付勇,夏鵬,龍珍,張恭境,譙文浪,郭川,楊鎮(zhèn)
1) 貴州大學(xué)資源與環(huán)境工程學(xué)院,貴陽,550025; 2) 喀斯特地質(zhì)資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,貴陽,550025; 3) 中國科學(xué)院地質(zhì)與地球物理研究所新生代地質(zhì)與環(huán)境院重點(diǎn)實(shí)驗(yàn)室,北京,100029; 4) 貴州省地礦局102地質(zhì)大隊(duì),遵義,563003; 5) 貴州民族大學(xué)生態(tài)環(huán)境工程學(xué)院,貴陽,550025
內(nèi)容提要: 通過調(diào)研揚(yáng)子地區(qū)震旦紀(jì)(埃迪卡拉紀(jì))—寒武紀(jì)(E—C)轉(zhuǎn)折期大陸風(fēng)化、海洋環(huán)境和有機(jī)質(zhì)富集特征研究。結(jié)果顯示,揚(yáng)子地區(qū)E—C轉(zhuǎn)折期遭受了較強(qiáng)烈的化學(xué)風(fēng)化作用,且在這一時(shí)期區(qū)內(nèi)兼具淺水碳酸鹽臺(tái)地和深水盆地環(huán)境。在臺(tái)地相區(qū),下寒武統(tǒng)牛蹄塘組黑色巖系不整合接觸于震旦系燈影組白云巖之上,該不整合與E—C轉(zhuǎn)折期全球“大不整合”具有緊密的關(guān)系,盆地區(qū)發(fā)育的完整的沉積地層記錄了臺(tái)地區(qū)被風(fēng)化地層的痕跡?,F(xiàn)有大陸風(fēng)化的地球化學(xué)證據(jù)集中于n(87Sr)/ n(86Sr)、δ13C、CIA和εNd(t)等,同時(shí)這些地球化學(xué)數(shù)據(jù)也局限在少數(shù)的剖面和層段,因此迫切需要更多的地球化學(xué)參數(shù)來反映該風(fēng)化作用的影響范圍和演化特征。準(zhǔn)確認(rèn)識(shí)揚(yáng)子地區(qū)E—C轉(zhuǎn)折期大陸風(fēng)化作用與海洋環(huán)境演變間的耦合關(guān)系,是揭示古生物演化、有機(jī)質(zhì)富集機(jī)制的重要環(huán)節(jié)。
震旦紀(jì)(埃迪卡拉紀(jì))—寒武紀(jì)(E—C)轉(zhuǎn)折期同時(shí)發(fā)生了超大陸的裂解(Rodinia)與聚合(Gondwana)(Li Da et al., 2013; Yao Weihua et al., 2014)、海洋化學(xué)與生物化學(xué)的動(dòng)蕩變化(Hoffman et al., 1998; Fike et al., 2006; McFadden et al., 2008; Och et al., 2013; Sahoo et al., 2012; Li Da et al., 2013)、生命的幕式更替(張文堂,1997; Zhang Xingliang et al., 2014; 朱茂炎等,2019)等重大地質(zhì)事件。其中,最引人注目的是新元古代末期埃迪卡拉紀(jì)動(dòng)物群的消失,以及隨后從早寒武紀(jì)開始的骨骼化動(dòng)物爆發(fā)輻射(即“寒武紀(jì)生命大爆發(fā)”)。普遍認(rèn)為,E—C轉(zhuǎn)折期大氣氧濃度的持續(xù)增加(圖1)以及海水氧化還原條件的動(dòng)態(tài)變化在早期生命演化過程中起著顯著的作用(Li Chao et al., 2010; Och et al., 2013; Wen Hanjie et al., 2015; Li Weiping et al., 2017; 朱茂炎等,2010,2019)。然而,目前對(duì)這一時(shí)期大氣氧濃度和海洋氧化還原條件變化的驅(qū)動(dòng)力仍然沒有定論。
圖1 新元古代以來構(gòu)造、地球化學(xué)特征及大氣氧氣濃度(大氣氧含量參考Kump et al., 2007; Lyons et al., 2014;海水環(huán)境參考Canfield et al., 2008;全球n(87Sr)/n(86Sr)、εNd數(shù)據(jù)及構(gòu)造活動(dòng)等參考Hoffman and Li, 2009; Peter and Gaines, 2012;華南E—C轉(zhuǎn)折期n(87Sr)/n(86Sr)、εNd參考Wei Guangyi et sl., 2019; Li Meng et al., 2020)Fig. 1 Characteristics of tectonic movements, geochemistry, and atmospheric oxygen concentration (oxygen concentration is from Kump et al., 2007, Lyons et al., 2014; Marine environment is from Camfield et al., 2008; Globaln(87Sr)/n(86Sr), εNd, and tectonic movements are from Hoffman and Li, 2009, Peter and Gaines, 2012; n(87Sr)/n(86Sr) and εNd in South China are Wei Guangyi et al., 2019, Li Meng et al., 2020)
前寒武紀(jì)末期,地球氣候曾發(fā)生劇烈的波動(dòng),并出現(xiàn)四次影響深遠(yuǎn)的冰期氣候(圖1)(Hoffman and Li, 2009; Zhou Chuanming et al., 2019; Li Minglong et al., 2019;李明龍等,2021)。在冰期氣候之后,冰川的迅速消融使地球進(jìn)入溫室氣候,導(dǎo)致前寒武紀(jì)末期化學(xué)風(fēng)化強(qiáng)度迅速增強(qiáng)(Hoffman et al., 1998; Peter and Gaines, 2012)。隨后在早寒武世期間廣泛的海侵和基底改造,使寒武系不整合沉積于前寒武紀(jì)風(fēng)化地層之上,導(dǎo)致E—C轉(zhuǎn)折期“大不整合(Great unconformity)”的形成(Peter and Gaines, 2012; Shahkarami et al., 2020)?!按蟛徽稀本哂腥蛞?guī)模,在E—C轉(zhuǎn)折期各主要大陸均有分布(圖2),并且該不整合面具有穿時(shí)特征。例如,在西伯利亞、外蒙古、挪威等地發(fā)育在埃迪卡拉系上統(tǒng)內(nèi)部,以碎屑角礫巖層不整合覆蓋于碳酸鹽巖層之上為特征(Nielsen and Schovsbo, 2011; Smith et al., 2015; Markov et al., 2019);在加拿大麥肯錫、美國加利福尼亞等地區(qū)表現(xiàn)為黑色細(xì)粒沉積巖系與下伏碳酸鹽巖或角礫巖之間的不整合接觸(Peter and Gaines, 2012; Smith et al., 2016);在澳大利亞弗林德斯,該不整合面為埃迪卡拉系與寒武系的界線,寒武系含礫砂巖不整合覆蓋于埃迪卡拉系碳酸鹽巖之上(Mapstone and Mcllry, 2006);我國揚(yáng)子地區(qū),該不整合面同樣是埃迪卡拉系與寒武系的界線,但不整合面之上為下寒武統(tǒng)黑色細(xì)粒巖系,有機(jī)質(zhì)豐富(Zhu Maoyan et al., 2010, 2019; Li Chao et al., 2020);在納米比亞,該不整合面位于埃迪卡拉系與寒武系的界線以上,為寒武系底礫巖與下伏埃迪卡拉系碳酸鹽巖的不整合接觸(Linnemann et al., 2019)。E—C轉(zhuǎn)折期“大不整合”的出現(xiàn)與這一時(shí)期海水環(huán)境和大氣氧濃度變化存在較好的對(duì)應(yīng)關(guān)系(圖1),暗示“大不整合”形成過程中產(chǎn)生的大量風(fēng)化產(chǎn)物輸入海洋,驅(qū)動(dòng)早寒武世海洋環(huán)境變化,觸發(fā)“寒武紀(jì)生命大爆發(fā)”(Peter and Gaines, 2012)。然而,“大不整合”的分布特征(圖2)反映E—C轉(zhuǎn)折期不同地區(qū)大陸風(fēng)化特征存在明顯差異。
本文以揚(yáng)子地區(qū)E—C轉(zhuǎn)折期為例,學(xué)習(xí)和總結(jié)了關(guān)于這一時(shí)期古大陸風(fēng)化、古海洋環(huán)境演化以及有機(jī)質(zhì)富集特征方面的研究進(jìn)展,討論了大陸風(fēng)化與古海洋環(huán)境的協(xié)同演化關(guān)系及相關(guān)問題。
上地殼遭受化學(xué)風(fēng)化的過程中,K+、Na+、Ca2+等離子活性強(qiáng),容易隨地表流體大量流失,然而,Al3+、Ti4+等離子較穩(wěn)定,容易保存在風(fēng)化殘留物中,導(dǎo)致風(fēng)化殘留物中主成分Al2O3所占的比重隨風(fēng)化作用強(qiáng)度而不斷變化。據(jù)此,Nesbitt和Young(1982,1989)將“化學(xué)蝕變指數(shù)”(chemical index of alteration,CIA)作為評(píng)價(jià)物源區(qū)風(fēng)化強(qiáng)度和氣候條件的指標(biāo),即:
其中n(CaO*)為硅酸鹽礦物中的CaO。高的CIA值反映較強(qiáng)烈的化學(xué)風(fēng)化作用,對(duì)應(yīng)溫暖潮濕的氣候條件,K+、Na+、Ca2+等易遷移陽離子大量去除,Al3+、Ti4+等難遷移陽離子逐漸在風(fēng)化殘余物中富集。低CIA值反映化學(xué)風(fēng)化作用較弱甚至不存在,對(duì)應(yīng)寒冷干燥的氣候條件。未經(jīng)風(fēng)化的沉積巖CIA標(biāo)準(zhǔn)值為48(Rudnick and Gao Shan, 2014),遭受風(fēng)化后的沉積物CIA值高于該標(biāo)準(zhǔn)值,并且隨風(fēng)化強(qiáng)烈程度增加而不斷升高(Nesbitt and Young, 1982, 1989)。
基于上述理論基礎(chǔ),CIA在化學(xué)風(fēng)化強(qiáng)度研究方面得到了廣泛應(yīng)用,例如,我國南方新元古代古城冰期和南沱冰期細(xì)碎屑巖CIA值較低,分布在56.5~64.6,均值約59.8,反映物源區(qū)經(jīng)歷了輕微的化學(xué)風(fēng)化作用(馮連君等,2003;熊晨,2019;李明龍等,2021),與冰期寒冷干燥的氣候相對(duì)應(yīng);晚奧陶世五峰組—早志留世龍馬溪組碎屑巖CIA值為75~90,反映物源區(qū)經(jīng)歷了較強(qiáng)烈的化學(xué)風(fēng)化(Yan Detian et al., 2010)。然而,CIA是基于化學(xué)組成相對(duì)均一的巖石建立的(Ohta et al., 2007),受原巖成分影響大,鉀交代作用、變質(zhì)作用、古老沉積巖的再循環(huán)沉積等會(huì)改變?cè)瓗r成分,進(jìn)而制約CIA判斷風(fēng)化強(qiáng)度的準(zhǔn)確性。因此在應(yīng)用CIA指標(biāo)時(shí)不僅對(duì)樣品的選取有嚴(yán)格的要求,還需結(jié)合校正公式去除鉀交代的影響(Panahi et al., 2000; Zhai Lina et al., 2018),以及結(jié)合ICV(成分變異指數(shù),index of compositional variability)和Th/Sc—Zr/Sc、A—CN—K等圖解評(píng)價(jià)沉積分選及再循環(huán)作用(馮連君等,2003;Yan Detian et al., 2010;吳蓓娟等,2016)。結(jié)合這些參數(shù)能夠在一定程度上強(qiáng)化CIA判斷化學(xué)風(fēng)化的準(zhǔn)確性,但在評(píng)價(jià)化學(xué)組成極不均一的黑色頁巖時(shí)仍然存在較大分歧,以我國南方主要頁巖氣儲(chǔ)層—龍馬溪組黑色頁巖—為例,經(jīng)過鉀交代校正后CIA值可達(dá)90,反映極強(qiáng)烈的化學(xué)風(fēng)化作用(Yan Detian et al., 2010),但近期的研究顯示該黑色頁巖受成巖及交代作用影響較小,CIA平均值為66,風(fēng)化作用強(qiáng)度較小(張茜等,2020),這可能是受樣品較高的碳酸鹽礦物含量的影響,同時(shí)黑色頁巖的強(qiáng)非均質(zhì)性也是可能的影響因素。針對(duì)湘中下寒武統(tǒng)黑色頁巖,吳蓓娟等(2016)成功構(gòu)建了WB指數(shù)評(píng)價(jià)其風(fēng)化程度,但該指數(shù)是基于現(xiàn)今黑色頁巖風(fēng)化特征的評(píng)價(jià),對(duì)其評(píng)價(jià)地質(zhì)歷史中黑色頁巖風(fēng)化強(qiáng)度的適用性還需進(jìn)一步證實(shí)??梢?,采用CIA單一指標(biāo)評(píng)價(jià)風(fēng)化強(qiáng)度很難得到可靠的結(jié)果,通常將CIA與同位素地球化學(xué)指標(biāo)相結(jié)合判斷大陸風(fēng)化作用。
海水中的Sr主要有大陸風(fēng)化輸入和海底熱液兩種來源,其中,大陸風(fēng)化作用提供的Sr相對(duì)富87Sr [具放射性,n(87Sr)/n(86Sr)=0.7119] (Palmer and Edmond, 1989),海底熱液活動(dòng)提供的Sr相對(duì)富86Sr(n(87Sr)/n(86Sr)=0.703)(Holland, 1984)。溶解Sr在海水中停留時(shí)間(2~3 Ma)遠(yuǎn)長于海水混合時(shí)間(1~1.5 ka),所以海水的Sr同位素比值n(87Sr)/n(86Sr)在任何時(shí)間均被認(rèn)為是均一的(McArthur et al., 2012),那么原生海底沉積物和自生礦物中Sr同位素比值,反映的是大陸風(fēng)化作用來源Sr和熱液活動(dòng)來源Sr的動(dòng)態(tài)平衡。因此,海水n(87Sr)/n(86Sr)值能夠反映風(fēng)化作用強(qiáng)度(或造山作用)與洋殼增生速度(或火山—熱液活動(dòng)強(qiáng)度),并對(duì)構(gòu)造演化和氣候變化(或P(CO2))進(jìn)行約束(Jenkyns et al., 2002; Wang Wei et al., 2007;王文倩等,2014)。
如圖1,新元古代至寒武紀(jì),古海洋n(87Sr)/n(86Sr)持續(xù)升高,這一時(shí)期正好對(duì)應(yīng)Rodinia大陸的裂解、剝蝕,形成“大不整合”(Peters and Gaines, 2012),顯示了Sr同位素變化對(duì)大陸風(fēng)化作用的良好響應(yīng)。在華南、北美、蒙古、西伯利亞、阿拉伯半島和南非等地均存在E—C轉(zhuǎn)折期高n(87Sr)/n(86Sr)值(0.707~0.711)(Sawaki et al., 2008; Li Da et al., 2013; Wei Guangyi et al., 2019),表明在E—C轉(zhuǎn)折期,強(qiáng)烈的化學(xué)風(fēng)化作用遍及全球大部分地區(qū),形成的“大不整合”具有全球規(guī)模(Shahkarami et al., 2020)(圖2)。盡管海水Sr同位素組成在示蹤大陸風(fēng)化方面取得了較多成功的運(yùn)用,但Sr同位素易受原巖(主要是碳酸鹽巖)性質(zhì)的影響,因此通過海洋沉積的Sr同位素示蹤大陸風(fēng)化過程存在多解性。
海水中Os元素主要有三種來源:① 大陸地殼中Os經(jīng)河流帶入;② 洋中脊熱液蝕變來源;③ 宇宙塵埃來源。大陸地殼Os同位素富集放射性187Os,n(187Os)/n(188Os)值較高,現(xiàn)今陸源輸入n(187Os)/n(188Os)平均值為1.54(Levasseur et al., 1999; Cohen et al., 2004)(圖3)。洋中脊熱液蝕變來源和宇宙塵埃來源的Os為非放射性成因,并且兩種來源Os具有相近的n(187Os)/n(188Os)值,約為0.126,遠(yuǎn)低于大陸地殼風(fēng)化來源Os的n(187Os)/n(188Os)值。海水中Os元素的組成特征主要是這三種來源的綜合結(jié)果,其中約80%來自陸源輸入,僅20%來源于海底熱液蝕變和宇宙塵埃(Sharma and Wasserburg, 1997),因此可以通過海水Os同位素的變化來約束大陸風(fēng)化強(qiáng)度和海底熱液噴發(fā)等過程(Cohen, 2004; Zhu Bi et al., 2013; Tripathy et al., 2018)。
圖3 前寒武紀(jì)海水初始n(187Os)/n(188Os)值(數(shù)據(jù)引自Kendall et al., 2009; Rooney et al., 2010, 2011; Zhu Bi et al., 2013)Fig. 3 Initialn(187Os)/n(188Os) of marine water of Precambrian (data are from Kendall et al., 2009; Rooney et al., 2010, 2011; Zhu Bi et al., 2013)
強(qiáng)烈的化學(xué)風(fēng)化作用對(duì)應(yīng)高的n(187Os)/n(188Os)值,例如,近50 Ma以來,海水n(187Os)/n(188Os)值逐漸升高,與海水的Sr同位素組成升高的趨勢(shì)一致,反映這一時(shí)期喜馬拉雅抬升運(yùn)動(dòng)造成的大陸風(fēng)化強(qiáng)度逐漸增強(qiáng)(Pegram et al., 1992)。英格蘭Yorkshire早侏羅世經(jīng)歷了溫暖濕潤的古氣候和強(qiáng)烈的化學(xué)風(fēng)化,對(duì)應(yīng)的含礫石黑色頁巖段n(187Os)/n(188Os)值為0.8~1.0,n(87Sr)/n(86Sr)值由0.70706迅速升至0.70720(Cohen et al., 2004)。新元古代晚期,蘇格蘭、愛爾蘭、毛里塔尼亞以及中國等均顯示海水初始n(187Os)/n(188Os)值迅速升高(圖3),反映這一時(shí)期存在強(qiáng)烈的化學(xué)風(fēng)化作用(Zhu Bi et al., 2013),與“大不整合”的時(shí)間相當(dāng)(Peters and Gaines, et al., 2012; Li Meng et al., 2020; Shahkarami et al., 2020),說明海洋n(187Os)/n(188Os)值的變化對(duì)“大不整合”有較好的響應(yīng),能夠反映地質(zhì)時(shí)期的化學(xué)風(fēng)化強(qiáng)度。然而,黑色巖系(主要是黑色頁巖)富集有機(jī)質(zhì)和硫化物會(huì)大量吸附海水中Os,導(dǎo)致黑色巖系中Os異常富集,因此Os同位素示蹤黑色巖系的大陸風(fēng)化過程存在多解性。
Li同位素在示蹤大陸硅酸巖風(fēng)化方面具有以下優(yōu)勢(shì):① 化合價(jià)單一,不受氧化還原狀態(tài)影響;② 大陸硅酸巖地殼具有相對(duì)較高的Li含量(李東永等,2019),且在風(fēng)化過程中可以產(chǎn)生極大分餾(Rudnick et al., 2004; Tomascak., 2004);③ 不受生物過程影響(Rudnick et al., 2004; Penniston-Dorland et al., 2017)。因此,所有地質(zhì)過程中Li同位素的分餾發(fā)生在大陸風(fēng)化作用過程中(Rudnick et al., 2004; Henchiri et al., 2014)。目前已經(jīng)基本獲得自然儲(chǔ)庫中Li的豐度和δ7Li值(圖4),為Li同位素示蹤大陸風(fēng)化研究奠定了基礎(chǔ)。由于Li是水溶性元素,受淋溶作用易遷移至溶液中,經(jīng)搬運(yùn)注入海洋。Li的同位素分餾主要發(fā)生在搬運(yùn)過程中,在淋溶過程中僅僅發(fā)生微弱的同位素分餾(Wimpenny et al., 2010a, 2010b; Verney-Carron et al., 2011)。搬運(yùn)過程中,6Li優(yōu)先在次生黏土礦物中富集,造成黏土礦物中Li含量高(平均約為80 μg/g),δ7Li值相對(duì)較低(1.6‰~5.0‰);大部分7Li跟隨流體注入海洋,并在俯沖過程中被帶到下地殼或者地幔,導(dǎo)致上地殼富集6Li(Marschall et al., 2007; Steinhoefel et al., 2021)。
圖4 自然儲(chǔ)庫中Li同位素(茍龍飛等,2017)和Mg 同位素(Huang Jinxiang et al., 2016)的分布Fig. 4 Lithium(Gou Longfei et al., 2017&) and magnesium (Huang Jinxiang et al., 2016) isotopic composition in natural reservoir
Li同位素已被成功運(yùn)用到示蹤大陸風(fēng)化過程的多項(xiàng)研究中:太古宙3.0~2.9 Ga期間,快速的大陸風(fēng)化作用導(dǎo)致海水δ7Li值降低,遠(yuǎn)低于現(xiàn)代海水(付露露等,2020);在445 Ma的Hirnantian冰期,大陸風(fēng)化強(qiáng)度降低,海水δ7Li值明顯升高(von Strandmann et al., 2017);晚白堊世生物大滅絕及大洋缺氧事件(OAE2)前夕,大陸風(fēng)化強(qiáng)度增加,海水δ7Li值顯著降低(von Strandmann et al., 2013; Sun He et al., 2018)。然而,也有研究表明細(xì)粒級(jí)(<63 μm)沉積物中δ7Li對(duì)氣候變化不敏感,因此δ7Li示蹤大陸風(fēng)化的可靠性還有待進(jìn)一步證實(shí)。
Mg有三個(gè)穩(wěn)定同位素,即24Mg(78.99%)、25Mg(10.00%)和26Mg(11.01%),它們之間存在較大的相對(duì)質(zhì)量差,如24Mg與26Mg之間相對(duì)質(zhì)量差約達(dá)8%,在地質(zhì)作用過程中可以發(fā)生顯著的Mg同位素質(zhì)量分餾(Catanzaro et al., 1966;朱祥坤等,2013)。同時(shí),Mg不僅是地殼和地幔中的主量元素,也是主要的流體活動(dòng)性元素,這決定了它在化學(xué)風(fēng)化過程中會(huì)伴隨明顯的同位素分餾。已有研究表明,Mg同位素在化學(xué)風(fēng)化過程中會(huì)產(chǎn)生高達(dá)2‰的分餾,其中輕同位素24Mg、25Mg更易隨流體遷移,而重同位素26Mg不易被溶解遷移,保留在風(fēng)化殘余物中,導(dǎo)致風(fēng)化殘余物中具有高δ26Mg值(圖4),搬運(yùn)介質(zhì)中具有低δ26Mg值(Wimpenny et al., 2010a; Teng Fangzhen et al., 2010; von Strandmann et al., 2012; Liu Xiaoming et al., 2014),因此風(fēng)化殘余物中更高的δ26Mg值指示了溫暖濕潤的氣候條件,更低的δ26Mg值則指示了寒冷干燥的氣候條件(Huang Jinxiang et al., 2016)。
黏土礦物對(duì)不同同位素吸附能力差異可能也是導(dǎo)致風(fēng)化過程中Mg同位素質(zhì)量分餾的原因。Huang Kangjun 等 (2012)、Liu Xiaoming 等 (2014)對(duì)玄武巖風(fēng)化剖面的研究顯示高嶺石、三水鋁石優(yōu)先吸附26Mg,造成26Mg在風(fēng)化殘余物中的富集。Wimpenny 等 (2014)對(duì)黏土礦物中不同賦存形態(tài)Mg同位素的測(cè)量結(jié)果表明,黏土礦物晶體結(jié)構(gòu)中Mg同位素組成較重,黏土礦物表面和層間的Mg同位素組成較輕,黏土礦物吸附過程并不產(chǎn)生同位素分餾??梢?,目前對(duì)風(fēng)化作用過程中Mg同位素的分餾機(jī)制還不完全清楚,同時(shí)現(xiàn)有Mg同位素示蹤大陸風(fēng)化的研究集中于玄武巖、安山巖、花崗巖、碳酸鹽巖等巖石風(fēng)化剖面,還有待更深入和更廣泛的研究。
K是地表河流和地殼中的主量元素,約90%的河流溶解K來自于硅酸鹽的風(fēng)化(Meybeck, 1987; Berner and Berner, 2012),因此K穩(wěn)定同位素(39K和41K)可以示蹤大陸硅酸鹽風(fēng)化。在硅酸鹽風(fēng)化過程中,輕K同位素優(yōu)先遷移到水溶液中,河流溶解負(fù)荷δ41K值降低,風(fēng)化殘余物具有較高的δ41K值,河流溶解K同位素與風(fēng)化強(qiáng)度負(fù)相關(guān)(圖5)(Hu Yan et al., 2020)。重K同位素隨河流輸入海洋造成海水δ41K值的變化,因此,利用古海水δ41K記錄可以從地球歷史的角度推斷大陸風(fēng)化強(qiáng)度(Hille et al., 2019; Teng Fangzhen et al., 2020)。
圖5 自然儲(chǔ)庫δ41K(引自Hu Yan et al., 2020; Teng Fangzhen et al., 2020)以及河流沉積物中δ41K 與CIA關(guān)系(引自Hu Yan et al., 2020)Fig. 5 Potassium isotopic composition in natural reservoir (Hu Yan et al., 2020; Teng Fangzhen et al., 2020), and the plot of δ41K vs. CIA (from Hu Yan et al., 2020)
Cu和Zn均屬于過渡金屬元素。大陸風(fēng)化作用是海洋Cu和Zn地球化學(xué)循環(huán)主要的“源”,風(fēng)化過程中Cu和Zn分餾的可能原因包括: ① 主要造巖礦物的溶解過程發(fā)生同位素分餾; ② 溶解態(tài)以及次生礦物吸附態(tài)的同位素分餾;③ 大氣浮沉的輸入;④ 植物的吸收作用(Moynier et al., 2017)。
巖石氧化淋濾過程中,重Cu同位素被優(yōu)先釋放進(jìn)入河流體系,進(jìn)而注入海洋,造成河水和海水中相對(duì)較重的Cu同位素組成(圖6)。氧化淋濾過程對(duì)Zn同位素的分餾程度較低,水體中Zn同位素組成和原巖幾乎一致(圖6),不會(huì)超過0.1‰~0.3‰(Weiss et al., 2014)。Cu、Zn同位素在示蹤大陸風(fēng)化強(qiáng)度方面的應(yīng)用還較匱乏,關(guān)于大陸風(fēng)化對(duì)Cu和Zn同位素分餾影響機(jī)制還不清楚。但是已有的研究(呂逸文,2018)證實(shí)在黑色頁巖和碳酸鹽巖的風(fēng)化過程中,存在Cu和Zn同位素分餾現(xiàn)象,值得再做更加深入和廣泛的研究。
圖6 表生環(huán)境自然樣品Cu、Zn同位素組成(引自Moynier et al., 2017;呂逸文,2018)Fig. 6 Copper and zinc isotopic composition in natural reservoir under supergene environment (from Moynier et al., 2017; Yiwen et al., 2018&)
上述研究表明,目前沒有任何地球化學(xué)參數(shù)能夠完全準(zhǔn)確地示蹤大陸風(fēng)化強(qiáng)度,需要多參數(shù)結(jié)合,互相驗(yàn)證,才能保證解釋結(jié)果的準(zhǔn)確性。有研究顯示Tethyan南部黏土礦物的分布與氣候分帶之間相關(guān)性非常明顯,揭示黏土礦物的分布能夠反映古氣候和大陸風(fēng)化特征(Chenot et al., 2018)。因此,礦物學(xué)與地球化學(xué)參數(shù)的有效結(jié)合,有望為大陸風(fēng)化強(qiáng)度研究提供更可靠的手段。
“雪球地球”理論認(rèn)為在新元古代成冰紀(jì)結(jié)束后,距今652.5 Ma左右(鄧俊等,2020,及該文中相關(guān)引用文獻(xiàn)),地球迅速轉(zhuǎn)入溫室氣候(Hoffman et al., 1998),E—C轉(zhuǎn)折期全球化學(xué)風(fēng)化強(qiáng)烈(Shield, 2005)。然而有研究發(fā)現(xiàn)在埃迪卡拉紀(jì)晚期亦有冰期沉積物的存在,如我國華北的正目觀組、羅圈組和鳳臺(tái)組(Le Heron et al., 2018;岳亮等,2020),以及西北的漢格爾喬克組和紅鐵溝組(Xiao Shuhai et al., 2004; Shen Bing et al., 2010)。在高緯度地區(qū)的愛沙尼亞(位于波羅的大陸,60°S),有研究發(fā)現(xiàn)其寒武紀(jì)早期黑色頁巖樣品的CIA值低至59,指示寒冷干燥氣候下較弱的化學(xué)風(fēng)化作用(Tosca et al., 2010)。因此埃迪卡拉紀(jì)晚期—寒武紀(jì)早期可能并非長期處于穩(wěn)定的超級(jí)溫室氣候環(huán)境中(Shen Bing et al., 2010;岳亮等,2020)。
對(duì)于我國華南揚(yáng)子地區(qū)而言,其在埃迪卡拉紀(jì)晚期發(fā)育臺(tái)內(nèi)凹陷和大規(guī)模開放盆地,臺(tái)地區(qū)發(fā)育燈影組白云巖,盆地區(qū)發(fā)育老堡組硅質(zhì)巖(圖7a);早寒武世早期,全球海平面上升,碳酸鹽臺(tái)地遭到廣泛淹沒,到牛蹄塘沉積期形成以黑色細(xì)粒沉積為主的陸架環(huán)境(戴傳固等,2013;Yeasmin et al., 2017)??焖俸G趾蟊4媪酥暗牡匦蔚孛玻谏珟r系在臺(tái)地區(qū)直接不整合沉積于白云巖之上(圖7b),如上揚(yáng)子臺(tái)地區(qū)域燈影組頂部廣泛發(fā)育有不整合面或巖溶面(朱東亞等,2014;楊雨等,2014;劉宏等,2015;丁一,2018),在盆地區(qū)則與下伏硅質(zhì)巖呈整合接觸(圖7c)??梢?,揚(yáng)子地區(qū)在E—C轉(zhuǎn)折期經(jīng)歷了風(fēng)化作用和快速海侵。近年來,我國揚(yáng)子地區(qū)大陸風(fēng)化強(qiáng)度研究已積累了一定的基礎(chǔ)。前人通過對(duì)三峽地區(qū)與云南東部E—C地層序列的研究,發(fā)現(xiàn)在埃迪卡拉紀(jì)末期n(87Sr)/n(86Sr)顯著增高并于E—C轉(zhuǎn)折期附近達(dá)到最大值,而在進(jìn)入寒武紀(jì)之后,n(87Sr)/n(86Sr)又逐漸減小(Sawaki et al., 2008, 2014; Li Da et al., 2013)。最近,Stammeier et al.(2019)統(tǒng)計(jì)了全球各地E—C時(shí)期的n(87Sr)/n(86Sr)數(shù)據(jù),同樣發(fā)現(xiàn)了在E—C轉(zhuǎn)折期n(87Sr)/n(86Sr)迅速增高,進(jìn)入寒武紀(jì)又明顯降低的變化規(guī)律。說明在E—C轉(zhuǎn)折期大陸風(fēng)化作用較為強(qiáng)烈,但可能存在明顯的波動(dòng)。Chen Can 等(2020)通過對(duì)三峽地區(qū)多個(gè)剖面的陡山沱組地層開展研究,系統(tǒng)地重建了埃迪卡拉紀(jì)末期CIA變化曲線,并識(shí)別出了三次CIA降低階段,結(jié)合巖石礦物學(xué)、地球化學(xué)(n(87Sr)/n(86Sr),δ18O)指標(biāo)指出這三次CIA的降低對(duì)應(yīng)三次氣候變冷事件。貴州銅仁道坨剖面埃迪卡拉系陡山沱組CIA值總體較高,位于70~85之間(圖8),指示其源區(qū)氣候溫暖濕潤,化學(xué)風(fēng)化程度較強(qiáng),寒武系九門沖組下部(黑色頁巖段)CIA值降至55~70,反映源區(qū)氣候轉(zhuǎn)為寒冷干燥,風(fēng)化作用以物理風(fēng)化為主,而九門沖組上部CIA值再次升高,表明E—C轉(zhuǎn)折期風(fēng)化作用經(jīng)歷了強(qiáng)—弱—強(qiáng)的波動(dòng)(Zhai Lina et al., 2018)。另外有研究發(fā)現(xiàn)在道坨和壩黃剖面的牛蹄塘組底部,Ti/Al值增加且高于平均值,表明此時(shí)風(fēng)塵輸入增強(qiáng),氣候變得相對(duì)干燥(Yeasmin et al., 2017; Zhai Lina et al., 2018)。廣西省三江縣石門剖面和泗里口剖面清溪組頁巖CIA值顯示穩(wěn)定的高值(76~84),指示寒武紀(jì)早期其源區(qū)中等至較強(qiáng)程度的化學(xué)風(fēng)化作用,源區(qū)古氣候條件以溫暖濕潤為主,與揚(yáng)子陸塊中部上斜坡(貴州東北部)源區(qū)存在顯著差異,與同時(shí)期位于赤道附近的阿曼地區(qū)化學(xué)風(fēng)化程度和古氣候一致(張子虎,2018;熊晨,2019)。E—C轉(zhuǎn)折期碳酸鹽巖Nd元素豐度和εNd(t)值均顯著降低,表明陸相風(fēng)化物質(zhì)向陸架海水的輸出逐漸加強(qiáng)(Wei Guangyi et al., 2019)??紤]到不同剖面距離揚(yáng)子或華夏板塊的位置,Li Chao 等(2020)推測(cè)石門剖面和泗里口剖面主要記錄了風(fēng)化作用強(qiáng)烈的華夏板塊的源巖信息,而靠近揚(yáng)子一側(cè)的道坨、硝灘、龍鼻嘴等剖面則反映了在E—C時(shí)期揚(yáng)子區(qū)域的化學(xué)風(fēng)化作用相對(duì)較弱,但具體造成化學(xué)風(fēng)化強(qiáng)度不同的原因還不明晰,有待進(jìn)一步探究。
圖7 (a)揚(yáng)子地區(qū)E—C轉(zhuǎn)折期地層劃分對(duì)比(改自陳建書等,2020;年齡數(shù)據(jù)來自朱日祥等,2009; Xu Lingang et al., 2011; Wang Xinqiang et al.,2012; Zhu Bi et al., 2013; Chen Daizhao et al., 2016; Fu Yong et al., 2016; Zhou Chuanming et al., 2020);(b)燈影組與牛蹄塘組不整合接觸,遵義松林;(c)老堡組與牛蹄塘組整合接觸,銅仁Fig. 7 (a) Stratigraphical division of E—C strata in Yangtze area (revised from Chen Jianshu et al., 2020&, and age data are from Zhu Rixiang et al., 2009&; Xu Lingang et al., 2011; Wang Xinqiang et al.,2012; Zhu Bi et al., 2013; Chen Daizhao et al., 2016; Fu Yong et al., 2016; Zhou Chuanming et al., 2020)
現(xiàn)有示蹤揚(yáng)子地區(qū)E—C轉(zhuǎn)折期大陸風(fēng)化的地球化學(xué)證據(jù)不足,集中在n(87Sr)/n(86Sr)、δ13C、CIA和εNd(t)等,需要更多的地球化學(xué)參數(shù)來反映該風(fēng)化作用的影響范圍和演化特征,同時(shí)n(87Sr)/n(86Sr)、δ13C、CIA和εNd(t)等數(shù)據(jù)也局限在少數(shù)剖面和層段,如εNd(t)僅涉及晚埃迪卡拉紀(jì)碳酸鹽巖,缺少對(duì)早寒武紀(jì)黑色頁巖的分析。風(fēng)化作用與揚(yáng)子地區(qū)古海洋環(huán)境、古生物演化和有機(jī)質(zhì)富集等有什么影響?
圖9 風(fēng)化作用對(duì)海洋環(huán)境及有機(jī)質(zhì)富集影響模式示意圖(注:OM為有機(jī)質(zhì);DIC為溶解無機(jī)碳)Fig. 9 Affecting pattern of continental weathering onmarine environment and organic matter enrichment (note: OM is organic matter; DIC is dissolved inorganic carbon)
揚(yáng)子地區(qū)E—C轉(zhuǎn)折期大陸風(fēng)化對(duì)古海洋環(huán)境、有機(jī)質(zhì)富集有何影響?準(zhǔn)確認(rèn)識(shí)該問題有助于揭示古海洋環(huán)境演變和古生物演化規(guī)律,能為區(qū)內(nèi)油氣資源的勘探開發(fā)提供新的思路。
筆者等學(xué)習(xí)和總結(jié)了前人對(duì)揚(yáng)子地區(qū)震旦紀(jì)(埃迪卡拉紀(jì))—寒武紀(jì)(E—C)轉(zhuǎn)折期大陸風(fēng)化作用的研究成果,取得以下主要認(rèn)識(shí):
(1)揚(yáng)子地區(qū)震旦紀(jì)(埃迪卡拉紀(jì))—寒武紀(jì)(E—C)轉(zhuǎn)折期遭受了較強(qiáng)烈的化學(xué)風(fēng)化作用,在臺(tái)地相區(qū),牛蹄塘組黑色巖系不整合接觸于燈影組白云巖之上,斜坡—盆地相區(qū),該黑色巖系與下伏老堡組硅質(zhì)巖呈整合接觸。臺(tái)地區(qū)不整合與E—C轉(zhuǎn)折期全球“大不整合”具有緊密的關(guān)系,而盆地區(qū)發(fā)育的完整的沉積地層則記錄了臺(tái)地區(qū)被風(fēng)化地層的痕跡。揚(yáng)子地區(qū)E—C轉(zhuǎn)折期兼具淺水臺(tái)地和深水盆地環(huán)境,是研究這一時(shí)期全球大陸風(fēng)化作用的重要窗口。
(2)現(xiàn)有揚(yáng)子地區(qū)E—C轉(zhuǎn)折期大陸風(fēng)化的地球化學(xué)證據(jù)集中于n(87Sr)/n(86Sr)、δ13C、CIA和εNd(t)等,同時(shí)n(87Sr)/n(86Sr)、δ13C、CIA和εNd(t)等數(shù)據(jù)也局限在少數(shù)剖面和層段。因此迫切需要更多的地球化學(xué)參數(shù)來反映該風(fēng)化作用的影響范圍和演化特征。
(3)揚(yáng)子地區(qū)E—C轉(zhuǎn)折期大陸風(fēng)化作用與海洋環(huán)境演變存在耦合關(guān)系,準(zhǔn)確認(rèn)識(shí)這種關(guān)系有助于揭示古生物演化、有機(jī)質(zhì)富集的機(jī)制,能夠?yàn)閾P(yáng)子地區(qū)油氣資源勘探開發(fā)提供新思路。
致謝:感謝評(píng)審專家和責(zé)任編輯對(duì)本文修改提出的寶貴建議。
參 考 文 獻(xiàn)/References
(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)
蔡進(jìn)功,包于進(jìn),楊守業(yè),王行信,范代讀,徐金鯉,王愛萍. 2007. 泥質(zhì)沉積物和泥巖中有機(jī)質(zhì)的賦存形式與富集機(jī)制. 中國科學(xué)(D輯:地球科學(xué)),37(2):234~243.
陳建書,代雅然,唐烽,彭成龍,張嘉瑋,朱和書,陳興,王文明,龔桂源. 2020. 揚(yáng)子地塊周緣中元古代末—新元古代主要構(gòu)造運(yùn)動(dòng)梳理與探討. 地質(zhì)論評(píng),66(3):533~554.
戴傳固,鄭啟鈐,陳建書,王敏,張慧. 2013. 貴州雪峰—加里東構(gòu)造旋回期成礦地質(zhì)背景研究.地學(xué)前緣,20(6):219~225.
鄧俊,劉傳朋,葛躍進(jìn),劉同,王凱凱. 2020. 新疆庫魯克塔格地區(qū)特瑞愛肯冰期下限及沉積物源分析. 地質(zhì)論評(píng),66(2):324~336.
丁一. 2018. 中上揚(yáng)子?xùn)|南緣晚震旦世燈影組沉積—構(gòu)造格局. 導(dǎo)師:陳代釗. 北京:中國科學(xué)院大學(xué)博士學(xué)位論文:1~114.
馮連君,儲(chǔ)雪蕾,張啟銳,張同鋼. 2003. 化學(xué)蝕變指數(shù)(CIA)及其在新元古代碎屑巖中的應(yīng)用. 地學(xué)前緣,10(4):539~544.
付露露,肖益林,張興亮,王洋洋,譚東波. 2020. Li同位素組成對(duì)太古宙海水相關(guān)的表生環(huán)境過程的初步限定.地球科學(xué),
Doi: 10.3799/dqkx.2020.108.
茍龍飛,金章東,賀茂勇. 2017. 鋰同位素示蹤大陸風(fēng)化:進(jìn)展與挑戰(zhàn). 地球環(huán)境學(xué)報(bào),8(2):89~102.
金承勝,李超,彭興芳,崔豪,石煒,張子虎,羅根明,謝樹成. 2014. 華南寒武紀(jì)早期海洋化學(xué)狀態(tài)的時(shí)空波動(dòng). 中國科學(xué):地球科學(xué),44(5):851~863.
李東永,肖益林,王洋洋,沈驥,劉海洋. 2019. 板塊俯沖過程中的Mg—Li—Fe—Cr同位素分餾. 地球科學(xué),44(12):4081~4085.
李明龍,楊波涌,鄭德順,陳林,田景春. 2021. 鄂西走馬地區(qū)南華紀(jì)大塘坡間冰期古氣候研究. 地質(zhì)論評(píng),67(1):39~55.
劉宏,羅思聰,譚秀成,李凌,連承波,曾偉,羅冰,山述嬌. 2015. 四川盆地震旦系燈影組古巖溶地貌恢復(fù)及意義. 石油勘探與開發(fā),42(3):283~293.
呂逸文. 2018. Cu和Zn在大陸風(fēng)化過程中的同位素分餾以及Cu—Zn同位素在古環(huán)境研究中的應(yīng)用. 導(dǎo)師:李曙光,劉盛遨. 北京:中國地質(zhì)大學(xué)(北京)博士學(xué)位論文:1~112.
王文倩,王偉,馮先翠,劉欣春,葉法丞,陳毅鳳,劉靜,陳孝政. 2014. 鍶同位素地層學(xué)在海相地層劃分和對(duì)比中的應(yīng)用——以二疊紀(jì)樂平世海相碳酸鹽巖地層為例. 地層學(xué)雜志,38(4):402~416.
王新強(qiáng),史曉穎,Jiang Ganqing, 湯冬杰. 2014. 華南埃迪卡拉紀(jì)—寒武紀(jì)過渡期的有機(jī)碳同位素梯度和海洋分層. 中國科學(xué):地球科學(xué),44(6):1143~1154.
吳蓓娟,彭渤,張坤,匡曉亮,涂湘林,方小紅,曾等志. 2016. 黑色頁巖化學(xué)風(fēng)化程度指標(biāo)研究.地質(zhì)學(xué)報(bào),90(4):818~832.
熊晨. 2019. 華夏陸塊西緣震旦—寒武紀(jì)沉積物源分析及其構(gòu)造古地理意義. 導(dǎo)師:陳洪德. 成都:成都理工大學(xué)博士學(xué)位論文:1~89.
徐小濤,邵龍義. 2018. 利用泥質(zhì)巖化學(xué)蝕變指數(shù)分析物源區(qū)風(fēng)化程度時(shí)的限制因素.古地理學(xué)報(bào), 20(3); 515~522.
楊雨,黃先平,張健,楊光,宋家榮,宋林珂,洪海濤,譚秀成,文龍. 2014. 四川盆地寒武系沉積前震旦系頂界巖溶地貌特征及其地質(zhì)意義. 天然氣工業(yè),34(3):38~43.
楊競(jìng)紅,蔣少涌,凌洪飛,陳永權(quán). 2005. 黑色頁巖與大洋缺氧事件的Re-Os同位素示蹤與定年研究. 地學(xué)前緣,12(2):143~150.
岳亮,劉自亮,Vandeginste V,馬永生,陳洪德,張成見. 2020. 華北克拉通東南緣新元古代鳳臺(tái)組冰期沉積序列及演化. 地質(zhì)論評(píng),66(2):307~323.
張慧,焦淑靜,林伯偉,郝臨山,袁立穎. 2017. 揚(yáng)子板塊下寒武統(tǒng)頁巖有機(jī)質(zhì)與礦物質(zhì)的成因關(guān)系. 天然氣勘探與開發(fā),40(4):25~33.
張文堂. 1997. 寒武紀(jì)生命擴(kuò)張及澄江動(dòng)物群的意義. 地學(xué)前緣,4(3~4):121~125.
張茜,肖淵甫,王曉飛,余謙,王劍,趙安坤,門玉澎,周業(yè)鑫. 2020. 四川盆地西南緣龍馬溪組泥巖地球化學(xué)特征及物源區(qū)和構(gòu)造背景分析. 地質(zhì)論評(píng),66(5):1393~1411.
張子虎. 2018. 華南寒武紀(jì)早期南華盆地東南緣深水區(qū)氧化還原狀態(tài)時(shí)空波動(dòng)及形成機(jī)制研究. 導(dǎo)師:李超. 武漢:中國地質(zhì)大學(xué)(武漢)博士學(xué)位論文:1~97.
朱東亞,金之鈞,張榮強(qiáng),張殿偉,何治亮,李雙建. 2014. 震旦系燈影組白云巖多級(jí)次巖溶儲(chǔ)層疊合發(fā)育特征及機(jī)制. 地學(xué)前緣,21(6):335~345.
朱茂炎. 2010. 動(dòng)物的起源和寒武紀(jì)大爆發(fā):來自中國的化石證據(jù).古生物學(xué)報(bào),49(3):269~287.
朱茂炎,趙方臣,殷宗軍,曾晗,李國祥. 2019. 中國的寒武紀(jì)大爆發(fā)研究:進(jìn)展與展望. 中國科學(xué):地球科學(xué),49(10):1455~1490.
朱日祥,李獻(xiàn)華,侯先光,潘永信,王非,鄧成龍,賀懷宇. 2009. 梅樹村剖面離子探針鋯石U-Pb 年代學(xué):對(duì)前寒武紀(jì)—寒武紀(jì)界線的年代制約. 中國科學(xué)D輯:地球科學(xué),39(8): 1105~1111.
朱祥坤,王躍,閆斌,李津,董愛國,李志紅,孫劍. 2013. 非傳統(tǒng)穩(wěn)定同位素地球化學(xué)的創(chuàng)建與發(fā)展. 礦物巖石地球化學(xué)通報(bào),32(6):651~688.
Berner E K, Berner R A. 2012. Global Environment: Water, Air, and Geochemical Cycles. Princeton: Princeton Univ. Press.
Brantley S L, Megonigal J P, Scatena F N, Balogh-Brunstad Z, Barnes R T, Bruns M A, Van Cappellen P, Dontsova K, Hartnett H E, Hartshorn A S, Heimsath A, Herndon E, Jin L, Keller C K, Leake J R, McDowell W H, Meinzer F C, Mozdzer T J, Petsch S, Pett-Ridge J, Pregitzer K S, Raymond P A, Riebe C S, Shumaker K, Sutton-Grier A, Walter R, Yoo K. 2011. Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9(2): 140~165.
Cai Jingong, Bao Yujin, Yang Shouye, Wang Xingxin, Fan Daidu, Xu Jin li, Wang Ai ping. 2007#. Occurrence and enrichment mechanism of organic matter in argillaceous sediments and mudstones . Science China: Earth Science, 37(2): 234~243.
Cai Jingong, Zhu Xiaojun, Zhang Jingqiao, Song Mingshui, Wang Yongshi. 2020. Heterogeneities of organic matter and its occurrence forms in mudrocks: Evidence from comparisons of palynofacies. Marine and Petroleum Geology, 111:21~32.
Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321(5891):949~951.
Catanzaro E J, Murphy T J, Garner E L, Shields W R. 1966. Absolute isotopic abundance ratios and atomic weight of magnesium. J. Res. NBS A, 70: 453~458.
Chen Can, Wang Jiasheng, Wang Zhou, Peng Yongbo, Chen Xiaohong, Ma Xiaochen, Cen Yue, Zhao Jie, Zhou Peng. 2020. Variation of chemical index of alteration (CIA) in the Ediacaran Doushantuo Formation and its environmental implications. Precambrian Research, 347:105829;
Doi: 10.1016/j.precamres.2020.105829
Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Yan Detian. 2016. New U-Pb zircon ages of the Ediacaran—Cambrian boundary strata in South China. Terra Nova, 27(1): 62~68.
Chen Jianshu, Dai Yaran, Tang Feng, Peng Chenglong, Zhang Jiawei, Zhu Heshu, Chen Xing, Wang Wenming, Gong Guiyuan. 2020&. Discussion on the Mesoproterozoic and Neoproterozoic major tectonic events in marginal area of the Yangtze Block. Geological Review, 66(3): 533~554.
Chenot E, Deconinck J F, Pucéat E, Pellenard P, Guiraud M, Jaubert M, Jarvis I, Thibault N, Cocquerez T, Bruneau L, Razmjooei M J, Boussaha M, Richard J, Sizun J P, Stemmerik L. 2018. Continental weathering as a driver of Late Cretaceous cooling: new insights from clay mineralogy of Campanian sediments from the southern Tethyan margin to the Boreal realm. Global and Planetary Change, 162: 292~312.
Cohen A S. 2004. The rhenium—osmium isotope system: Applications to geochronological and palaeoenvironmental problems. Journal of the Geological Society, 161: 729~734.
Dai Chuangu, Zheng Qiqian, Chen Jianshu, Wang Min, Zhang Hui. 2013&. A study on the metallogenic geological background of the Xuefeng—Caledonian tectonic cycle in Guizhou. Earth Science Frontiers, 20(6):219~225.
Deng Jun, Liu Chuanpeng, Ge Yuejin, Liu Tong, Wang Kaikai. 2020. The lower limit and provenance analysis of the Neoproterozoic Tereeken glaciation in Quruqtagh area, Xinjiang. Geological Review, 66(2): 324~336.
Ding Yi. 2018&. Tectonic—depositional pattern of the southeastern middle—upper Yangtze area during the late Edicaran Dengying Period. Tutor: Chen Daizhao. Beijing: Doctoral Dissertation of University of Chinese Academy of Science: 1~114.
Feng Lianjun, Chu Xuelei, Zhang Qirui, Zhang Tonggang. 2003&. Chemical alteration index (CIA) and its application in neoproterozoic clastic rocks . Earth Science Frontiers, (4):539~544.
Fike D A, Grotzinger J P, Pratt L M, Summons R E. 2006. Oxidation of the Ediacaran ocean. Nature, 444(7120): 744~747.
Fu Lulu, Xiao Yilin, Zhang Xingliang, Wang Yangyang, Tan Dongbo. 2020&. Preliminary determination of Li isotopic composition in epigenetic environmental processes related to Archean seawater. Earth Sciences,
Doi: 10.3799/dqkx.2020.108.
Fu Yong, Dong Lin, Li Chao, Qu Wenjun, Pei Haoxiang, Qiao Wenlang, Shen Bing. 2016. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang formation. Journal of Earth Science, 27: 271~281.
Gan Tian, Luo Taiyi, Pang Ke, Zhou Chuanming, Wan Bin, Li Gang, Yi Qiru, Czaja A D, Xiao Shuhai. 2021. Cryptic terrestrial fungus-like fossils of the Early Edicaran Period. Nature Communications, 12(1): 641. https://doi.org/10.1038/s41467-021-20975-1.
Gou Longfei, Jin Zhangdong, He Maoyong. 2017&. Using lithium isotopes traces continental weathering: Progresses and challenges. Journal of Earth Environment, 8(2): 89~102.
He Tianchen, Jacopo D C, Newton R J, Wignall P B, Mills Benjamin J W, Simona T, Pietro D S, Turner E C, Jamieson R A, Vincenzo R, Manuel R, Jones R E, Dunhill A M. 2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances, 6(37): 1~8.
Henchiri S, Clergue C, Dellinger M. 2014. The influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas. Procedia Earth and Planetary Science, 10: 223~230.
Hille M, Hu Yan, Huang Tianyi, Teng Fangzhen. 2019. Homogeneous and heavy potassium isotopic composition of global oceans. Science Bulletin, 64(23), 1740~1742.
Hoffman P F, Kaufman A J, Halverson G P, Schrag D P. 1998. A Neoproterozoic snowball Earth. Science, 281: 1342~1346.
Hoffman P F, Li Zhengxiang. 2009. A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3~4): 158~172.
Holland H D. 1984. The Chemical Evolution of the Atmosphere and Ocean. Princeton: Princeton University Press.
Hu Yan, Teng Fangzhen, Plank T, Chauvel C. 2020. Potassium isotopic heterogeneity in subducting oceanic plates. Science Advances, 6: eabb2472.
Huang Jinxiang, Xiang Yuanxin, An Yajun, Griffin W L, Gréau Y, Xie Liewen, Pearson N J, Yu Huimin, O'Reilly S Y. 2016. Magnesium and oxygen isotopes in Roberts Victor eclogites. Chemical Geology, 438: 73~83.
Huang Kangjun, Teng Fangzhen, Wei Gangjian, Ma Jinlong, Bao Zhengyu. 2012. Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters, 359~360: 73~83.
Jenkyns H C, Jones C E, Gròcke D R, Hesselbo S P, Parkinson D N. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, London, 159: 351~378.
Jin Chengsheng, Li Chao, Thomas J. Algeo, Wu Shiyong, Cheng Meng, Zhang Zihu, Shi Wei. 2020. Controls on organic matter accumulation on the Early-Cambrian western Yangtze Platform, South China. Marine and Petroleum Geology, 111: 75~87.
Jin Chengsheng, Li Chao, Peng Xingfang, Cui Hao, Shi Wei, Zhang Zihu, Luo Genming, Xie Shucheng. 2014. Spatio-temporal fluctuation of marine chemical state in the Early Cambrian in south China. Science China: Earth Science, 44(5):851~863.
Kendall B, Creaser R A, Selby D. 2009.187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks. Geological Society, London, Special Publications, 326: 85~107.
Kennedy M, Droser M, Mayer L M, Pevear D, Mrofka D. 2006. Late Precambrian oxygenation; inception of the clay mineral factory. Science, 311: 1446~1449.
Kump L R, Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature, 448: 1033~1036.
Le Heron D P, Vandyk T M, Wu G H, Li M. 2018. New perspectives on the Luoquan Glaciation (Ediacaran—Cambrian) of North China. The Depositional Record, 4: 274~292.
Levasseur S, Birck J L, Allegre C J. 1999. The osmium riverine flux and the oceanic mass balance of osmium. Earth and Planetary Science Letters, 174: 7~23.
Lenton T M, Watson A J. 2004. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophysical Research Letters, 31: L05202.
Li Chao, Cheng Meng, Thomas J A, Xie Shucheng. 2015. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Science China: Earth Science, 58 (11):1901~1909.
Li Chao, Love G D , Lyons T W , Fike D A , Sessions A L, Chu Xuelei. 2010. A stratified redox model for the Ediacaran ocean. Science, 328 (5974):80~83.
Li Chao, Zhang Zihu, Jin Chengsheng, Cheng Meng, Wang Haiyang, Huang Junhua, Algeo T J. 2020. Spatiotemporal evolution and causes of marine euxinia in the early Cambrian Nanhua Basin (South China). Palaeogeography Palaeoclimatology Palaeoecology, 546: 109676.
Li Da, Ling Hongfei, Shields-Zhou G A, Chen Xi, Cremonese L, Och L, Thirlwall M, Manning C J. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran—Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Research, 225: 128~147.
Li Dongyong, Xiao Yilin, Wang Yangyang, Shen Ji, Liu Haiyang. 2019. Mg—Li—Fe—Cr isotopic fractionation during subduction. Earth Science, 44(12): 4081~4085.
Li Meng, Vandyk T M, Wu Guanghui, Liu Wei, Heron D P L, Xiao Yang. 2020. A window into the Great Unconformity: Insights from geochemistry and geochronology of Ediacaran glaciogenic rocks in the North China Craton. Journal of Asian Earth Sciences, 194: 104327.
Ling Minglong, Tian Jingchun, Chen Lin, Xu Hui, Zheng Deshun, Liu Weiqing. 2019&. New zircon U-Pb age and its restriction on the warming time of the interglacial paleoclimate during the Cryogenian in the Yangtze Block. Journal of Geology, 127(6): 691~701.
Li Minglong, Yang Boyong, Zheng Deshun, Chen Lin, Tian Jingchun. 2021. Study on the paleoclimate during the Datangpo interglacial stage of the Nanhua Period in the Zouma area, western Hubei Province. Geological Review, 67(1): 39~55.
Li Weiping, Zheng Yongfei, Zhao Yanyan. 2017. Geochemical evidence from marine carbonate for enhanced terrigenous input into seawater during the Ediacaran—Cambrian transition in South China. Precambrian Research, 291: 83~97.
Li Weiping, Zhao Yanyan, Zhao Mingyu, Zha Xiangping, Zheng Yongfei. 2019. Enhanced weathering as a trigger for the rise of atmospheric O2level from the late Ediacaran to the early Cambrian. Scientific Reports, 9(1): 1~12.
Li Zhengxiang, Evans D A D, Halverson G P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 294: 219~232.
Linnemann U, Ovtcharova M, Schaltegger U, G?rtner A, Hautmann M, Geyer G, Vickers-Rich P, Rich T, Plessen B, Hofmann M, Zieger J. 2019. New high-re- solution age data from the Ediacaran—Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion. Terra Nova, 31: 49~148.
Liu Hong, Luo Sicong, Tan Xiucheng, Li Ling, Lian Chengbo, Zeng Wei, Luo Bing, Shan Shujiao. 2015&. Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China. Petroleum Exploration and Development, 42(3): 283~293.
Liu Xiaoming, Teng Fangzhen, Rudnick R L, McDonough W F, Cummings M L. 2014. Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et Cosmochimica Acta, 135: 336~349.
Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature,506(7488):307~315.
Mapstone N B, McIlroy D. 2006. Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambr. Res., 149: 126~148.
Markov G, Rogov V, Karlova G, Grazhdankin D. 2019. Taphonomic bias in Cloudina distribution data from Siberia. Estud. Geol., 75: 1~5.
Marschall H R. 2006. Explaining the cambrian “explosion” of animals. Earth and Planetary Science Letters, 34: 355~384.
Marschall H R, von Strandmann P A E, Seitz H M. 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 262(3~4): 563~580.
Marshak S, Domrois S, Abert C, Larson T, Pavlis G, Hamburger M, Yang Xiaotao, Gilbert H, Chen Chen. 2017. The basement revealed: Tectonic insight from a digital elevation model of the Great Unconformity, USA cratonic platform. The Geological Society of America, 45(5): 391~394.
McArthur J M, Howarth R J, Shields G A. 2012. Strontium isotope stratigraphy. In: The Geological Time Scale. Waltham: Elsevier Science Ltd. 127~144.
Doi: 10.1016/B978-0-444-59425-9.00007-X
Medaris Jr L G, Driese S G, Stinchcomb G E, Fournelle J H, Lee S, Xu Huifang, DiPietro L, Gopon P, Stewart E K. 2018. Anatomy of a Sub-Cambrian Paleosol in Wisconsin: Mass Fluxes of Chemical Weathering and Climatic Conditions in North America during Formation of the Cambrian Great Unconformity. Journal of Geology, 126: 261~283.
Meybeck M. 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci., 287: 401~428.
McFadden K A, Huang Jing, Chu Xuelei, Jiang Ganqing, Kaufman A J, Zhou Chuanming, Yuan Xunlai, Xiao Shuhai. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. PNAS, 105(9): 3197~3202.
Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of zinc and copper. Reviews in mineralogy and geochemistry, 82(1): 543~600.
Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, 299: 715~717.
Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles: Journal of Geology, 97: 129~147.
Nielsen A T, Schovsbo N H. 2011. The Lower Cambrian of Scandinavia: Depositional environment, sequence stratigraphy and palaeogeography. Earth Sci. Rev., 107: 207~310.
Och L M, Shields-Zhou G A, Poulton S W, Manning C, Thirlwall M F, Li Da, Xi Chen, Ling Hongfei, Osborn T, Cremonese L. 2013. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225: 166~189.
Ohta T, Arai H. 2007. Statistical emperical index of chemical weathering in igneous rocks: A new tool for evaluating degree of weathering. Chemical Geology, 240: 280~297.
Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92: 11~26.
Panahi A, Young G M, Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta, 64: 2199~2220.
Pegram W J, Krishnaswami S, Ravizza G E, Turekian K K. 1992. Record of seawater187Os/186Os variation through the Cenozoic. Earth and Planetary Science Letters, 113: 569~576.
Penniston-Dorland S, Liu Xiaoming, Rudnick R L. 2017. Lithium isotope geochemistry. Reviews in Mineralogy & Geochemistry, 82: 165~217.
Peters S E, Gaines R R. 2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484: 363~366.
Riding R, Liang L. 2005. Seawater chemistry control of marine limestone accumulation over the past 550 million years. Revista Espanola de Micropaleontologia, 37(1): 1~11.
Rooney A D, Selby D, Houzay J P, Renne P R. 2010. Re-Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni Basin, Mauritania: Implications for basin-wide correlations and Re-Os organic-rich sediments systematics. Earth and Planetary Science Letters, 289: 486~496.
Rooney A D, Chew D M, Selby D. 2011. Re-Os geochronology of the Neoproterozoic—Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematics. Precambrian Research, 185(3~4): 202~214.
Rudnick R L, Gao Shan. 2014. Composition of the continental crust. Treatise on Geochemistry. Waltham: Elsevier Science Ltd. : 1~64.
Sahoo Swapan K, Planavsky Noah J, Kendall Brian, Wang Xinqiang, Shi Xiaoying, Scott Clint, Anbar Ariel D, Lyons Timothy W, Jiang Ganqing. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489(7417) 546~549.
Sawaki Y, Ohno T, Fukushi Y, Komiya T, Ishikawa T, Hirata T, Maruyama S. 2008. Sr isotope excursion across the Precambrian—Cambrian boundary in the Three Gorges area, South China. Gondwana Research, 14(1):134~147.
Sawaki Y, Tahata M, Ohno T. 2014. The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area, South China. Gondwana Research, 25(3): 1070~1089.
Scotese C R. 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. 50th Annual GSA North—Central Section Meeting.
Doi: 10.1130/abs/2016NC-275387.
Shahakarami S, Buatois L A, Mangano M G, Hagadorn J W, Almond J. 2020. The Ediacaran—Cambrian boundary: Evaluating stratigraphic completeness and the Great Unconformity. Precambrian Research, 345: 105721.
Sharma M, Wasserburg G J. 1997. Osmium in the rivers. Geochimica et Cosmochimica Acta, 61: 5411~5416.
Shen Bing, Xiao Shuhai, Zhou Chuanming, Kaufman A J, Yuan Xunlai. 2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Research, 177: 241~252.
Shields G A. 2005. Neoproterozoic cap carbonates: A critical appraisal of existing models and the plumeworld hypothesis. Terra Nova, 17(4): 299~310.
Smith E F, Macdonald F A, Petach T A, Bold U, Schrag D P. 2015. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia. Geol. Soc. Am. Bull., 128: 442~468.
Smith E F, Nelson L L, Strange M A, Eyster A E, Rowland S M, Schrag D P, Macdonald F A. 2016. The end of the Ediacaran: Two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA. Geology, 44: 911~914.
Stammeier J A, Hippler D, Nebel O,Leis A, Grengg C, Mittermayr F, Kasemann S A, Dietzel M. 2019. Radiogenic Sr, stable C and O isotopes across Precambrian—Cambrian transition in marine carbonatic phosphorites of Malyi Karatau (Kazakhstan)——Implications for paleo-environmental change. Geochemistry, Geophysics, Geosystems, 20(1): 3~23.
Steinhoefel G, Brantley S L, Fantle M S. 2021. Lithium isotopic fractionation during weathering and erosion of shale. Geochimica et Cosmochimica Acta, 295: 155~177.
Sun He, Xiao Yilin, Gao Yongjun, Zhang Guijie, John F. Casey, Shen Yanan. 2018. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian—Triassic boundary. Proceedings of the National Academy of Sciences, 115(15): 3782~3787.
Teng Fangzhen, Hu Yan, Ma Jinlong, Wei Gangjian, Roberta L R. 2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochimica et Cosmochimica Acta, 278: 261~271.
Teng Fangzhen, Li Wangye, Rudnick R L, Gardner L R. 2010. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters, 300: 63~71.
Tomascak P B. 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary Sciences. Review in Mineralogy & Geochemistry, 55: 153~195.
Tosca N J, Johnston D T, Mushegian A A, Rothman D H, Summons R E, Knoll A H. 2010. Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans. Geochimica et Cosmochimica Acta, 74: 1579~1592.
Tripathy G R, Hannah J L, Stein H J. 2018. Refining the Jurassic—Cretaceous boundary: Re-Os geochronology and depositional environment of Upper Jurassic shales from the Norwegian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 503: 13~25.
Doi: 10.1016/ j.palaeo.2018.05.005.
Verney-Carron A, Vigier N, Millot R. 2011. Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering. Geochimica et Cosmochimica Acta, 75(12): 3452~3468.
von Strandmann P A E, Jenkyns H C, Woodfine R G. 2013. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6: 668~672.
von Strandmann P A E, Opfergelt S, Lai Y J, Sigfússon B, Gislason S R, Burton K W. 2012. Lithium, magnesium and silicon isotope behaviour accompanying weathering in abasaltic soil and pore water profile in Iceland. Earth and Planetary Science Letters, 339~340: 11~23.
von Strandmann P A E P, Desrochers A, Murphy M J, Finlay A J, Selby D, Lenton T M. 2017. Global climate stabilisation by chemical weathering during the Hirnantian glaciation. Geochemical Prospectives Letters, 3(2): 230~236.
Wang Wei, Kano A, Okumura T, Ma Yongsheng, Matsumoto R, Matsuda N, Ueno K, Chen Xiaozheng, Kakuwa Y, Gharaie M, Ilkhchi M R. 2007. Isotopic chemostratigraphy of the microbialite-bearing Permian-Triassic boundary section in the Zagros Mountains, Iran. Chemical Geology, 244(3): 708~714.
Wang Wenqian, Wang Wei, Feng Xicui, Liu Xinchun, Ye Facheng, Chen Yifeng, Liu Jing, Chen Xiao zheng. 2014&. Application of strontium isotope stratigraphy in marine stratigraphic division and correlation——A case study of marine carbonate formations in the Leping, Permian. Journal of stratigraphy, 38(4): 402~416.
Wang Xinqiang, Shi Xiaoying, Jiang Ganqing, Zhang Wenhao. 2012. New U-Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran—Cambrian transition. Journal of Asian Earth Sciences, 48:1~8.
Wang Xinqiang, Shi Xiaoying, Jiang Ganqing, Tang Dongjie. 2014#. Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform. Science China: Earth Sciences, 44: 1142~1154.
Weiss D J, Boye K, Caldelas C, Fendorf S. 2014. Zinc isotope fractionation during early dissolution of biotite granite. Soil Science Society of America Journal, 78(78): 171.
Wen Hanjie, Fan Haifeng, Zhang Yuxu, Cloquet C, Carignan J. 2015. Reconstruction of Early Cambrian ocean chemistry from Mo isotopes.Geochimica et Cosmochimica Acta, 164: 1~16.
Wei Guangyi, Ling Hongfei, Shields G A, Chen Tianyu, Lechte M, Chen Xi, Qiu Chen, Lei Huanling, Zhu Maoyan. 2019. Long-term evolution of terrestrial inputs from the Ediacaran to Early Cambrian: Clues from Nd isotopes in shallow-marine carbonates, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109367.
Wei Guangyi, Planavsky N J, Tarhan L G, Chen Xi, Wei Wei, Li Da, Ling Hongfei. 2018. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology, 56(7): 587~590.
Wei Guangyi, Wei Wei, Wang Dan, Li Tao, Yang Xiaoping, Shields G A, Zhang Feifei, Li Gaojun, Chen Tianyu, Yang Tao, Ling Hongfei. 2020. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth and Planetary Science Letters, 539: 116244.
Wimpenny J, Gislason S R, James R H. 2010a. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica et Cosmochimica Acta, 74(18): 5259~5279.
Wimpenny J, James R H, Burton K W. 2010b. Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth and Planetary Science Letters, 290(3~4): 427~437.
Wimpenny J, Colla C A, Yin Q Z. 2014. Investigating the behaviour of Mg isotopes during the formation of clay minerals. Geochimica et Cosmochimica Acta, 128: 178~194.
Wu Beijuan, Peng Bo, Zhang Kun, Kuang Xiaoliang, Tu Xianglin, Fang Xiaohong, Zeng Dengzhi. 2016&. Chemical weathering degree of black shale. Acta Geologica Sinica, 90(4): 818~832.
Xiao Shuhai, Bao Huiming, Wang Haifeng, Kaufman A J, Zhou Chuangming, Li Guoxiang, Yuan Xunlai, Ling Hongfei. 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrian Research, 130: 1~26.
Xiong Chen. 2019&. Source Analysis of Sinian—Cambrian Sediments on the Western Margin of the Cathaysia Block and Its Tectonic and Paleogeographic Significance. Tutor: Chen Hongde. Chengdu: Doctoral Dissertation of Chengdu University of Technology: 1~89.
Xu Lingang, Lehmann B, Mao Jingwen, Qu Wenjun, Du Andao. 2011. Re-Os age of polymetallic Ni—Mo—PGE—Au mineralization in Early Cambrian black shales of South China——A reassessment. Economic Geology, 106: 511~522.
Xu Xiaotao, Shao Longyi. 2018&. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515~522.
Yan Detian, Chen Daizhao, Wang Qingchen, Wang Jianguo. 2010. Large-scale climatic fl uctuations in the latest Ordovician on the Yangtze block, south China. Geology, 38(7): 599~602.
Yang Jinghong, Jiang Shaoyong, Ling Hongfei, Chen Yongquan. 2005&. Re-Os isotope tracing and dating of black shales and oceanic anoxic events. Earth Science Frontiers, 12(2): 143~150.
Yang Yu, Huang Xianping, Zhang Jian, Yuan Guang, Song Jiarong, Song Linke, Hong Haitao, Tan Xiucheng, Wen Long.2014&. Eatures and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin. Natural Gas Industry, 34(3): 38~43.
Yao Weihua, Li Zhengxiang, Li Wuxian, Li Xianhua, Yang Jinhui.2014. From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the Southern Nanhua Basin, South China. American Journal of Science, 314(1): 278~313.
Yeasmin R, Chen Daizhao, Fu Yong, Wang Jianguo, Guo Zenghui, Guo Chuan. 2017. Climatic—oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid—upper Yangtze Block, NE Guizhou, South China. Journal of Asian Earth Sciences, 134: 365~386.
Yue Liang, Liu Ziliang, Veerle V, Ma Yongsheng, Chen Hongde, Zhang Chengjian.2020&. Glacial sedimentary sequence and evolution of the Fengtai Formation, southeastern margin of the North China Craton. Geological Review, 66(2): 307~323.
Zhai Lina, Wu Chaodong, Ye Yuntao, Zhang Shuichang, Wang Yizhe. 2018. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran—Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 280~292.
Zhang Hui, Jiao Shujing, Lin Bowei, Hao Linshan, Yuan Liying. 2017&. Genetic relationship between organic matter and minerals in the lower Cambrian shale of the Yangtze plate. Natural Gas Exploration and Development, 40 (4): 25~33.
Zhang Qian, Xiao Yuanfu, Wang Xiaofei, Yu Qian, Wang Jian, Zhao Ankun, Meng Yupeng, Zhou Yexin. 2020&. Geochemistry of the Longmaxi Formation mudstones of the southwest Sichuan Basin: Implications for provenance and source weathering. Geological Review, 66(5): 1393~1411.
Zhang Wentang. 1997&. Cambrian life expansion and the significance of chengjiang fauna. Earth Science Frontiers, 4(3~4): 117~121.
Zhang Xingliang, Shu Degan, Han Jian, Zhang Zhifei, Liu Jianni, Fu Dongjing. 2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research, 25(3) : 896~909.
Zhang Yinggang, Yang Tao, Hohl S V, Zhu Bi, He Tianchen, Pan Wenqing, Chen Yongquan, Yao Xizhu, Jiang Shaoyong. 2020. Seawater carbon and strontium isotope variations through the late Ediacaran to late Cambrian in the Tarim Basin. Precambrian Research, 345: 105769;
Doi: 10.1016/j.precamres.2020.105769.
Zhang Zihu. 2018&. Spatiotemporal variations and formation mechanism of the marine redox conditions in the southeastern deep-water area of the Nanhua Basin (South China) in the Early Cambrian. Tutor: Li Chao. Wuhan: Doctoral Dissertation of China University of Geosciences (Wuhan): 1~97.
Zhou Chuanming, Huyskens M H, Lang Xianguo, Xiao Shuhai, Yin Qingzhu. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47(3): 251~254.
Zhou Chuanming, Huyskens M H, Xiao Shuhai, Yin Qingzhu. 2020. Refining the termination age of the Cryogenian Sturtian glaciation in South China. Palaeoworld, 29: 462~468.
Zhu Bi, Becker H, Jiang Shaoyong, Pi Daohui, Fischer-Godde M, Yang Jinghong. 2013. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China. Precambrian Research, 225: 67~76.
Zhu Dongya, Jin Zhijun, Zhang Rongqiang, Zhang Dianwei, He Zhiliang, Li Shuangjian. 2014&. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karst. Earth Science Frontiers, 21(6): 335~345.
Zhu Maoyan. 2010&. Origin of animals and Cambrian Explosion: Fossil evidence from China. Acta Palaeontologica Sinica, 49(3): 269~287.
Zhu Maoyan, Zhao Fangchen, Yin Zongjun, Zeng Han, Li Guoxiang. 2019&. Research on Cambrian explosion in China: progress and prospect. Science China: Earth Science, 49(10): 1455~1490.
Zhu Rixiang, Li Xianhua, Hou Xianguang, Pan Yongxin, Wang Fei, Deng Chenglong, He Huaiyu. 2009#. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian—Cambrian boundary. Science China: Earth Science, 39(8): 1105~1111.
Zhu Xiangkun, Wang Yue, Yan Bin, Li Jin, Dong Aiguo, Li Zhihong, Sun Jian. 2013&. Development of non-traditional stable isotope geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651~688.