王飄,鄭晴,胡婷,張海銀,許言午,包怡敏
基于PI3K/Akt/mTOR信號(hào)通路的三七總皂苷調(diào)控自噬抗H9c2細(xì)胞缺氧/復(fù)氧損傷機(jī)制研究
王飄,鄭晴,胡婷,張海銀,許言午,包怡敏
上海中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院,上海 201203
探討三七總皂苷(PNS)能否通過PI3K/Akt/mTOR信號(hào)通路調(diào)控自噬從而減輕H9c2細(xì)胞缺氧/復(fù)氧損傷機(jī)制。將H9c2細(xì)胞分為正常組、缺氧/復(fù)氧(A/R)組、A/R+PNS組、A/R+PNS+雷帕霉素(Rapa)組、A/R+Rapa組、A/R+羥氯喹(HCQ)組、A/R+3-甲基腺嘌呤(3-MA)組。通過缺氧6 h、復(fù)氧2 h建立H9c2細(xì)胞A/R模型。CCK-8法檢測(cè)細(xì)胞存活率,乳酸脫氫酶(LDH)檢測(cè)試劑盒檢測(cè)細(xì)胞損傷,Western blot檢測(cè)自噬相關(guān)蛋白Atg5、p62、Beclin-1、LC3Ⅱ/LC3Ⅰ及PI3K/Akt/mTOR信號(hào)通路相關(guān)蛋白PI3K、Akt、mTOR的表達(dá),熒光法觀察細(xì)胞自噬流。與正常組比較,A/R組H9c2細(xì)胞存活率明顯下降,細(xì)胞損傷率明顯升高(<0.05),自噬相關(guān)蛋白Atg5、Beclin-1表達(dá)和LC3Ⅱ/LC3Ⅰ比值明顯升高(<0.05),自噬體和自噬溶酶體數(shù)量顯著增加,自噬流顯著增強(qiáng)(<0.05);與A/R組比較,用PNS預(yù)處理后,H9c2細(xì)胞存活率明顯上升,細(xì)胞損傷率明顯降低(<0.05),自噬相關(guān)蛋白Atg5、Beclin-1表達(dá)和LC3Ⅱ/LC3Ⅰ比值明顯降低(<0.05),p62蛋白表達(dá)明顯升高,與自噬抑制劑HCQ、3-MA作用相似,熒光結(jié)果顯示,PNS對(duì)自噬流有明顯抑制作用(<0.05);PNS預(yù)處理后p-PI3K、p-Akt、p-mTOR蛋白表達(dá)明顯升高(<0.05)。PNS能有效減輕H9c2細(xì)胞A/R損傷,其機(jī)制與激活PI3K/Akt/mTOR信號(hào)通路從而抑制自噬流相關(guān)。
三七總皂苷;缺氧/復(fù)氧損傷;自噬;PI3K/Akt/mTOR信號(hào)通路;H9c2細(xì)胞
缺血性心臟病發(fā)病率逐年上升,迄今已成為發(fā)病率及致死率最高的疾病之一[1]。雖通過藥物或手術(shù)等手段可達(dá)到恢復(fù)血流灌注的目的[2],但恢復(fù)過程中可引起不可逆的心肌組織損傷,即心肌缺血再灌注損傷(myocardial ischemia-reperfusion injury,MIRI)[3]。目前研究表明,細(xì)胞自噬作為內(nèi)源性調(diào)節(jié)機(jī)制參與到MIRI過程中[4],抑制過度自噬可減輕MIRI[5]。研究發(fā)現(xiàn),激活PI3K/Akt/mTOR信號(hào)通路可抑制自噬并減少細(xì)胞氧化應(yīng)激的發(fā)生[6-7]。中藥毒副作用小、安全性高,對(duì)MIRI防治效果較好?,F(xiàn)代藥理研究發(fā)現(xiàn),三七主要成分三七總皂苷(Panax notoginseng saponins,PNS)能通過抗氧化應(yīng)激、抗凋亡等途徑減輕MIRI[8-9],但其能否通過調(diào)節(jié)自噬減輕MIRI仍不清楚。因此,本研究通過觀察PNS對(duì)缺氧/復(fù)氧H9c2細(xì)胞的影響,運(yùn)用自噬激動(dòng)劑及自噬抑制劑等工具藥,觀察PNS對(duì)自噬流的作用,探討PNS能否通過PI3K/Akt/mTOR信號(hào)通路調(diào)控自噬流,從而達(dá)到減輕MIRI的目的。
H9c2細(xì)胞,中國(guó)科學(xué)院上海細(xì)胞庫。血栓通注射液(成分PNS),昆明制藥集團(tuán)股份有限公司,批號(hào)13HK03;自噬抑制劑3-甲基腺嘌呤(3-MA),MCE,批號(hào)HY-19312;自噬抑制劑羥氯喹(HCQ),Selleck,批號(hào)S4430;自噬激動(dòng)劑雷帕霉素(Rapa),MCE,批號(hào)HY-10219。
CCK-8,上海翊圣生物科技有限公司,批號(hào)40203ES76;乳酸脫氫酶(LDH)檢測(cè)試劑盒,同仁化學(xué)研究所,批號(hào)CK12;DAPRed,同仁化學(xué)研究所,批號(hào)D677;DALGreen,同仁化學(xué)研究所,批號(hào)D675;SQSTM1/p62(CST,貨號(hào)5114s)、Beclin-1(CST,貨號(hào)3495s)、LC3B/MAP1LC3B(Novus,貨號(hào)NB100-2220)、Atg 5(CST,貨號(hào)12994s)、Akt(CST,貨號(hào)4691s)、p-Akt(CST,貨號(hào)4060s)、PI3K(CST,貨號(hào)4257S)、p-PI3K(Abcam,貨號(hào)ab182651)、mTOR(CST,貨號(hào)2983S)、p-mTOR(CST,貨號(hào)5536S)抗體。全自動(dòng)凝膠成像系統(tǒng),上海天能公司,型號(hào)Tanon-2500;激光共聚焦顯微鏡,德國(guó)徠卡,型號(hào)TCS SP8;細(xì)胞培養(yǎng)箱,美國(guó)Thermo Scientific,型號(hào)class100;超凈臺(tái),蘇州凈化設(shè)備公司,型號(hào)SW-CS-IFD。
將H9c2細(xì)胞分為正常組、缺氧/復(fù)氧(A/R)組、A/R+PNS組、A/R+PNS+Rapa組、A/R+Rapa組、A/R+HCQ組、A/R+3-MA組。造模前H9c2細(xì)胞分別用含PNS(100 μg/mL)、Rapa(50 nmol/L)、HCQ(50 μmol/L)、3-MA(5 mmol/L)的培養(yǎng)液處理2 h。A/R模型制備時(shí),細(xì)胞培養(yǎng)液更換為含/不含藥物的無血清培養(yǎng)液,將培養(yǎng)皿置于缺氧條件下(95%N2和5%CO2)培養(yǎng)6 h,之后培養(yǎng)液更換為含/不含藥物的正常培養(yǎng)液,置于37 ℃、5%CO2培養(yǎng)箱中繼續(xù)培養(yǎng)2 h。正常組細(xì)胞正常條件下培養(yǎng)箱中培養(yǎng)8 h。
將細(xì)胞按1×105個(gè)/孔鋪于96孔板,另設(shè)只添加培養(yǎng)液的空白組。造模前PNS組根據(jù)藥物濃度梯度給藥2 h;缺氧前PNS組和A/R組分別更換為含/不含藥物的無血清培養(yǎng)液;缺氧6 h后,更換為含/不含藥物的正常培養(yǎng)液,37 ℃培養(yǎng)箱中培養(yǎng)2 h;2 h后每孔加入10 μL CCK-8,培養(yǎng)1 h,于酶標(biāo)儀波長(zhǎng)450 nm處檢測(cè)OD值,計(jì)算細(xì)胞存活率。細(xì)胞存活率(%)=(模型組OD值-空白組OD值)÷(正常組OD值-空白組OD值)×100%。
根據(jù)LDH試劑盒說明書配制工作液。造模完成后,每孔加100 μL工作液,用鋁箔紙包裹96孔板,避光室溫反應(yīng)30 min;反應(yīng)結(jié)束后每孔加50 μL終止液,并于酶標(biāo)儀波長(zhǎng)490 nm處檢測(cè)OD值,計(jì)算細(xì)胞損傷率。細(xì)胞損傷率(%)=(模型組OD值-空白組OD值)÷(正常組OD值-空白組OD值)×100%。
將細(xì)胞按2×105個(gè)/皿鋪于激光共聚焦專用皿中,培養(yǎng)24 h;依次使用1 μmol/L紅色熒光(DAPRed)和0.5 μmol/L綠色熒光(DALGreen)在37 ℃培養(yǎng)箱中孵育30 min[10];隨后進(jìn)行A/R造模,最后在相同條件下使用激光共聚焦顯微鏡進(jìn)行熒光圖片拍攝。自噬體被DAPRed染色,自噬溶酶體被DALGreen染色。根據(jù)紅綠熒光強(qiáng)度判斷細(xì)胞自噬體、自噬溶酶體數(shù)量和自噬流的變化。
造模結(jié)束后收集細(xì)胞,RIPA裂解液裂解細(xì)胞,4 ℃、12 000 r/min離心15 min,取上清得細(xì)胞總蛋白;BCA法檢測(cè)蛋白濃度。蛋白經(jīng)SDS-PAGE凝膠電泳,轉(zhuǎn)膜,5%BSA封閉1 h,加入稀釋的一抗,4 ℃孵育過夜,二抗室溫孵育1 h,ECL發(fā)光試劑顯影蛋白條帶,Image J軟件測(cè)定蛋白條帶灰度值。
與正常組比較,A/R組H9c2細(xì)胞存活率明顯降低(<0.05),細(xì)胞損傷率明顯升高(<0.05);與A/R組比較,PNS濃度為100、200 μg/mL時(shí),H9c2細(xì)胞存活率明顯升高(<0.05);PNS濃度為50、100、200 μg/mL時(shí),H9c2細(xì)胞損傷率明顯降低(<0.05)。見圖1、圖2。綜合細(xì)胞存活率及損傷率結(jié)果可以看出,濃度為100 μg/mL PNS減輕A/R損傷效果最顯著。
注:與正常組比較,*P<0.05;與A/R組比較,#P<0.05
注:與正常組比較,*P<0.05;與A/R組比較,#P<0.05
與正常組比較,A/R組H9c2細(xì)胞p-PI3K、p-Akt和p-mTOR蛋白表達(dá)差異均無統(tǒng)計(jì)學(xué)意義(>0.05);與A/R組比較,PNS預(yù)處理后,H9c2細(xì)胞p-PI3K、p-Akt和p-mTOR蛋白表達(dá)明顯升高,差異有統(tǒng)計(jì)學(xué)意義(<0.05),見圖3。
注:A.正常組;B. A/R組;C. A/R+PNS組;與A/R組比較;#P<0.05
與正常組比較,A/R組H9c2細(xì)胞Atg5、Beclin-1蛋白表達(dá)明顯升高,LC3Ⅱ/LC3Ⅰ比值顯著增加(<0.05),p62蛋白表達(dá)無明顯變化;與A/R組比較,A/R+PNS組H9c2細(xì)胞自噬相關(guān)蛋白Atg5、Beclin-1表達(dá)及LC3Ⅱ/LC3Ⅰ比值顯著降低(<0.05),p62蛋白表達(dá)明顯升高(<0.05),見圖4。表明PNS對(duì)自噬有明顯抑制作用,且可能抑制自噬流,其作用與自噬抑制劑HCQ和3-MA一致。此外,A/R+PNS+Rapa組H9c2細(xì)胞Atg5、Beclin-1蛋白表達(dá)及LC3Ⅱ/LC3Ⅰ比值明顯低于A/R+Rapa組,提示PNS逆轉(zhuǎn)了Rapa增強(qiáng)自噬的作用。
使用自噬熒光染料標(biāo)記H9c2細(xì)胞,DAPRed代表自噬體,DALGreen代表自噬溶酶體。結(jié)果顯示,正常組DAPRed和DALGreen熒光強(qiáng)度較弱,表明此時(shí)自噬程度較低。經(jīng)A/R造模后各組DAPRed和DALGreen熒光強(qiáng)度均明顯增強(qiáng),見圖5a,表明A/R后自噬增強(qiáng)。結(jié)果顯示,A/R組和A/R+Rapa組DAPRed和DALGreen熒光強(qiáng)度明顯增強(qiáng)(<0.05),表明自噬流水平顯著增加;與A/R組比較,A/R+PNS組和A/R+3-MA組DAPRed熒光強(qiáng)度明顯降低(<0.05),見圖5b,表明此時(shí)自噬體形成較少,但PNS無3-MA作用強(qiáng)。A/R+PNS組和A/R+HCQ組DALGreen熒光強(qiáng)度明顯低于A/R組(<0.05),見圖5c,表明此時(shí)自噬溶酶體數(shù)量減少,其可能與前期對(duì)自噬體生成抑制有關(guān);也可能是PNS與HCQ作用效果一致,即對(duì)自噬溶酶體形成產(chǎn)生抑制作用。此外,A/R+PNS+Rapa組DALGreen熒光強(qiáng)度明顯低于A/R+Rapa組(<0.05),表明PNS可能通過抑制自噬溶酶體形成逆轉(zhuǎn)Rapa的作用。綜合自噬蛋白表達(dá)與熒光結(jié)果發(fā)現(xiàn),PNS可通過抑制自噬體及自噬溶酶體的形成抑制自噬流。
A.正常組;B. A/R組;C. A/R+PNS組;D. A/R+PNS+Rapa組;E. A/R+Rapa組;F. A/R+HCQ組;G. A/R+3-MA組;與正常組比較,*P<0.05;與A/R組比較,#P<0.05;與A/R+Rapa組比較,▲P<0.05
注:A.正常組;B. A/R組;C. A/R+PNS組;D. A/R+PNS+Rapa組;E. A/R+Rapa組;F. A/R+HCQ組;G. A/R+3-MA組;與正常組比較,*P<0.05;與A/R組比較,#P<0.05;與A/R+Rapa組比較,▲P<0.05
心肌缺血再灌注可引起心肌細(xì)胞損傷甚至死亡,表現(xiàn)為心功能下降、心律失常等。本研究采用H9c2細(xì)胞制備A/R模型,模擬在體心肌缺血/再灌注模型,觀察PNS對(duì)A/R損傷細(xì)胞的影響。本實(shí)驗(yàn)結(jié)果顯示,A/R后H9c2細(xì)胞存活率明顯下降,100、200 μg/mL PNS處理后細(xì)胞存活率明顯升高。除細(xì)胞活力檢測(cè)外,細(xì)胞培養(yǎng)液LDH含量檢測(cè)也能部分反映細(xì)胞損傷情況。LDH在細(xì)胞受損或死亡時(shí)被釋放到細(xì)胞外環(huán)境。本實(shí)驗(yàn)中,不同濃度PNS處理細(xì)胞后,其培養(yǎng)液中LDH含量呈劑量依賴性降低,且濃度為50、100、200 μg/mL時(shí)較A/R組差異有統(tǒng)計(jì)學(xué)意義,表明此濃度PNS對(duì)H9c2細(xì)胞A/R損傷有一定的改善作用。
現(xiàn)有研究表明,PI3K/Akt/mTOR信號(hào)通路可能因損傷、氧化應(yīng)激等刺激而被激活[11],是保護(hù)心肌減輕MIRI的有效手段之一。此外,PI3K/Akt/mTOR信號(hào)通路的激活與自噬的發(fā)生密切相關(guān)[12]。當(dāng)發(fā)生MIRI時(shí),PI3K被激活并可上調(diào)自噬的關(guān)鍵調(diào)節(jié)因子,包括Akt,PI3K可磷酸化Akt的Thr308和Ser473位點(diǎn)使Akt活化[13-14],而活化的Akt可磷酸化mTOR[15]。mTOR是細(xì)胞生長(zhǎng)和代謝的關(guān)鍵調(diào)節(jié)劑,其mTORC1亞型也是自噬過程中發(fā)揮調(diào)節(jié)作用的上游活性因子之一[16]。磷酸化的mTOR可通過PI3K/Akt/mTOR信號(hào)通路抑制由局部缺血誘導(dǎo)的瞬時(shí)自噬,從而降低MIRI[17-18]。本實(shí)驗(yàn)結(jié)果表明,A/R組p-PI3K、p-Akt和p-mTOR表達(dá)無明顯變化,PNS組p-PI3K、p-Akt和p-mTOR表達(dá)顯著升高,表明PI3K/Akt/mTOR信號(hào)通路被激活。
為探討PNS能否通過PI3K/Akt/mTOR信號(hào)通路調(diào)控自噬,本研究進(jìn)行了自噬相關(guān)實(shí)驗(yàn)。心肌缺血時(shí)自噬增強(qiáng),以清除受損的細(xì)胞器和細(xì)胞;再灌注時(shí)過高水平的自噬則加速心肌細(xì)胞死亡,導(dǎo)致MIRI[19]。自噬相關(guān)蛋白Atg5、Beclin-1表達(dá)水平可反映細(xì)胞自噬起始階段的變化情況[20-21]。LC3存在于自噬小體,同時(shí)也對(duì)自噬體形成具有重要作用[22],當(dāng)自噬發(fā)生時(shí),LC3Ⅰ大量轉(zhuǎn)化為L(zhǎng)C3Ⅱ,LC3Ⅱ/LC3Ⅰ比值增加[23]。本研究中,A/R組H9c2細(xì)胞Atg5、Beclin-1蛋白表達(dá)和LC3Ⅱ/LC3Ⅰ比值明顯升高,表明此時(shí)自噬水平上升;而PNS處理后H9c2細(xì)胞Atg5、Beclin-1表達(dá)和LC3Ⅱ/LC3Ⅰ比值明顯降低,表明PNS逆轉(zhuǎn)了A/R所致的自噬相關(guān)蛋白表達(dá)升高的趨勢(shì),對(duì)自噬有一定的抑制作用。p62作為自噬下游階段的經(jīng)典標(biāo)志物之一,也可反映自噬的變化,其可與自噬體內(nèi)膜上的泛素化底物和LC3結(jié)合,并通過在溶酶體系統(tǒng)中形成自噬溶酶體而被降解[24]。當(dāng)自噬被抑制時(shí),p62蛋白表達(dá)升高[25]。本研究結(jié)果顯示,PNS預(yù)處理后,H9c2細(xì)胞p62蛋白表達(dá)明顯升高,結(jié)合LC3Ⅱ/LC3Ⅰ的變化,推測(cè)自噬體與溶酶體結(jié)合受阻,自噬流處于被抑制狀態(tài)。
為探明PNS對(duì)自噬流的作用,我們通過自噬熒光檢測(cè)自噬體和自噬溶酶體的形成情況,觀察PNS對(duì)自噬流上下游環(huán)節(jié)的作用。細(xì)胞自噬熒光檢測(cè)試劑可觀察自噬流的整個(gè)過程,以DAPRed標(biāo)記自噬體,其熒光強(qiáng)度較弱時(shí),表明自噬體數(shù)量較少;以DALGreen標(biāo)記自噬溶酶體,其熒光強(qiáng)度弱時(shí),表明自噬溶酶體數(shù)量較少,其生成可能受阻或被過度降解。本實(shí)驗(yàn)結(jié)果顯示,正常組DAPRed和DALGreen熒光強(qiáng)度較弱,表明自噬程度較低;A/R組H9c2細(xì)胞DAPRed和DALGreen熒光強(qiáng)度均明顯增強(qiáng),表明A/R可顯著增強(qiáng)自噬流。與A/R組比較,A/R+PNS組和A/R+3-MA組DAPRed熒光強(qiáng)度明顯降低,表明PNS與3-MA作用相似,即可抑制自噬體形成和發(fā)展[26];由于PNS不能完全抑制自噬體的形成,因此使用自噬抑制劑HCQ,結(jié)果顯示,A/R+PNS組和A/R+HCQ組DALGreen熒光強(qiáng)度明顯降低,表明PNS與HCQ作用相似,可能抑制自噬溶酶體形成[27]。此外,A/R+PNS+Rapa組DALGreen熒光強(qiáng)度低于A/R+Rapa組,表明PNS可通過抑制自噬溶酶體發(fā)揮逆轉(zhuǎn)Rapa的作用。綜合自噬蛋白表達(dá)及熒光結(jié)果,表明PNS影響自噬流的上下游環(huán)節(jié),抑制自噬體及自噬溶酶體的形成,從而抑制自噬流。
綜上,PNS可通過激活PI3K/Akt/mTOR信號(hào)通路抑制自噬流,發(fā)揮對(duì)A/R H9c2細(xì)胞的保護(hù)作用,從而達(dá)到減輕MIRI保護(hù)心臟的作用。
[1] 中國(guó)心血管健康與疾病報(bào)告編寫組.中國(guó)心血管健康與疾病報(bào)告2019概要[J].心腦血管病防治,2020,20(5):437-450.
[2] 王斌,李毅,韓雅玲.穩(wěn)定性冠心病診斷與治療指南[J].中華心血管病雜志,2018,46(9):680-694.
[3] FERDINANDY P, SCHULZ R, BAXTER G F. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning[J]. Pharmacol Rev, 2007,59(4):418-458.
[4] MA S, WANG Y, CHEN Y, et al. The role of the autophagy in myocardial ischemia/reperfusion injury[J]. BBA-Biomembranes, 2015,52(2):271-276.
[5] LIU L, JIN X, HU C F, et al. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways[J]. Cell Physiol Biochem,2017,43(1):52-68.
[6] LIU M W, SU M X, TANG D Y, et al. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression[J]. BMC Pulm Med,2019,19(1):35.
[7] HAN D, WU X, LIU L, et al. Sodium tanshinone ⅡA sulfonate protects ARPE-19 cells against oxidative stress by inhibiting autophagy and apoptosis[J]. Sci Rep,2018,8(1):15137.
[8] WANG L, CHEN X, WANG Y, et al. MiR-30c-5p mediates the effects ofsaponins in myocardial ischemia reperfusion injury by inhibiting oxidative stress-induced cell damage[J]. Biomed Pharmacother,2020,125:109963.
[9] CHEN S, LIU J, LIU X, et al. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/Akt pathway in cardiomyocytes[J]. J Ethnopharmacol,2011,137(1):263-270.
[10] SAKATA T, SAITO A, SUGIMOTO H. In situ measurement of autophagy under nutrient starvation based on interfacial pH sensing[J]. Sci Rep,2018,8(1):8282.
[11] LI X, HU X, WANG J, et al. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury[J]. Int J Mol Med,2018,42(4):1917-1924.
[12] LI Y, GUO Y, FAN Y, et al. Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway[J]. Neurochem Res, 2019,44(8):2007-2019.
[13] ABEYRATHNA P, SU Y. The critical role of Akt in cardiovascular function[J]. Vascul Pharmacol,2015,74:38-48.
[14] GUO Y, PEI X. Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling[J]. Evid Based Complement Alternat Med, 2019,2019:7517431.
[15] KIM J, JUNG K H, RYU H W, et al. Apoptotic effects of xanthium strumariumvia PI3K/AKT/mTOR pathway in hepatocellular carcinoma[J]. Evid Based Complement Alternat Med,2019,2019:2176701.
[16] DUNLOP E A, TEE A R. mTOR and autophagy:a dynamic relationship governed by nutrients and energy[J]. Semin Cell Dev Biol,2014, 36:121-129.
[17] SHI B, MA M, ZHENG Y, et al. mTOR and Beclin1:Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury[J]. J Cell Physiol,2019,234(8):12562-12568.
[18] NICKLIN P, BERGMAN P, ZHANG B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy[J]. Cell,2009,136(3):521-534.
[19] GUSTAFSSON A B, GOTTLIEB R A. Autophagy in ischemic heart disease[J]. Circ Res,2009,104(2):150-158.
[20] WANG M, QIU S, QIN J. Baicalein induced apoptosis and autophagy of undifferentiated thyroid cancer cells by the ERK/PI3K/Akt pathway[J]. Am J Transl Res,2019,11(6):3341-3352.
[21] LI Y, ZHAO Y, SU M, et al. Structural insights into the interaction of the conserved mammalian proteins GAPR-1 and Beclin 1, a key autophagy protein[J]. Acta Crystallogr D Struct Biol, 2017,73(Pt 9):775-792.
[22] MONASTYRSKA I, ULASLI M, ROTTIER P J, et al. An autophagy-independent role for LC3 in equine arteritis virus replication[J]. Autophagy,2013,9(2):164-174.
[23] 劉娜娜,賈學(xué)昭,王莖,等.艾灸對(duì)慢性心力衰竭大鼠心肌細(xì)胞自噬功能的影響[J].針刺研究,2019,44(1):25-30.
[24] BITTO A, LERNER C A, NACARELLI T, et al. P62/SQSTM1 at the interface of aging, autophagy, and disease[J]. Age (Dordr),2014, 36(3):9626.
[25] SHARIFI M N, MOWERS E E, DRAKE L E, et al. Measuring autophagy in stressed cells[J]. Methods Mol Biol,2015,1292:129-150.
[26] WU Y T, TAN H L, SHUI G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class Ⅰ and Ⅲ phosphoinositide 3-kinase[J]. J Biol Chem,2010,285(14):10850-10861.
[27] MAUTHE M, ORHON I, ROCCHI C, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion[J]. Autophagy,2018,14(8):1435-1455.
Study on Panax Notoginseng Saponins Regulate Autophagy Against H9c2 Cells Anoxia/reoxygenation Injury via PI3K/Akt/mTOR Signaling Pathway
WANG Piao, ZHENG Qing, HU Ting, ZHANG Haiyin, XU Yanwu, BAO Yimin
To explore mechanism whether Panax notoginseng saponins (PNS) can regulate autophagy through the PI3K/Akt/mTOR signaling pathway to reduce anoxia/reoxygenation (A/R) injury of H9c2 cells.H9c2 cells were divided into seven groups: control, anoxia-reoxygenation (A/R), A/R+PNS, A/R+PNS+ Rapamycin (Rapa), A/R+Rapa, A/R+hydroxychloroquine (HCQ), and A/R+3-methyladenine (3-MA). The A/R model of H9c2 cells was established by anoxia for 6 h and reoxygenation for 2 h. Cell survival rate was detected by CCk-8 method; cell damage was detected by LDH detection kit; autophagy-related proteins of Atg5, p62, Beclin-1, LC3Ⅱ/LC3Ⅰ and PI3K/Akt/mTOR signaling pathway related proteins PI3K, Akt, mTOR expression were detected by Western blot; autophagy flow was observed by fluorescence.Compared with the control group, the cell viability of A/R group was decreased significantly while the cell damage rate was increased (<0.05). The expressions of autophagy-related proteins Atg5, Beclin-1 and LC3Ⅱ/LC3Ⅰ ratio were increased significantly (<0.05); The numbers of autophagosome and autolysosome increased significantly, and the level of autophagic flow increased significantly (<0.05). Compared with the A/R group, PNS preconditioning increased cell viability, reduced cell damage rate (<0.05); The expressions of Atg5, Beclin-1, and LC3Ⅱ/LC3Ⅰ ratio were reduced significantly (<0.05), and the expression of p62 was increased significantly, which were similar to the autophagy inhibitors HCQ and 3-MA; Autophagy fluorescence detection also revealed an inhibition of autophagic flow (<0.05). The expressions of p-PI3K, p-Akt and p-mTOR protein were increased after PNS preconditioning (<0.05).PNS can effectively reduce A/R damage in H9c2 cells, and its mechanism is related to the inhibition of autophagic flow by activating the PI3K/Akt/mTOR signaling pathway.
Panax notoginseng saponins; anoxia/reoxygenation injury; autophagy; PI3K/Akt/mTOR signaling pathway; H9c2 cells
R285.5
A
1005-5304(2021)08-0087-06
10.19879/j.cnki.1005-5304.202012070
國(guó)家自然科學(xué)基金(81303256)
包怡敏,E-mail:yiminbao@163.com
(收稿日期:2020-12-04)
(修回日期:2021-01-05;編輯:華強(qiáng))