王小艷
【摘要】求非線性偏微分方程的精確解有很多有效的方法,本文介紹了擴展的acobi橢圓函數(shù)展開法,并用這種方法求解了BBM方程的精確解,且在極限形式下,這些解退化為方程的孤波解和三角函數(shù)解.
【關鍵詞】Jacobi橢圓函數(shù)展開法;精確解;BBM方程
在本文中,我們將Jacobi橢圓函數(shù)展開法及F-展開法相結合,得到了擴展的Jacobi橢圓函數(shù)展開法.
一、方法介紹
用擴展的Jacobi橢圓函數(shù)展開法求解非線性偏微分方程的主要步驟為:
【參考文獻】
[1]郭玉翠.非線性偏微分方程引論 [M],清華大學出版社,2008: 238-245.
[2]Cesar A,Gómez S,Alvaro H,et.al.New periodic and soliton solutions for the Generalized BBM and BurgersBBM equations [J],Applied Mathematics and Computation,2010(217): 1430-1434.
[3]Zhao X Q,Zhi H Y.An improved Fexpansion method and its application to coupled DrinfeldSokolovWilson equation [J],Communications in Theoretical Physics,2008(50): 309-314.
[4]劉式括,付遵濤,劉式達等.一類非線性方程的新周期解[A],北京大學物理學報,2002(51):10-14.
[5]Abdou M A.The extended Fexpansion method and its application for a class of nonlinear evolution equations[J],Chaos,Solitons and Fractals,2007(31): 95-104.
[6]劉式括,付遵濤,劉式達,趙強.Jacobi橢圓函數(shù)展開法及其在求解非線性波動方程中的應用 [A],北京大學物理學報,2001,50(11): 2068-2071.
[7]Kumar H,Chand F.Applications of extended Fexpansion and projective Ricatti equation methods to (2+1)dimensional soliton equations [J],Aip Advance3,2013,3(032128): 1-20.