2019.100434.

[92] SHIN J M, GWAK J W, KAMARAJAN P, et al. Biomedical applications of nisin[J]. Journal of Applied Microbiology, 2016, 120(6): 1449-1465. DOI:10.1111/jam.13033.

[93] MOHAMMADI H, KAMKAR A, MISAGHI A, et al. Nanocomposite films with CMC, okra mucilage, and ZnO nanoparticles: extending the shelf-life of chicken breast meat[J]. Food Packaging and Shelf Life, 2019, 21: 100330. DOI:10.1016/j.fpsl.2019.100330.

[94] GAO Wenhong, HUANG Yangping, ZENG Xinan, et al. Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing[J]. International Journal of Biological Macromolecules, 2019, 135: 839-844. DOI:10.1016/j.ijbiomac.2019.05.186.

[95] XIONG Guangquan, CHENG Wei, YE Lixiu, et al. Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella)[J]. Food Chemistry, 2009, 116(2): 413-418. DOI:10.1016/j.foodchem.2009.02.056.

[96] LIU Xiaoyue, XIONG Guangquan, WANG Xiaohong, et al. Quality changes of prepared weever (Micropterus salmoides) by base trehalose solution during repeated freeze-thaw cycles[J]. Journal of Food Processing and Preservation, 2019, 43(10): e14117. DOI:10.1111/jfpp.14117.

[97] ZHANG Bin, HAO Guijuan, CAO Huijuan, et al. The cryoprotectant effect of xylooligosaccharides on denaturation of peeled shrimp (Litopenaeus vannamei) protein during frozen storage[J]. Food Hydrocolloids, 2018, 77: 228-237. DOI:10.1016/j.foodhyd.2017.09.038.

[98] MA Lukai, ZHANG Bin, DENG Shanggui, et al. Comparison of the cryoprotective effects of trehalose, alginate, and its oligosaccharides on peeled shrimp (Litopenaeus vannamei) during frozen storage[J]. Journal of Food Science, 2015, 80(3): C540-C546. DOI:10.1111/1750-3841.12793.

[99] XIE Chao, ZHANG Bin, MA Lukai, et al. Cryoprotective effects of trehalose, alginate, and its oligosaccharide on quality of cooked-shrimp (Litopenaeus vannamei) during frozen storage[J]. Journal of Food Processing and Preservation, 2017, 41(2): e12825. DOI:10.1111/jfpp.12825.

[100] ENGLISH M M, KEOUGH J M, MCSWEENEY M B, et al. Impact of a novel cryoprotectant blend on the sensory quality of frozen lobster (Homarus americanus)[J]. Journal of Food Science, 2019, 84(6): 1547-1553. DOI:10.1111/1750-3841.14642.

[101] ZHANG Bin, YAO Hui, QI He, et al. Cryoprotective characteristics of different sugar alcohols on peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage and their possible mechanisms of action[J]. International Journal of Food Properties, 2020, 23(1): 95-107. DOI:10.1080/10942912.2019.1710533.

[102] PURNELL G, JAMES C, JAMES S J, et al. Comparison of acidified sodium chlorite, chlorine dioxide, peroxyacetic acid and tri-sodium phosphate spray washes for decontamination of chicken carcasses[J]. Food and Bioprocess Technology, 2014, 7(7): 2093-2101. DOI:10.1007/s11947-013-1211-8.

[103] 江艷華, 許東勤, 姚琳, 等. 噬菌體復(fù)配抑菌劑對(duì)三文魚(yú)中沙門(mén)氏菌的抑制與保鮮作用[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2018, 34(16): 287-293. DOI:10.11975/j.issn.1002-6819.2018.16.037.

[104] 由高銘, 陳欣然, 趙前程, 等. 抑菌劑浸泡液對(duì)冷藏高白鮭魚(yú)肉腐敗菌的抑制效果[J]. 水產(chǎn)科學(xué), 2018, 37(5): 584-590. DOI:10.16378/j.cnki.1003-1111.2018.05.002.

[105] MOHAMED T M, PARVEEN S, LUDWIG J B, et al. Chlorine inactivation of Salmonella kentucky isolated from chicken carcasses: evaluation of strain variation[J]. Journal of Food Protection, 2015, 78(2): 414-418. DOI:10.4315/0362-028x.Jfp-14-379.

[106] RAHMAN U U, SAHAR A, PASHA I, et al. Augmenting quality and microbial safety of broiler meat at refrigeration storage by applying chemical interventions[J]. Journal of Food Processing and Preservation, 2017, 41(4): e13030. DOI:10.1111/jfpp.13030.

[107] CUI Haiying, ZHANG Xuejing, ZHOU Hui, et al. Antibacterial properties of nutmeg oil in pork and its possible mechanism[J]. Journal of Food Safety, 2015, 35(3): 370-377. DOI:10.1111/jfs.12184.

[108] XU Feng, WANG Chunxing, WANG Hongfei, et al. Antimicrobial action of flavonoids from Sedum aizoon L. against lactic acid bacteria in vitro and in refrigerated fresh pork meat[J]. Journal of Functional Foods, 2018, 40: 744-750. DOI:10.1016/j.jff.2017.09.030.

[109] LU Hao, SHAO Xingfeng, CAO Jinxuan, et al. Antimicrobial activity of eucalyptus essential oil against Pseudomonas in vitro and potential application in refrigerated storage of pork meat[J]. International Journal of Food Science and Technology, 2016, 51(4): 994-1001. DOI:10.1111/ijfs.13052.

[110] BOSKOVIC M, DJORDJEVIC J, IVANOVIC J, et al. Inhibition of Salmonella by thyme essential oil and its effect on microbiological and sensory properties of minced pork meat packaged under vacuum and modified atmosphere[J]. International Journal of Food Microbiology, 2017, 258: 58-67. DOI:10.1016/j.ijfoodmicro.2017.07.011.

[111] LOU Zaixiang, LI Cheng, KOU Xingran, et al. Antibacterial, antibiofilm effect of burdock (Arctium lappa L.) leaf fraction and its efficiency in meatpreservation[J]. Journal of Food Protection, 2016, 79(8): 1404-1409. DOI:10.4315/0362-028x.Jfp-15-576.

[112] SOHAIB M, ANJUM F M, ARSHAD M S, et al. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review[J]. Journal of Food Science and Technology-Mysore, 2016, 53(1): 19-30. DOI:10.1007/s13197-015-1985-y.

[113] DE SOUZA DE AZEVEDO P O, CONVERTI A, GIERUS M, et al. Application of nisin as biopreservative of pork meat by dipping and spraying methods[J]. Brazilian Journal of Microbiology, 2019, 50(2): 523-526. DOI:10.1007/s42770-019-00080-8.

猜你喜歡
肉類(lèi)研究進(jìn)展影響因素
《肉類(lèi)研究》雜志征訂啟事
《肉類(lèi)研究》雜志征訂啟事
MiRNA-145在消化系統(tǒng)惡性腫瘤中的研究進(jìn)展
離子束拋光研究進(jìn)展
獨(dú)腳金的研究進(jìn)展
歡迎訂閱2016年《肉類(lèi)研究》雜志
EGFR核轉(zhuǎn)位與DNA損傷修復(fù)研究進(jìn)展