陳鵬 甘桂云 汪茜 羅艷 王先裕
摘 要:番茄細(xì)菌性髓部壞死病是一種危害維管束的新興土傳病害,近年來在我國番茄產(chǎn)區(qū)逐漸蔓延流行,并日趨嚴(yán)重。根據(jù)國內(nèi)外對(duì)番茄細(xì)菌性髓部壞死病的研究報(bào)道,對(duì)番茄細(xì)菌性髓部壞死病的發(fā)展歷史、病癥、病原菌、致病機(jī)制、遺傳多樣性及防治方法等方面的研究進(jìn)展進(jìn)行綜述,以期為番茄細(xì)菌性髓部壞死病的深入研究和制定科學(xué)的防治策備提供參考。闡述番茄細(xì)菌性髓部壞死病的研究現(xiàn)狀,以期為該病害的深入研究和制定科學(xué)的防治策略提供參考。
關(guān)鍵詞:番茄;細(xì)菌性髓部壞死病;病原菌檢測(cè);防治措施
中圖分類號(hào):S641.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-2871(2021)05-008-07
Research progress of tomato pith necrosis
CHEN Peng1, GAN Guiyun2, WANG Qian1, LUO Yan1, WANG Xianyu1
(1. College of Agriculture, Guangxi University, Nanning, 530000, Guangxi, China; 2. Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, Guangxi, China)
Abstract: Tomato Pith necrosis is a new soil-borne disease that affects plant vascular. In recent years, it has gradually spread and become increasingly serious in tomato producing areas in China. This review summarized the history and main symptoms of tomato pith necrosis caused by Pseudomonas and other bacteria. In this paper, the current situation of the tomato pith necrosis was reviewed, including the advances in the detection,pathogenic mechanism, genetic diversity and prevention of tomato pith necrosis.
Key words: Tomato; Pith necrosis; Pathogen detection; Prevention
番茄因其獨(dú)特的風(fēng)味和豐富的營養(yǎng)成為世界上重要的蔬菜經(jīng)濟(jì)作物。據(jù)FAO統(tǒng)計(jì),2019年我國產(chǎn)量高達(dá)6 286.95萬t,番茄種植面積達(dá)到108.67萬hm2,產(chǎn)量和種植面積位居世界第一。隨著番茄栽培面積的不斷擴(kuò)大,各種生物脅迫和非生物脅迫因素嚴(yán)重制約了番茄產(chǎn)業(yè)的發(fā)展。番茄細(xì)菌性髓部壞死?。╰omato pith necrosis,TPN)是由假單胞菌屬(Pseudomonas)以及其他細(xì)菌引起的危害維管束系統(tǒng)的細(xì)菌性土傳病害,發(fā)病率在10%~50%之間,嚴(yán)重地塊高達(dá)90%[1],可減產(chǎn)60%~90%,造成重大經(jīng)濟(jì)損失[2]。1971年英國學(xué)者Scarlett[3]首次發(fā)現(xiàn)該病害由皺紋假單胞菌Pseudomonas. corrugata引起。隨后,番茄細(xì)菌性髓部壞死病在全球范圍內(nèi)均有發(fā)現(xiàn)[2-8]。在我國,自1998年趙海棠等[9]在田間首次發(fā)現(xiàn)番茄細(xì)菌性髓部壞死病以來,目前在浙江、山東、山西、陜西、福建、臺(tái)灣、湖南、湖北、江蘇、河北、廣東、廣西等地均有報(bào)道[9-12],是近年來威脅我國番茄安全生產(chǎn)的一種新興土傳病害,并逐漸由一種不常見病害發(fā)展成為嚴(yán)重病害。
1 病害癥狀及病原菌的研究
番茄細(xì)菌性髓部壞死病是一種維管束系統(tǒng)病害,明顯癥狀多出現(xiàn)在始花期。主要癥狀包括植株萎蔫,頂部葉片邊緣褪色,莖稈和分枝、葉柄、果柄出現(xiàn)黃褐色或黑色病斑,莖髓部出現(xiàn)褪色、空心、褐化、水浸狀或者干縮中空等,維管組織的褪色和壞死,植株的黃化、萎蔫和早衰,有時(shí)在莖基部病變部位產(chǎn)生不定根,發(fā)病嚴(yán)重時(shí)莖傷口處有黃褐色菌膿溢出[12-13]。該病的典型特征是莖髓部的壞死、干縮中空[14]。
番茄細(xì)菌性髓部壞死病是由革蘭氏陰性假單胞菌屬致病菌以及其他細(xì)菌引起的,目前,世界上已報(bào)道的可引起番茄細(xì)菌性髓部壞死病的病原菌多達(dá)11種,包括假單胞菌屬(Pseudomonas):菊苣假單胞菌(P. cichorii)[15-16]、熒光假單胞菌(P. fluorescens)[17]、綠黃假單胞菌(P. viridiflava)[18]、皺紋假單胞菌(P. corrugata)[8,19]、地中海假單胞菌(P. mediterranea)[6,9,20]、惡臭假單胞菌(P. putida)[21]、邊緣假單胞菌(P. marginalis)[6];果膠桿菌屬(Pectobacterium)的黑腐果膠桿菌(Pe. atrosepticum)[6]、胡蘿卜軟腐果膠桿菌胡蘿卜亞種(Pe. carotovorum subsp. carotovorum)[21],黃單胞菌屬穿孔黃單胞菌(Xanthomonas perforans)[21]及菊迪基氏菌(Dickeya chrysanthemi)[22]。不同的病原菌造成的病癥也略有不同,P. corrugata和P. mediterranea病原菌會(huì)導(dǎo)致髓部壞死,造成髓內(nèi)部干裂;P. marginalis、P. viridiflava以及P. cichorii這些病菌引起的主要癥狀是莖內(nèi)部變色,但未出現(xiàn)髓部組織腐爛[6]。在中國報(bào)道的引起番茄細(xì)菌性髓部壞死病原主要是P. cichorii 和P. corrugata。
4 番茄細(xì)菌性髓部壞死病致病機(jī)制
革蘭氏陰性細(xì)菌致病過程主要包括:首先病菌在寄主表面附著,包括群體感應(yīng)(quorum sensation,QS)系統(tǒng)和胞外多糖的產(chǎn)生等;而后,病菌從寄主的機(jī)械傷口、自然孔口進(jìn)入寄主內(nèi)部,包括T3SS分泌系統(tǒng)、毒素等;最后進(jìn)入寄主內(nèi)部,病菌克服植物免疫反應(yīng)、破壞寄主細(xì)胞結(jié)構(gòu)和生理過程,進(jìn)而使病菌在寄主體內(nèi)增殖和系統(tǒng)遷移[35]。毒素在病菌致病中有著重要作用,P. cichorii產(chǎn)生的一種非特異性毒素菊苣素會(huì)引起萵苣葉片的細(xì)菌性腐爛癥狀[28]。Ⅱ型分泌系統(tǒng)(T2SS)和Ⅲ型分泌系統(tǒng)(T3SS)是病原菌入侵植物的重要系統(tǒng),Ⅱ型分泌系統(tǒng)能將水解蛋白分泌到植物細(xì)胞間[36];Ⅲ型分泌系統(tǒng)位于細(xì)菌細(xì)胞膜上,可將特定的效應(yīng)蛋白轉(zhuǎn)運(yùn)至真核細(xì)胞體內(nèi)[37],干擾寄主免疫反應(yīng)和擾亂寄主生理過程,使得病菌能夠定殖和致病[38]。植物病菌的T3SS可分為兩類,一類是hrp/hrc 1,主要分布在Pseudomonas和Erwinia,另一類是hrp/hrc 2,主要存在于Xanthomonas、Ralstonia、Burkholderia和Acidovorax中。這些T3SS存在于基因組或質(zhì)粒的基因簇上,以多個(gè)操縱子形式存在,包括hrp ( hypersensitive response and pathogenicity)和hrc ( hrp conserved)基因[38]。Liu等[39]研究發(fā)現(xiàn),丁香假單胞PstDC3000和PssB728a通過細(xì)菌中分泌出的特異性效應(yīng)蛋白并將其轉(zhuǎn)移到宿主細(xì)胞的細(xì)胞質(zhì)中,抑制宿主細(xì)胞防御機(jī)制進(jìn)而引起病害,T3SS是PstDC3000和PssB728a的關(guān)鍵致病因素。Ishiga等[40]將缺乏T3SS的hrcN突變體丁香假單胞菌獼猴桃致病變種(Psa3)接種至獼猴桃體內(nèi),未發(fā)生病害特征,進(jìn)一步說明T3SS在丁香假單胞菌的毒力致病性中起著重要作用。Robert等[41]研究發(fā)現(xiàn),細(xì)胞程序性死亡是丁香假單胞菌(P. syringae)基于過敏反應(yīng)的免疫力的關(guān)鍵組成部分。Kiba等[42]研究發(fā)現(xiàn),與其他細(xì)菌性病害不同,P. cichorii不產(chǎn)生破壞植物細(xì)胞壁的果膠裂解酶,而是通過類似于過敏反應(yīng)(HR)的細(xì)胞凋亡方式引起細(xì)菌性腐爛癥狀。
5 番茄細(xì)菌性髓部壞死病抗性機(jī)制研究
5.1 植物抗性基因的研究
為抵御外界環(huán)境中病原體對(duì)植物生長發(fā)育的脅迫,植物發(fā)展出一套完整復(fù)雜的免疫系統(tǒng),目前,已探明的植物免疫系統(tǒng)有兩種方式:一種是通過跨膜模式識(shí)別受體(PRRs),對(duì)進(jìn)化緩慢的微生物或病原相關(guān)的分子模式(MAMPS或PAMPs)作出PTI免疫反應(yīng)(pattern-triggered immunity)[43]。另一種是ETI免疫反應(yīng)(effectortriggered immunity),主要在細(xì)胞內(nèi)發(fā)揮作用,利用大多數(shù)R基因(Resistant gene)編碼的多態(tài)核苷酸結(jié)合亮氨酸豐富重復(fù)蛋白NB-LRR蛋白產(chǎn)物作為免疫傳感器,識(shí)別病原體傳遞的效應(yīng)物[44]。NLRs被認(rèn)為是植物免疫的關(guān)鍵組成部分,植物NLRs能夠快速識(shí)別進(jìn)化的效應(yīng)因子[45]。根據(jù)基因?qū)虻募僬f,植物的R基因特異性識(shí)別侵染病原菌的無毒基因(Avr基因),通過發(fā)生互作反應(yīng)進(jìn)而激發(fā)下游系列抗病信號(hào)傳導(dǎo),誘導(dǎo)植物對(duì)病原菌產(chǎn)生抗性反應(yīng)。常見的R基因類型有核苷酸結(jié)合位點(diǎn)-富亮氨酸重復(fù)(NB-LRR,簡稱NLR)、激酶、富亮氨酸重復(fù)-激酶類型、胞外富亮氨酸重復(fù)類型等,其中NLR約占80%。根據(jù)其N-端結(jié)構(gòu)的不同NLR又可分為卷曲螺旋CC-NB-LRR(CNL)類型和果蠅Toll蛋白/白細(xì)胞介素受體1-NB-LRR(TNL)類型,以及缺少N端結(jié)構(gòu)域的NB-LRR等亞類[45]。番茄的抗性蛋白Pto是一種絲氨酸-蘇氨酸激酶,通過與來自紫丁香假單胞菌pv.tomato的AvrPto或AvrPtoB特異識(shí)別相互作用產(chǎn)生抗性[46]。無毒基因是決定病菌能否具有致病效應(yīng)的兩性效應(yīng)因子,植物若含有對(duì)應(yīng)的抗病基因,抗病基因抑制無毒基因的毒性效應(yīng),植株表現(xiàn)為抗病;反之無毒基因表現(xiàn)其致病性,使植物感病。目前在番茄中已報(bào)道的免疫相關(guān)NLRs基因如表2所示。
5.2 抗性材料的篩選
番茄細(xì)菌性髓部壞死病是近年來威脅我國番茄產(chǎn)業(yè)健康發(fā)展的新興土傳細(xì)菌性病害之一。目前針對(duì)病害的抗性材料篩選和鑒定在國內(nèi)外均有報(bào)道,荊子桓等[12]通過田間抗性鑒定發(fā)現(xiàn)野生番茄材料T034和T103對(duì)髓部壞死病表現(xiàn)出抗性。孫福在等[60]通過對(duì)112個(gè)番茄品種進(jìn)行抗性鑒定,發(fā)現(xiàn)高抗品種20個(gè),抗病品種30個(gè)。Stockinger等[61]通過研究發(fā)現(xiàn)番茄L. hirsutum中的PI 134417對(duì)丁香假單胞菌ptll和pt14D46菌株表現(xiàn)抗性。González等[62]以233份番茄品種為材料接種P. solanacearum,其中CATIE 17331、17334、17349、1773917740、Hawaii 7998和UC-82B表現(xiàn)出抗性。
6 防治方法
番茄細(xì)菌性髓部壞死病的發(fā)生受品種、地區(qū)、栽培方式、氣候條件和環(huán)境等多種因素的影響。因此,在病害的防治中應(yīng)根據(jù)病害發(fā)生的原因,遵循預(yù)防為主、綜合防治的原則。
6.1 植物檢疫
種子帶菌是細(xì)菌性病害的發(fā)生侵染源之一,也是病害異地傳播的最重要途徑。加強(qiáng)檢疫措施能夠有效地阻斷病原菌傳播。雖然該病害在我國已有發(fā)生,但各地發(fā)生情況不一。引起番茄細(xì)菌性髓部壞死病的P. cichorii是多寄主的病原菌,能夠引起多種農(nóng)作物發(fā)生病害,可能嚴(yán)重影響當(dāng)?shù)氐霓r(nóng)業(yè)種植結(jié)構(gòu)[8]。因此,種苗在各區(qū)間的調(diào)運(yùn)仍有必要將該病原作為檢疫對(duì)象,這將有利于從源頭控制該病害的擴(kuò)散蔓延[63]。
6.2 抗病品種的選育
在番茄的生產(chǎn)中選用抗病品種是植物病害綜合防治中最安全、簡便、經(jīng)濟(jì)和有效的方式。可通過抗病種質(zhì)資源篩選,利用常規(guī)雜交育種技術(shù)結(jié)合分子標(biāo)記輔助品種選育,快速高效地創(chuàng)制抗性種質(zhì)資源,挖掘抗性基因,結(jié)合轉(zhuǎn)基因以及基因編輯等生物技術(shù)手段創(chuàng)制抗病材料。
6.3 農(nóng)業(yè)防治
番茄細(xì)菌性髓部壞死病在逆境條件下危害加重,因此合理的田間栽培管理措施對(duì)防治細(xì)菌性髓部壞死病十分重要。種子消毒能夠有效殺除種子表面所攜帶的病原菌,進(jìn)而降低病害發(fā)生率。病原菌能夠在土壤中長時(shí)間存活,通過合理的輪作與套作以避免髓部壞死病的暴發(fā),避免番茄連作,可與非假單胞菌寄主作物進(jìn)行輪作。一旦發(fā)現(xiàn)感染植株,應(yīng)立即拔除清理。在番茄生長發(fā)育過程中,合理均衡施肥,適時(shí)配施鋅、鈣、硼等葉面肥,促進(jìn)植株生長,提高植株的抗病能力。
6.4 化學(xué)防治
目前國內(nèi)外尚沒有開發(fā)出防治番茄細(xì)菌性髓部壞死病的特效藥。發(fā)病初期可噴施新植霉素、噻唑鋅、甲霜惡霉靈等藥物防治;如發(fā)病嚴(yán)重,可采用注射法防治,可選用四環(huán)霉素、氧氟沙星、鏈霉素,但該方法僅適用于小范圍防治。根據(jù)前人的研究可知,P. corrugata和P. cichorii對(duì)銅制劑有較高的耐受性,因此在化學(xué)防治中應(yīng)避免選用銅制劑[17]。
7 展 望
番茄是世界范圍內(nèi)廣泛種植的蔬菜作物,對(duì)番茄細(xì)菌性髓部壞死病癥、傳播途徑、鑒定方法、致病機(jī)制、抗病機(jī)制以及防治方法進(jìn)行歸納總結(jié),具有重要的理論意義和實(shí)踐價(jià)值。
目前,我國已有多地發(fā)生細(xì)菌性髓部壞死病的報(bào)道,并呈現(xiàn)出日益嚴(yán)重的趨勢(shì),但目前我國針對(duì)該病害的研究極少。因此,今后應(yīng)加強(qiáng)以下幾個(gè)方面的研究:(1)檢測(cè)技術(shù)。開展番茄產(chǎn)區(qū)的病害調(diào)查,利用代謝組學(xué)技術(shù)探索開發(fā)感染細(xì)菌性髓部壞死病的代謝標(biāo)志物,結(jié)合形態(tài)學(xué)和分子生物學(xué)技術(shù)進(jìn)行鑒定;開發(fā)簡便、快捷的田間檢測(cè)方法。(2)抗病機(jī)制。明確病原菌的致病機(jī)制和變異機(jī)制、遺傳多樣性,根據(jù)“基因?qū)颉奔僬f,明確寄主的無毒基因和病菌的致病基因,采用蛋白互作的方法和基因定位技術(shù)獲得抗性基因,為分子標(biāo)記輔助育種和克隆抗性基因奠定基礎(chǔ)。(3)綜合防治。廣泛收集國內(nèi)外番茄種質(zhì)資源,并進(jìn)行抗病性鑒定,挖掘抗性資源,利用傳統(tǒng)育種方法、轉(zhuǎn)基因和基因編輯技術(shù)創(chuàng)制抗病品種,加快培育高抗的商業(yè)化品種。開展病害的綜合防治研究,開發(fā)和篩選防治番茄細(xì)菌性髓部壞死病的新型藥劑和誘抗劑。
參考文獻(xiàn)
[1] BELLA P,CATARA V.Occurrence of tomato pith necrosis caused by Pseudomonas marginalis in Italy[J].Plant Pathology,2010,59(2):402.
[2] 蔡佳欣,安寶貞,呂昀陞,等.Pseudomonas mediterranea引起之番茄髓壞疽病[J].臺(tái)灣農(nóng)業(yè)研究,2018,67(1):16-27.
[3] SCARLETT C M,F(xiàn)LETCHER J T,ROBERTS P,et al.Tomato pith necrosis caused by Pseudomonas corrugata n.sp.[J].Annals of Applied Biology,1978,88(1):105-114.
[4] TRANTS E A,SARRIS P F,MPALANTINAKI E E,et al.A new genomovar of Pseudomonas cichorii,a causal agent of tomato pith necrosis[J].European Journal of Plant Pathology,2013,137(3):477-493.
[5] KUDELA V,KREJZAR V,PNAKOVA I.Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture[J].Plant Protection Science,2010,46(1):1-11.
[6] AIELLO D,SCUDERI G,VITALE A,et al.A pith necrosis caused by Xanthomonas perforans on tomato plants[J].European Journal of Plant Pathology,2013,137(1):29-41.
[7] POPVIC T,IVANOVIC Z,IGNIJATOV M.First report of Pseudomonas viridiflava causing pith necrosis of tomato (Solanum lycopersicum) in Serbia[J].Plant Disease,2015,99(7):1033.
[8] TRANTAS E A,SARRIS P F,PENTARI M G,et al.Diversity among Pseudomonas corrugata and Pseudomonas mediterranea isolated from tomato and pepper showing symptoms of pith necrosis in Greece[J].Plant Pathology,2015,64(2):307-318.
[9] 趙海棠,安學(xué)君,胡芝蓮,番茄細(xì)菌性髓部壞死病及防治方法[J].長江蔬菜,2000(8):17-18.
[10] RUAN H,SHI N,DU Y,et al.First report of Pseudomonas cichorii causing tomato pith necrosis in Fujian province China[J].Plant Disease,2019,103(1):145.
[11] 佘小漫,湯亞飛,何自福,等.番茄細(xì)菌性髓部壞死病病原的鑒定[J].植物病理學(xué)報(bào),2017,47(2):180-186.
[12] 荊子桓,王先裕,龍安四,等.廣西番茄砧木多抗材料篩選[J].中國蔬菜,2016(10):28-32.
[13] CATARA V,SUTRA L,MORINEAU A,et al.Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp.nov[J].International Journal of Systematic and Evolutionary Microbiology,2002,52(5):1749-1758.
[14] 李秀芹,姜京宇,張麗.河北省番茄細(xì)菌性髓部壞死病的發(fā)生與防治[J].中國蔬菜,2013(7):25-26.
[15] JUNIOR T A F S,GIORIA R,MARINGONI A C,et al.Gama de hospedeiros e rea??o de genótipos de tomateiro a Pseudomonas cichorii[J].Summa Phytopathol,2009,35(2):127-131.
[16] TIMILSINA S,ADKISON H,TESTEN A L,et al.A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato[J].Phytopathology,2017,107(11):1298-1304.
[17] ALIPPI A M,BO D E,RONCO L B,et al.Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse[J].Plant Pathology,2003,52(3):287-302.
[18] SARRIS P F,TRANTAS E A,MPALANTINAKI E,et al.Pseudomonas viridiflava,a multi host plant pathogen with significant genetic variation at the molecular level[J].PLoS One,2018,7(4):e36090.
[19] PEKHTEREVA E S,IGNATOV A N,SCHAAD N W,et al.Pith necrosis of tomato in Russia[J].Acta Horticulturae,2009(808):251-253.
[20] CATARA V,ARNOLD D,CIRVILLERI G,et al.Specific oligonucleotide primers for the rapid identification and detection of the agent of tomato pith necrosis,Pseudomonas corrugata,by PCR amplification:Evidence for two distinct genomic groups[J].European Journal of Plant Pathology,2000,106(8):753-762.
[21] AIELLO D,VITALE A,RUOTA A D L,et al.Synergistic interactions between Pseudomonas spp.and Xanthomonas perforans in enhancing tomato pith necrosis symptoms[J].Journal of Plant Pathology,2017,99(3):731-740.
[22] ALIVIZATOS A S.Bacterial wilt of tomato in Greece caused by Erwinia chrysanthemi[J].Plant Pathology,1985,34(4):638-639.
[23] LAMICHHANE J R,VENTURI V.Synergisms between microbial pathogens in plant disease complexes:a growing trend[J].Front in Plant Science,2015,6:1-12.
[24] IBRAHIM Y E,KOMY M H E,BALABEL N M,et al.Saline and alkaline soil stress results in enhanced susceptibility to and severity in tomato pith necrosis when inoculated with either Pseudomonas corrugata and/or P.fluorescens[J].Journal of Plant Pathology,2020 102(3):849-856.
[25] PETRICCIONE M,ZAMPELLA L,MASTROBUONI F,et al.Occurrence of copper-resistant Pseudomonas syringae pv.syringae strains isolated from rain and kiwifruit orchards also infected by P.s.pv.actinidiae[J].European Journal of Plant Pathology,2017,149(4):953-968.
[26] YAMAMOTO S,KASAI H,ARNOID D L,et al.Phylogeny of the genus Pseudomonas:Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes[J].Microbiology,2000,146(10):2385-2394.
[27] TAYEB L A,AGERON E,GRIMONT F,et al.Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates[J].Research in Microbiology,2005,156(5/6):763-773.
[28] COTTYN B,BAEYEN S,PAUWELYN E,et al.Development of a real-time PCR assay for Pseudomonas cichorii,the causal agent of midrib rot in greenhouse-grown lettuce,and its detection in irrigating water[J].Plant Pathology,2011,60(3):453-461.
[29] MIRIK M,AYSAN Y,SAHIN F.Characterization of Pseudomonas cichorii isolated from different hosts in Turkey[J].International Journal of Agriculture and Biology,2011,13(2):203-209.
[30] SARRIS P,ABDELHALIM M,KITNER M,et al.Molecular polymorphisms between populations of Pseudoperonospora cubensis from greece and the czech republic and the phytopathological and phylogenetic implications[J].Plant Pathology,2009,58(5):933-943.
[31] STAGER C E,P DAVIS J R.Automated systems for identification of microorganisms[J].Clinical Microbiology Reviews,1992,5(3):302-327.
[32] RAJENDRAN D K,PARK E,NAGENDRAN R,et al.Visual analysis for detection and quantification of Pseudomonas cichorii disease severity in tomato plants[J].Plant Pathology Journal,2016,32(4):300-310.
[33] HIKICHI Y,WALI U M,OHNISHI K,et al.Mechanism of disease development caused by a multihost plant bacterium,Pseudomonas cichorii,and its virulence diversity[J].Journal of General Plant Pathology,2013,79(6):379-389.
[34] BELIMOV A A,DODD I C,SAFRONOVA V I,et al.Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato[J].Journal of Experimental Botany,2007,58(6):1485-1495.
[35] PENA R T,BLASCOL L,AMBROA A,et al.Relationship between quorum sensing and secretion systems[J].Frontiers in Microbiology,2019,10(7):doi:10.3389/fmicb.2009.01100.
[36] PFEILMEIER S,CALY D L,MALONE J G.Bacterial pathogenesis of plants:future challenges from a microbial perspective:Challenges in bacterial molecular plant pathology[J].Molecular Plant Pathology,2016,17(8):1298-1313.
[37] BUTTNER D,HE S Y.Type III protein secretion in plant pathogenic bacteria[J].Plant Physiology,2009,150(4):1656-1664.
[38] TAMPAKAKI A P,SKANDALIS N,GAZI A D,et al.Playing the ‘harp:evolution of our understanding of hrp/hrc genes[J].Annual Review of Phytopathology,2010,48:347-370.
[39] LIU J,YU M,CHATNAPARAT T,et al.Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae[J].BMC Genomics,2020,21(1):1-18.
[40] ISHIGA T,SAKATA N,NGUYEN V T,et al.Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit[J].Journal of General Plant Pathology,2020,86(4):257-265.
[41] ABRAMOVITCH R B,KIM Y J,CHEN S,et al.Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death[J].EMBO Journal,2003,22(1):60-69.
[42] KIBA A,SANGAWA Y,OHNISHI K,et al.Induction of apoptotic cell death leads to the development of bacterial rot caused by Pseudomonas cichorii[J].Molecular Plant-Microbe Interactions,2006,19(2):112-122.
[43] KAPOS P,DEVEDRAKUMAR K T,LI X.Plant NLRs:from discovery to application[J].Plant Science,2019,279:3-18.
[44] JONES J D G,DANGL J L.The plant immune system[J].Nature,2006,444(7117):323-329.
[45] 邢苗苗,劉星,孔樅樅,等.甘藍(lán)NLR家族全基因組鑒定、進(jìn)化分析及在不同病害脅迫下的表達(dá)分析[J].園藝學(xué)報(bào),2019,46(4):723-737.
[46] XIAO F,HE P,ABRAMOVITCH R B,et al.The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants[J].Plant Journal,2007,52(4):595-614.
[47] HOUTERMAN P M,MA L,OOIJEN G V,et al.The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly[J].Plant Journal,2009,58(6):970-978.
[48] CASTEEL C L,WALLING L L,PAINE T D.Behavior and biology of the tomato psyllid,Bactericerca cockerelli,in response to the Mi-1.2 gene[J].Entomologia Experimentalis et Applicata,2006,121(1):67-72.
[49] MA L,HOUTERMAN P M,GAWEHNS F,et al.The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato[J].New Phytologist,2015,208(2):507-518.
[50] NOMBELA G,WILLAMSON V M,MUNIZ M.The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci[J].Molecular Plant-Microbe Interactions,2003,16(7):645-649.
[51] NTOUKAKIS V,BALMUTH A L,MUCYN T S,et al.The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation[j].PLoS Pathogens,2013,9(1):1-14.
[52] RATHJEN J P,CHANG J H,STASKAWICZ B J,et al.Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto[J].EMBO Journal,1999,18(12):3232-3240.
[53] BROMMONSCHENKEL S H,F(xiàn)RARY A,F(xiàn)RARY A,et al.The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi[J].Molecular Plant-Microbe Interactions,2000,13(10):1130-1138.
[54] SCHORNACK S,BALLVORA A,GURLEBECK D,et al.The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3[J].Plant Journal,2004,37(1):46-60.
[55] PEIRO A,CANIZARES M C,RUBIO L,et al.The movement protein (NSm) of tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance[J].Molecular Plant Pathology,2014,15(8):802-813.
[56] WEBER H,PFITZNER A J P.Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus[J].Molecular Plant-Microbe Interactions,1998,11(6):498-503.
[57] POCH C H L,LOPEZ R H M,KANYUKA K.Functionality of resistance gene Hero,which controls plant root-infecting potato cyst nematodes,in leaves of tomato[J].Plant,Cell and Environment,2006,29(7):1372-1378.
[58] ERNST K,KUMAR A,KRISELEIT D,et al.The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region[J].Plant Journal,2002,31(2):127-136.
[59] BALLVORA A,PIERRE M,ACKERVEKEN G V D,et al.Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv.vesicatoria AvrBs4 protein[J].Molecular Plant-Microbe Interactions,2001,14(5):629-638.
[60] 孫福在,趙廷昌,劉永.山東魚臺(tái)縣發(fā)生番茄細(xì)菌性髓部壞死病[J].植物保護(hù),2003(6):56-57.
[61] STOCKINGER E J,WALLING L L.Pto3 and Pto4: novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv. tomato [J].Theoretical & Applied Genetics,1994,89(7/8):879-884.
[62] GONZALEZ W G,SUMMERS W L.Host-plant resistance to Pseudomonas solanacearum in tomato germplasm[J].Genetic Resources and Crop Evolution,1996,43(6):569-574.
[63] 羅來鑫,趙廷昌,李健強(qiáng),等.番茄細(xì)菌性潰瘍病研究進(jìn)展[J].中國農(nóng)業(yè)科學(xué),2004,37(8):1144-1150.