劉寰宇 王焱冰 楊濤 崔人勻 安炯俊 陳健 郝力爭 李忠
摘要 目的:探究芪甲扶正方治療肺腺癌相關(guān)性疲乏的作用機(jī)制。方法:基于中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫與分析平臺(tái)(TCMSP)、中醫(yī)藥綜合數(shù)據(jù)庫(TCMID)、Pubchem、Swiss Target Prediction等數(shù)據(jù)庫收集芪甲扶正方有效成分及作用靶點(diǎn);通過GeneCards、OMIM等數(shù)據(jù)庫獲取“肺腺癌相關(guān)性疲乏”相關(guān)靶基因;將藥物靶點(diǎn)映射到疾病靶點(diǎn)集合上,獲取交集基因;使用String構(gòu)建蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò);通過Cytoscape構(gòu)建藥物-成分-靶點(diǎn)調(diào)控網(wǎng)絡(luò);利用DAVID數(shù)據(jù)庫對(duì)芪甲扶正方治療肺腺癌相關(guān)性疲乏的靶點(diǎn)進(jìn)行基因本體(GO)富集分析和京都基因和基因組百科全書(KEGG)富集分析;運(yùn)用Genebank數(shù)據(jù)庫分析交集基因的組織器官定位;利用AutoDock Vina_1.1.2分析主要活性成分和關(guān)鍵靶點(diǎn)的結(jié)合能力,并使用PYMOL軟件將對(duì)接結(jié)果進(jìn)行可視化展示。結(jié)果:調(diào)控網(wǎng)絡(luò)共包含9味中藥、108種活性成分、87個(gè)靶基因;和CASP3、VEGFA、EGFR、MYC、IL-6;KEGG富集分析涉及PI3K-AKT、p53、TNF、MAPK、ErbB、Ras、FoxO等通路;關(guān)鍵基因主要分布在肺、紅細(xì)胞、T細(xì)胞、B細(xì)胞;分子對(duì)接結(jié)果表明EGFR與木犀草素、IL-6、MAKP3與β-谷甾醇、MAKP8與鞣花酸具有較強(qiáng)的結(jié)合能力。結(jié)論:芪甲扶正方活性成分鞣花酸、β-谷甾醇等,可能通過作用于EGFR、IL-6、MAKP3、MAKP8等靶點(diǎn),進(jìn)而通過調(diào)節(jié)PI3K-AKT通路發(fā)揮對(duì)肺腺癌相關(guān)性疲乏的治療作用。
關(guān)鍵詞 肺腺癌;癌因性疲乏;芪甲扶正方;網(wǎng)絡(luò)藥理學(xué);分子對(duì)接;鞣花酸;IL6;PI3K-AKT
Abstract Objective:To explore the action mechanism of Qijia Fuzheng Formula in the treatment of fatigue-related lung adenocarcinoma.Methods:Based on databases such as TCMSP,TCMID,Pubchem,Swiss Target Prediction,etc.,the active ingredients and targets of Qijia Fuzheng Formula were collected; relevant target genes of “pulmonary adenocarcinoma-related fatigue” from databases such as GeneCards and OMIM were obtained; drug targets were mapped to diseases target set.The intersection genes on the target set were obtained; String was used to construct a protein-protein interaction(PPI) network; Cytoscape was used to construct a drug-component-target regulatory network;DAVID database was used to enrich(GO,KEGG) analysis of the targets of Qijiafuzheng Formula in the treatment of lung adenocarcinoma-related fatigue; Genebank database was used to analyze the tissue and organ location of intersection genes; AutoDock Vina_1.1.2 was used to analyze the main active ingredients and key binding ability of the target,and PYMOL was used software to visualize the docking results.Results:The drug-compound-target network consisted of 9 drugs,108 compounds and 87 targets; and CASP3,VEGFA,EGFR,MYC,IL-6; KEGG enrichment analysis involved PI3K-AKT,p53,TNF,MAPK,ErbB,Ras,F(xiàn)oxO and other pathways; key genes were mainly distributed in lungs,red blood cells,T cells,B cells; molecular docking results showed that EGFR and luteolin,IL-6,MAKP3 and β-sitosterol,MAKP8 and ellagic acid had strong binding ability.Conclusion:The active ingredients of Qijia Fuzheng Formula,such as ellagic acid and β-sitosterol,may act on EGFR,IL-6,MAKP3,MAKP8 and other targets,and then play a role in the treatment of lung adenocarcinoma-related fatigue by regulating the PI3K-AKT pathway effect.
Keywords Lung adenocarcinoma; Cancer related fatigue; Qijia Fuzheng Formula; Network pharmacology; Molecular docking; Luteolin; IL6; PI3K-AKT
中圖分類號(hào):R285文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.11.008
癌癥相關(guān)性疲勞(Cancer Related Fatigue,CRF)是80%腫瘤患者正在或已經(jīng)經(jīng)歷過的虛弱癥狀[1],具有多維度、多階段、不可緩解等特點(diǎn),近年來隨著腫瘤治療理念由傳統(tǒng)的對(duì)抗治療到姑息治療理念的轉(zhuǎn)變,癌性疲乏已經(jīng)引起越來越多腫瘤研究者的關(guān)注[2]。雖然國內(nèi)外關(guān)于藥物干預(yù)癌性疲乏的臨床研究逐年增加,但目前尚無理想治療藥物[3-4]。正所謂“精氣奪則虛”,中醫(yī)將此種虛弱癥狀歸屬于“虛勞”辨治,提出其病機(jī)為“多臟腑虧損,氣血陰陽同虛”[5],特點(diǎn)為“虛損勞衰不斷加重”,治當(dāng)以扶正為主,祛邪為輔[6],注重攻補(bǔ)兼施,調(diào)補(bǔ)脾腎[7]。
芪甲扶正方是遵《黃帝內(nèi)經(jīng)》“虛則補(bǔ)之”“勞者溫之”“損者益之”的治療思想組方而成,具有健脾益腎、固攝扶正的作用,由黃芪、鱉甲、烏梅、仙鶴草、瓦楞子、秦艽、半枝蓮、莪術(shù)、鼠婦等藥物組成,方中黃芪甘溫,中黃表白,白入肺,黃入脾,合治“脫力勞傷”之仙鶴草共為君以奏健中州之效,醋鱉甲咸寒入腎軟堅(jiān)散結(jié)、破瘀通經(jīng),烏梅酸澀平入肝為臣,莪術(shù)、鼠婦、秦艽、半枝蓮、煅瓦楞子為佐,以奏健脾益腎、固攝扶正之效。已在臨床應(yīng)用多年[8]。本團(tuán)隊(duì)既往臨床研究表明,其能配合西醫(yī)基礎(chǔ)治療改善非小細(xì)胞肺癌患者尤其是肺腺癌患者乏力、氣短的癥狀[9]。雖然芪甲扶正方的臨床療效明確,但其具體的分子作用機(jī)制不清,有待進(jìn)一步探索。
因此,本研究運(yùn)用具有預(yù)測中藥復(fù)方干預(yù)疾病分子機(jī)制作用的網(wǎng)絡(luò)藥理學(xué)方法和具有預(yù)測復(fù)合物結(jié)合能作用的分子對(duì)接技術(shù)[10],通過多種網(wǎng)絡(luò)數(shù)據(jù)庫,從多組分、多靶點(diǎn)整體分析并預(yù)測芪甲扶正方治療肺腺癌相關(guān)性疲乏的潛在藥理學(xué)機(jī)制,旨在初步闡釋芪甲扶正方治療肺腺癌相關(guān)性疲乏的作用機(jī)制。具體研究流程見圖1。
1 資料與方法
1.1 篩選芪甲扶正方活性成分并預(yù)測成分作用靶點(diǎn)
以“烏梅”“仙鶴草”“黃芪”“秦艽”“半枝蓮”“莪術(shù)”等芪甲扶正方所含中藥為關(guān)鍵詞,依次檢索中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫與分析平臺(tái)(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP)(http://lsp.nwu.edu.cn/tcmsp.php)[11]收集藥物活性成分,并以藥物口服生物利用度大于等于30%和藥物相似性大于等于0.18為篩選閾值,進(jìn)一步篩選有效活性成分;然后以中醫(yī)藥綜合數(shù)據(jù)庫(TCMID)(http://www.megabionet.org/tcmid/)平臺(tái)檢索鱉甲活性成分;最后經(jīng)Pubchem數(shù)據(jù)庫(https://pubchem.ncbi.nlm.nih.gov/)獲得鼠婦、瓦楞子等藥物的活性成分[12-13]。
以上述有效成分為關(guān)鍵詞分別檢索TCMSP和有機(jī)小分子生物活性數(shù)據(jù)庫(Swiss Target Prediction)(http://www.swisstargetprediction.ch/)[11],獲取上述有效活性成分對(duì)應(yīng)的作用靶點(diǎn)。
1.2 肺腺癌相關(guān)性疲乏靶點(diǎn)獲取
以“Cancer-related fatigue of lung adenocarcinoma”為關(guān)鍵詞,檢索GeneCards(http://www.genecards.org/)、人類孟德爾遺傳綜合數(shù)據(jù)庫(Online Mendelian Inheritance in Man,OMIM)(http://www.omim.org/)等數(shù)據(jù)庫,將所得靶點(diǎn)合并去重后得到肺腺癌相關(guān)性疲乏的疾病靶點(diǎn)。
1.3 獲取藥物-疾病交集靶點(diǎn)
將芪甲扶正方活性成分作用靶點(diǎn)與肺腺癌相關(guān)性疲乏相關(guān)靶點(diǎn)進(jìn)行映射,得到芪甲扶正方治療肺腺癌相關(guān)性疲乏的潛在靶點(diǎn);將以上篩選出的靶標(biāo)通過Uniprot(http://www.uniprot.org/)數(shù)據(jù)庫轉(zhuǎn)換成對(duì)應(yīng)的基因名,舍棄無法找到基因名的靶標(biāo)。
1.4 構(gòu)建芪甲扶正方治療肺腺癌相關(guān)性疲乏的PPI網(wǎng)絡(luò)并篩選重要靶點(diǎn)
使用STRING數(shù)據(jù)庫,將1.3收集的芪甲扶正方治療肺腺癌相關(guān)性疲乏的潛在靶點(diǎn)復(fù)制到Multiple proteins,物種來源選擇Homo sapiens,輸出tsv.結(jié)果;并使用Cytoscape軟件進(jìn)行可視化,設(shè)置其中心靶點(diǎn)重要性優(yōu)于外周。
1.5 構(gòu)建藥物-成分-靶點(diǎn)調(diào)控網(wǎng)絡(luò)
選取藥物、靶點(diǎn)、靶點(diǎn)相關(guān)的藥物活性成分輸入Cytoscape構(gòu)建藥物-成分-靶點(diǎn)調(diào)控網(wǎng)絡(luò)并根據(jù)度值(degree)將活性成分和靶點(diǎn)進(jìn)行排序。
1.6 藥物治療疾病組織器官定位
使用Genecard數(shù)據(jù)庫將各組織的靶基因分別與藥物疾病交集基因進(jìn)行映射,以明確肺腺癌相關(guān)性疲乏基因的分布。
1.7 交集基因富集分析
研究使用DAVID數(shù)據(jù)庫(https://david.ncifcrf.gov/)對(duì)上述所得交集靶基因進(jìn)行基因本體(Gene Ontology,GO)和京都基因和基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析[14]。其中GO分析包括分子功能(Molecular Function,MF)、生物過程(Biological Process,BP)、細(xì)胞組成(Cellular Components,CC)。
1.8 分子對(duì)接
研究使用AutoDock Vina_1.1.2將前30個(gè)成分與前5個(gè)靶基因進(jìn)行分子對(duì)接分析,驗(yàn)證其相互作用活性。1)經(jīng)TCMSP平臺(tái)下載前30個(gè)成分的(“mol2“格式)信息,依次為分子結(jié)構(gòu)加氫原子(通過Open Babel),加電荷(選擇MMFF94力場)、能量最小化,將化合物轉(zhuǎn)化為PDBQT格式文件(通過AutoDcok Tools)。2)從PDB網(wǎng)站(http://www.rcsb.org/)獲取前5個(gè)靶點(diǎn)蛋白。3)利用AutoDock Tools分離靶蛋白、相應(yīng)配體,添加氫原子并計(jì)算電荷后導(dǎo)出PDBQT格式文件;并使用AutoDock Tools確定對(duì)接盒子的大小和中心,對(duì)接盒子的中心定義為蛋白晶體結(jié)構(gòu)原配體的中心,大小包裹原配體所在活性位點(diǎn)關(guān)鍵殘基。4)最后使用Vina依次將活性成分與靶蛋白進(jìn)行對(duì)接,提取對(duì)接打分,使用PyMol(V2.4.0)進(jìn)行對(duì)接結(jié)果的可視化展示。
2 結(jié)果
2.1 藥物活性成分篩選和靶點(diǎn)預(yù)測結(jié)果
通過上述數(shù)據(jù)庫檢索芪甲扶正方中9味中藥所含的化合物后,根據(jù)OB和DL值共篩選出108個(gè)化合物,黃芪20個(gè),烏梅8個(gè),仙鶴草5個(gè),秦艽2個(gè),莪術(shù)3個(gè),半枝蓮29個(gè),鱉甲16個(gè),瓦楞子7個(gè),鼠婦34個(gè);根據(jù)度值篩選出前30個(gè)活性成分,如表1;預(yù)測靶點(diǎn)5 132個(gè)。
2.2 疾病潛在基因靶點(diǎn)
檢索各數(shù)據(jù)庫合并去重后,共獲得與肺腺癌相關(guān)性疲乏相關(guān)靶點(diǎn)1 263個(gè)。
2.3 藥物治療疾病作用靶點(diǎn)集
將5 132個(gè)芪甲扶正方作用靶點(diǎn)與1 263個(gè)肺腺癌相關(guān)性疲乏關(guān)聯(lián)靶點(diǎn)進(jìn)行映射,得到一個(gè)含87個(gè)基因的基因集合,可能是芪甲扶正方治療肺腺癌相關(guān)性疲乏的作用靶點(diǎn)。
2.4 芪甲扶正方治療肺腺癌相關(guān)性疲乏的PPI網(wǎng)絡(luò)及重要靶點(diǎn) 將上述所得87個(gè)交集靶點(diǎn),導(dǎo)入STRING數(shù)據(jù)庫,得到一個(gè)包含1 179條邊,87個(gè)節(jié)點(diǎn),平均度值為27.1的蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò);下載PPI網(wǎng)絡(luò)、導(dǎo)入Cytoscape3.7.1后,通過Network analyzer功能對(duì)PPI網(wǎng)絡(luò)進(jìn)行拓?fù)浞治?,最后根?jù)度值篩選出CASP3、VEGFA、EGFR、MYC、IL-6、CCND1、ESR1、MAPK3、MAPL8、PTGS2等靶點(diǎn),可能為藥物發(fā)揮作用的重要靶點(diǎn),如圖2所示。
2.5 藥物-成分-靶點(diǎn)調(diào)控網(wǎng)絡(luò) 如圖3藥物-成分-靶點(diǎn)調(diào)控網(wǎng)絡(luò)所示,鼠婦、半枝蓮所含化合物最多,其次為黃芪、鱉甲、仙鶴草、烏梅;網(wǎng)絡(luò)中度值較高的前5個(gè)藥物成分槲皮素、山柰酚、黃芩苷、鞣花酸、異鼠李素,可能為發(fā)揮治療作用的關(guān)鍵成分。度值較高的前5個(gè)靶點(diǎn)CASP3、VEGFA、EGFR、MYC、IL-6,可能是發(fā)揮治療作用的重要靶點(diǎn)。
2.6 組織器官定位分析結(jié)果 依次以Red blood cell、T cell、B cell、Mitochondria、lung、Adrenal gland、Spleen為關(guān)鍵詞查詢GeneCards數(shù)據(jù)庫,獲取相關(guān)組織器官靶基因后與藥物芪甲扶正方治療肺腺癌相關(guān)性疲乏的潛在基因進(jìn)行映射,如圖4所示:芪甲扶正方治療肺腺癌相關(guān)性疲乏的87個(gè)潛在基因可全部作用于紅細(xì)胞、T細(xì)胞、B細(xì)胞,大部分作用于肺72個(gè)、腦36個(gè)、腎上腺30個(gè),少數(shù)作用于線粒體6個(gè)、脾臟4個(gè)。
2.7 富集分析結(jié)果
2.7.1 GO富集分析結(jié)果 GO富集獲得BP條目278個(gè)、CC條目38個(gè)、MF條目80個(gè)(P<0.05),根據(jù)Count值分別篩選前10個(gè)條目,采用條形圖展示(圖5),BP主要表現(xiàn)為促進(jìn)RNA聚合酶Ⅱ啟動(dòng)子的轉(zhuǎn)錄、抑制凋亡、抑制藥物陽性反應(yīng)、調(diào)控DNA轉(zhuǎn)錄模板化過程、正向調(diào)控細(xì)胞增殖、正向調(diào)控基因表達(dá)、脂多糖的反應(yīng)、對(duì)有毒物質(zhì)的反應(yīng)、細(xì)胞衰老、雌二醇反應(yīng);CC富集在細(xì)胞(核、質(zhì)、膜)、細(xì)胞液、細(xì)胞外間隙、胞質(zhì)的核周圍區(qū)域、以及內(nèi)質(zhì)網(wǎng)和線粒體等細(xì)胞器;MF主要涉及蛋白結(jié)合、酶結(jié)合、轉(zhuǎn)錄因子活性、ATP結(jié)合、蛋白激酶活性等。提示芪甲扶正方可對(duì)多部位進(jìn)行調(diào)控發(fā)揮作用。
2.7.2 KEGG富集分析結(jié)果 KEGG富集分析篩選出83條信號(hào)轉(zhuǎn)導(dǎo)通路,Count排序前10的通路見圖6,包括PI3K-AKT信號(hào)通路、p53信號(hào)通路、腫瘤壞死因子信號(hào)通路、催乳激素信號(hào)通路、HIF-1信號(hào)通路、甲狀腺激素信號(hào)通路、分裂原激活的蛋白激酶信號(hào)通路、ErbB信號(hào)通路、Ras信號(hào)通路、FoxO信號(hào)通路。
2.8 分子對(duì)接結(jié)果 根據(jù)度值排序的前30個(gè)成分與前5個(gè)基因結(jié)合能見表2。結(jié)合能較高的4個(gè)對(duì)接模式圖分別為A:MAKP8-鞣花酸,B:IL-6-β-谷甾醇,C:EGFR-木犀草素,D:EGFR-木犀草素。如圖7所示,圖中藍(lán)色實(shí)線:代表氫鍵、灰色虛線:代表疏水作用。
3 討論
3.1 芪甲扶正方所含關(guān)鍵活性成分
研究共獲得中藥活性成分108個(gè),關(guān)鍵靶點(diǎn)87個(gè),以黃芪、仙鶴草、鼠婦所含活性成分最多,以黃酮類為主,具有抗炎、抗腫瘤作用,將上述108個(gè)成分中度值較高的30個(gè)核心成分與重要靶點(diǎn)進(jìn)行分子對(duì)接,其結(jié)果表明EGFR與木犀草素、IL-6、MAKP3與β-谷甾醇、MAKP8與鞣花酸具有相對(duì)高的結(jié)合能力,提示木犀草素、β-谷甾醇、鞣花酸可能為芪甲扶正方發(fā)揮治療作用的重要成分。以上成分可能通過抑制肺腺癌的增殖、阻滯細(xì)胞周期、促進(jìn)肺腺癌的凋亡等抗腫瘤作用改善肺腺癌患者的疲乏情況。其中,木犀草素主要來源于仙鶴草,屬于黃酮類化合物,可抑制肺癌細(xì)胞的增殖[15]。鞣花酸主要來源于仙鶴草,屬于天然多酚化合物,能抑制乳腺癌[16]、黑色素瘤[17]、胃癌[18],阻滯細(xì)胞周期、誘導(dǎo)細(xì)胞凋亡[19]、改善炎癥[20],抑制線粒體呼吸和肺癌細(xì)胞增殖[20]。β-谷甾醇主要來源于秦艽和半枝蓮,為膳食植物甾醇,能預(yù)防多種腫瘤的發(fā)生和生長,通過阻滯肺癌A549細(xì)胞周期于G2/M期來抑制細(xì)胞增殖[21],同時(shí)促進(jìn)細(xì)胞凋亡[22],發(fā)揮抗腫瘤作用。
3.2 芪甲扶正方潛在的關(guān)鍵靶點(diǎn)分析
PPI網(wǎng)絡(luò)結(jié)果提示芪甲扶正方調(diào)節(jié)的靶蛋白與肺腺癌相關(guān)性疲乏相關(guān)的靶蛋白間具有復(fù)雜的相互作用關(guān)系;將調(diào)控網(wǎng)絡(luò)中靶點(diǎn)中以度值排序,初步分析前5個(gè)重要靶點(diǎn)多對(duì)細(xì)胞凋亡、炎癥、免疫等腫瘤相關(guān)的經(jīng)典表型具有調(diào)節(jié)作用,其中caspase-3是執(zhí)行細(xì)胞凋亡的蛋白酶[23];EGFR是一種酪氨酸激酶受體,其過表達(dá)或突變與細(xì)胞增殖有關(guān)[24],Landi等[25]的研究表明IL-7,IL-16和VEGF-A的減少可能與慢性疲勞綜合征有關(guān);進(jìn)一步分析發(fā)現(xiàn),以上靶點(diǎn)可能通過調(diào)節(jié)炎癥表型發(fā)揮作用,這與既往研究報(bào)道指出的炎癥介質(zhì)失調(diào)學(xué)說提出的炎癥介質(zhì)表達(dá)增加在腫瘤患者疲乏的發(fā)生機(jī)制中起著重要作用的觀點(diǎn)相一致[26],Rich等[27]的研究表明癌癥患者的疲勞癥狀、不良生命質(zhì)量和治療結(jié)果均與腫瘤或宿主產(chǎn)生的炎癥介質(zhì)有關(guān),如IL-6、IL-1β、IL-10以及TNF-α等,其中IL-6研究的最為廣泛,如Wu等[28]的研究發(fā)現(xiàn)圍手術(shù)期胃腺癌患者疲乏評(píng)分與血漿IL-6的水平正相關(guān)。Inagaki等[29]亦得出IL-6可能在晚期癌癥患者的疲勞中發(fā)揮作用的結(jié)論??偨Y(jié)可發(fā)現(xiàn)腫瘤、炎癥、腫瘤相關(guān)性疲乏三者之間相互影響,其中炎癥在腫瘤過程中發(fā)揮的作用已有總結(jié)[30],而炎癥和腫瘤相關(guān)性疲乏之間的關(guān)系將是我們后續(xù)研究關(guān)注的重點(diǎn)。
3.3 芪甲扶正方治療肺腺癌相關(guān)性疲乏的潛在機(jī)制分析
GO富集分析結(jié)果表明,芪甲扶正方可作用于多個(gè)細(xì)胞組分,能多形式地調(diào)節(jié)細(xì)胞周期、抑制細(xì)胞凋亡生物進(jìn)程,在肺腺癌相關(guān)性疲乏的炎癥、增殖等表型中起到保護(hù)作用;對(duì)交集基因進(jìn)行組織定位分析發(fā)現(xiàn),87個(gè)基因主要分布于紅細(xì)胞、T、B淋巴細(xì)胞、肺,也涉及腎上腺、脾、線粒體等部位,提示芪甲扶正方是通過多部位發(fā)揮治療作用。
KEGG通路富集分析結(jié)果表明,芪甲扶正方主要是通過PI3K-AKT信號(hào)通路發(fā)揮對(duì)肺腺癌相關(guān)性疲乏的治療作用的,該研究中有2種方式可激活該通路,一種是細(xì)胞外以IL-6為主的細(xì)胞因子與細(xì)胞膜上的IL-6受體結(jié)合,激活JAK,進(jìn)而激活PI3K-AKT。另一種方式是直接被生長因子受體EGFR激活,該通路被激活后下游可與mTOR、P53、NF-κB、MAPK、VEGF等多條信號(hào)通路發(fā)生交互作用,從而調(diào)節(jié)蛋白合成、糖代謝、細(xì)胞增殖、DNA損傷、細(xì)胞循環(huán)、增殖、生存等多個(gè)表型[31],這與一項(xiàng)人參皂苷通過激活PI3K-AKT抗老年大鼠疲勞綜合征的研究結(jié)論一致[32];腫瘤壞死因子通路主要是由核因子κB途徑和MAPK級(jí)聯(lián),介導(dǎo)凋亡或壞死[33];FoxO信號(hào)轉(zhuǎn)導(dǎo)通路中,IL-6可與STAT3結(jié)合介導(dǎo)FOXO家族的磷酸化,進(jìn)而調(diào)節(jié)自噬和免疫[34-35]。以上通路既有各自的特點(diǎn)也存在著明顯的交互作用,這與中醫(yī)整體觀念具有相似性。在后續(xù)研究中,我們將圍繞本研究得出的結(jié)論進(jìn)行體內(nèi)外實(shí)驗(yàn),以彌補(bǔ)本研究的缺陷和不足,從而為芪甲扶正方治療癌因性疲乏的深入研究提供科學(xué)依據(jù)。
4 結(jié)論
本研究預(yù)測芪甲扶正方的多種成分如木犀草素、β-谷甾醇、鞣花酸等可能通過作用于肺、T、B淋巴細(xì)胞、紅細(xì)胞等部位的IL-16、EGFR、MAKP3、MAKP8等靶點(diǎn),調(diào)節(jié)以PI3K-AKT為主的多條凋亡相關(guān)的信號(hào)轉(zhuǎn)導(dǎo)通路,促進(jìn)肺腺癌細(xì)胞凋亡從而發(fā)揮對(duì)肺腺癌相關(guān)性疲乏的治療作用。
參考文獻(xiàn)
[1]Feng LR,Juneau P,Regan JM,et al.Brain-derived neurotrophic factor polymorphism Val66Met protects against cancer-related fatigue[J].Transl Psychiatry,2020,10(1):302.
[2]Thong M,van Noorden C,Steindorf K,et al.Cancer-Related Fatigue:Causes and Current Treatment Options[J].Curr Treat Options Oncol,2020,21(2):17.
[3]Yang S,Chu S,Gao Y,et al.A Narrative Review of Cancer-Related Fatigue(CRF)and Its Possible Pathogenesis[J].Cells,2019,8(7):738.
[4]Meier-Girard D,Ribi K,Gerstenberg G,et al.Eurythmy therapy versus slow movement fitness in the treatment of fatigue in metastatic breast cancer patients:study protocol for a randomized controlled trial[J].Trials,2020,21(1):612.
[5]趙進(jìn)喜.李繼安.中醫(yī)內(nèi)科學(xué)[M].北京:中國中醫(yī)藥出版社,2018:404.
[6]Su CX,Wang LQ,Grant SJ,et al.Chinese herbal medicine for cancer-related fatigue:a systematic review of randomized clinical trials[J].Complement Ther Med,2014,22(3):567-579.
[7]胡磊顥,林麗珠.以“平衡之道”論治癌因性疲乏[J].中醫(yī)雜志,2020,61(8):724-726.
[8]王春雨.固攝解毒法輔助化療治療非小細(xì)胞肺癌的臨床研究[D].北京:北京中醫(yī)藥大學(xué),2007.
[9]董石.芪甲扶正方治療脾腎虧虛型晚期非小細(xì)胞肺癌臨床及網(wǎng)絡(luò)藥理學(xué)研究[D].北京:北京中醫(yī)藥大學(xué),2019.
[10]Zhou Z,Chen B,Chen S,et al.Applications of Network Pharmacology in Traditional Chinese Medicine Research[J].Evid Based Complement Alternat Med,2020,2020:1646905.
[11]Ru J,Li P,Wang J,et al.TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J].J Cheminform,2014,6:13.
[12]李軍,劉嘉利,李堯鋒,等.鼠婦化學(xué)成分及藥理作用研究進(jìn)展[J].中醫(yī)藥學(xué)報(bào),2020,48(3):74-76.
[13]李成姣,廖廣輝,洪寅,等.基于物質(zhì)基礎(chǔ)的6種介類中藥性、效、用關(guān)聯(lián)性分析[J].新中醫(yī),2017,49(6):13-16.
[14]Huang da W,Sherman BT,Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nat Protoc,2009,4(1):44-57.
[15]Zhang Y,Zhang J,Ren Y,et al.Luteolin Suppresses Sepsis-Induced Cold-Inducible RNA-Binding Protein Production and Lung Injury in Neonatal Mice[J].Shock,2021,55(2):268-273.
[16]Yousuf M,Shamsi A,Khan P,et al.Ellagic Acid Controls Cell Proliferation and Induces Apoptosis in Breast Cancer Cells via Inhibition of Cyclin-Dependent Kinase 6[J].Int J Mol Sci,2020,21(10):3526.
[17]Wang F,Chen J,Xiang D,et al.Ellagic acid inhibits cell proliferation,migration,and invasion in melanoma via EGFR pathway[J].Am J Transl Res,2020,12(5):2295-2304.
[18]Lim SC,Hwang H,Han SI.Ellagic Acid Inhibits Extracellular Acidity-Induced Invasiveness and Expression of COX1,COX2,Snail,Twist 1,and c-myc in Gastric Carcinoma Cells[J].Nutrients,2019,11(12):3023.
[19]Liu Q,Liang X,Niu C,et al.Ellagic acid promotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway[J].Exp Ther Med,2018,16(1):347-352.
[20]Duan J,Li Y,Gao H,et al.Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer[J].Food Funct,2020,11(7):6332-6339.
[21]Babu S,Krishnan M,Rajagopal P,et al.Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/AKT mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats[J].Eur J Pharmacol,2020,873:173004.
[22]Rajavel T,Packiyaraj P,Suryanarayanan V,et al.β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation[J].Sci Rep,2018,8(1):2071.
[23]De Vasconcelos NM,Van Opdenbosch N,Van Gorp H,et al.An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages[J].Cell Rep,2020,32(4):107959.
[24]Colella B,Colardo M,Iannone G,et al.mTOR Inhibition Leads to Src-Mediated EGFR Internalisation and Degradation in Glioma Cells[J].Cancers(Basel),2020,12(8):2266.
[25]Landi A,Broadhurst D,Vernon SD,et al.Reductions in circulating levels of IL-16,IL-7 and VEGF-A in myalgic encephalomyelitis/chronic fatigue syndrome[J].Cytokine,2016,78:27-36.
[26]Bower JE,Lamkin DM.Inflammation and cancer-related fatigue:mechanisms,contributing factors,and treatment implications[J].Brain Behav Immun,2013,30:S48-S57.
[27]Rich T,Innominato PF,Boerner J,et al.Elevated Serum Cytokines Correlated with Altered Behavior,SerumCortisol Rhythm,and Dampened 24-Hour Rest-Activity Patternsin Patients with Metastatic Colorectal Cancer [J].Clin Cancer Res,2005,11(5):1757-1764.
[28]Wu JM,Yang HT,Ho TW,et al.Association between Interleukin-6 Levels and Perioperative Fatigue in Gastric Adenocarcinoma Patients[J].J Clin Med,2019,8(4):543.
[29]Inagaki M,Isono M,Okuyama T,et al.Plasma interleukin-6 and fatigue in terminally ill cancer patients[J].J Pain Symptom Manage,2008,35(2):153-161.
[30]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.
[31]Amirani E,Hallajzadeh J,Asemi Z,et al.Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy[J].Int J Biol Macromol,2020,164:456-467.
[32]Zhuang CL,Mao XY,Liu S,et al.Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/AKT/Nrf2 pathway in aged rats[J].Eur J Pharmacol,2014,740:480-487.
[33]Wandrer F,Liebig S,Marhenke S,et al.TNF-Receptor-1 inhibition reduces liver steatosis,hepatocellular injury and fibrosis in NAFLD mice[J].Cell Death Dis,2020,11(3):212.
[34]Van der Horst A,Burgering BM.Stressing the role of FoxO proteins in lifespan and disease[J].Nat Rev Mol Cell Biol,2007,8(6):440-450.
[35]Kim SE,Mori R,Shimokawa I.Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors?[J].Nutrients,2020,12(7):1959.
(2020-08-13收稿 責(zé)任編輯:馬雪玲,徐穎)