譚暉 王吉昌 董丹鳳 李恩孝 李毅
摘要 目的:探究五味子酯甲(SA)對(duì)肺癌細(xì)胞生長和轉(zhuǎn)移的潛在作用機(jī)制。方法:本研究以非小細(xì)胞肺癌細(xì)胞系A(chǔ)549和H1299作為實(shí)驗(yàn)對(duì)象,將SA溶解在二甲基亞砜中,用不同劑量的SA(0 μmol/L、5 μmol/L、10 μmol/L、20 μmol/L、50 μmol/L)孵育A549和H1299細(xì)胞24 h、48 h和72 h。采用細(xì)胞計(jì)數(shù)盒-8檢測(cè)細(xì)胞增殖,采用FC500流式細(xì)胞儀分析細(xì)胞凋亡,采用傷口愈合實(shí)驗(yàn)評(píng)價(jià)細(xì)胞遷移,采用Transwell檢測(cè)細(xì)胞侵襲。通過實(shí)時(shí)定量逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(qRT-PCR)檢測(cè)細(xì)胞中CCAT1 mRNA水平;通過Western Blotting檢測(cè)細(xì)胞中p-PI3K、PI3K、p-AKT、AKT、PTEN、E-cadherin、MMP2和MMP9的蛋白表達(dá)水平。結(jié)果:與未處理的細(xì)胞比較,SA以劑量和時(shí)間依賴性方式降低了A549和H1299的細(xì)胞活力(P<0.05)。與DMSO組比較,SA 10 μmol/L組的A549和H1299細(xì)胞凋亡率顯著升高了5.71倍和3.48倍(P<0.001),傷口愈合面積顯著降低了63.42%和59.15%(P<0.001),侵襲細(xì)胞數(shù)顯著降低了53.98%和53.36%(P<0.001)。與DMSO組比較,SA 10 μmol/L組A549和H1299細(xì)胞中E-cadherin的蛋白表達(dá)水平升高,而MMP-2和MMP-9的蛋白表達(dá)水平降低(P<0.01),CCAT1的mRNA表達(dá)水平均降低(P<0.01),p-PI3K和p-AKT的蛋白表達(dá)水平顯著降低(P<0.01),PTEN的蛋白表達(dá)水平顯著升高(P<0.01),而PI3K和AKT蛋白表達(dá)水平無明顯變化(P>0.05)。結(jié)論:SA通過抑制CCAT1和PI3K/AKT信號(hào)通路抑制肺癌細(xì)胞的生長和轉(zhuǎn)移。
關(guān)鍵詞 五味子酯甲;肺癌;遷移;侵襲;增殖;凋亡;結(jié)腸癌相關(guān)轉(zhuǎn)錄本-1;PI3K/AKT信號(hào)通路
Abstract Objective:To explore the potential effect and mechanism of Schisantherin A(SA) on the growth and metastasis of lung cancer cells.Methods:In this study,the non-small cell lung cancer cell lines A549 and H1299 were used as experimental objects.SA was dissolved in dimethyl sulfoxide(DMSO),and A549 and H1299 was incubated with different concentrations of SA(0 μmol,5 μmol,10 μmol,20 μmol,50 μmol) for 24 h,48 h and 72 h.Then,Cell Counting Kit-8(CCK-8) was used to detect cell proliferation,F(xiàn)C500 flow cytometer was used to analyze cell apoptosis,wound healing experiment was used to evaluate cell migration,and Transwell was used to detect cell invasion.Real-time quantitative reverse transcription polymerase chain reaction(qRT-PCR) was used to detect CCAT1mRNA levels in cells.Western blot was used to detect the protein expression levels of p-PI3K,PI3K,p-AKT,AKT,PTEN,E-cadherin,MMP2 and MMP9 in cells.Results:Compared with untreated cells,SA reduced the cell viability of A549 and H1299 in a concentration and time-dependent manner(P<0.05).Compared with the DMSO group,the apoptosis rate of A549 and H1299 cells in the SA 10 μmol group was significantly increased by 5.71 times and 3.48 times(P<0.001),the wound healing area of A549 and H1299 cells in the SA 10 μmol group was significantly reduced by 63.42% and 59.15%(P<0.001),and the number of invasion cells of A549 and H1299 cells in the SA 10 μmol group was significantly reduced by 53.98% and 53.36%(P<0.001).Compared with the DMSO group,the protein expression levels of E-cadherin in A549 and H1299 cells in the SA 10 μmol group increased,while the protein expression levels of MMP-2 and MMP-9 decreased(P<0.01); the mRNA and protein expression levels of CCAT1 in A549 and H1299 cells in the SA 10 μmol group were lower(P<0.01); the protein expression of p-PI3K and p-AKT in A549 and H1299 cells in SA 10 μmol group decreased significantly(P<0.01),PTEN protein expression level increased significantly(P<0.01),while PI3K and AKT protein expression levels did not change significantly(P>0.05).Conclusion:SA inhibits the growth and metastasis of lung cancer cells by inhibiting the CCAT1 and PI3K/AKT signaling pathways.
Keywords Schisantherin A; Lung cancer; Migration; Invasion; Proliferation; Apoptosis; CCAT1; PI3K/AKT signaling pathway
中圖分類號(hào):R734.2,R285.5文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.13.009
肺癌是公認(rèn)的發(fā)病率和死亡率都很高的常見惡性腫瘤,非小細(xì)胞肺癌(Non-small Cell Lung Carcinoma,NSCLC)是最常見的肺癌亞型,占所有病例的近85%[1-3]。傳統(tǒng)的化療藥物在NSCLC患者中引起的不良反應(yīng)較大,這些不良反應(yīng)往往直接導(dǎo)致患者死亡。此外,分子靶向治療藥物的療效有限。因此,治療NSCLC的新藥仍然是迫切需要的。目前,植物來源的天然藥物是抗癌藥物的熱點(diǎn)領(lǐng)域。五味子酯甲(Schisantherin A,SA)是從中藥五味子中分離得到的一種主要的生物活性木脂素。最近的研究顯示其具有改善腦功能、減輕肝腎缺血再灌注損傷的保護(hù)作用[4-6]。然而,目前尚無文獻(xiàn)報(bào)道SA對(duì)肺癌細(xì)胞是否具有抗癌作用及其可能的機(jī)制。
長度超過200個(gè)核苷酸的長鏈非編碼RNA(LncRNAs)在不同水平的腫瘤過程中扮演了主要角色,包括轉(zhuǎn)錄和轉(zhuǎn)錄后加工[7]。LncRNA介導(dǎo)致癌或抗癌作用,但許多參與腫瘤發(fā)生發(fā)展的LncRNA的具體調(diào)控機(jī)制尚不清楚,需要進(jìn)一步闡明。PI3K/AKT信號(hào)通路是人類腫瘤中最頻繁激活的信號(hào)通路之一,參與調(diào)控腫瘤活性及抗癌藥物的耐藥性[8-11]。本研究檢測(cè)了SA對(duì)肺癌細(xì)胞遷移和侵襲的干預(yù)作用,及其對(duì)肺癌中LncRNA CCAT1和PI3K/AKT信號(hào)通路的影響,旨在探討SA對(duì)肺癌細(xì)胞遷移和侵襲的影響,從而為抗癌藥物的研發(fā)提供基礎(chǔ)數(shù)據(jù)。
1 材料與方法
1.1 材料
1.1.1 細(xì)胞系 NSCLC細(xì)胞系(ATCC,美國,類型:A549和H1299)。本研究獲得西安交通大學(xué)第一附屬醫(yī)院醫(yī)學(xué)倫理委員會(huì)批準(zhǔn)(倫理審批號(hào):XJTU2BE2019JCS-065)。
1.1.2 藥物 五味子酯甲(SA)(TargetMol公司,美國,貨號(hào):T2913);青霉素-鏈霉素(Gibco公司,美國,貨號(hào):15140163)。
1.1.3 試劑與儀器 胎牛血清(Gibco公司,美國,貨號(hào):0014020DJ);DMEM培養(yǎng)基(Gibco公司,美國,貨號(hào):A4192101);二甲基亞砜(DMSO)(Sigma公司,美國,貨號(hào):D2650);蛋白酶抑制劑(Sigma公司,美國,貨號(hào):11206893001);磷酸酶抑制劑(Sigma公司,美國,貨號(hào):P2850);細(xì)胞計(jì)數(shù)盒-8(CCK-8)(碧云天生物技術(shù)研究所,貨號(hào):C0037);結(jié)晶紫(碧云天生物技術(shù)研究所,貨號(hào):C0121);RIPA裂解緩沖液(碧云天生物技術(shù)研究所,貨號(hào):P0013B);Annexin V-FITC細(xì)胞凋亡檢測(cè)試劑盒(碧云天生物技術(shù)研究所,貨號(hào):C1062S);Transwell(Corning公司,美國,貨號(hào):3428);Matrigel購自(BD Pharmingen公司,美國,貨號(hào):BD356234);TRIzol試劑(Invitrogen公司,美國,貨號(hào):15596018);PrimeScriptTMRT-PCR試劑盒(Takara公司,日本,貨號(hào):RR037A);SYBR Premix Ex TaqTMⅡ(Takara公司,日本,貨號(hào):RR820A);BCA試劑盒(Thermo Fisher Science公司,美國,貨號(hào):23228);ECL化學(xué)發(fā)光檢測(cè)試劑盒(BioRad公司,美國,貨號(hào):1705062);p-PI3K(Cell Signaling Technology公司,美國,貨號(hào):17366);PI3K(Cell Signaling Technology公司,美國,貨號(hào):4257);p-AKT(Cell Signaling Technology公司,美國,貨號(hào):4060);AKT(Cell Signaling Technology公司,美國,貨號(hào):4691);PTEN(Cell Signaling Technology公司,美國,貨號(hào):9188);E-cadherin(Cell Signaling Technology公司,美國,貨號(hào):3195);MMP2(Cell Signaling Technology公司,美國,貨號(hào):87809);MMP9(Cell Signaling Technology公司,美國,貨號(hào):13667);GAPDH(Cell Signaling Technology公司,美國,貨號(hào):5174);辣根過氧化物酶標(biāo)記的抗兔IgG抗體(Cell Signaling Technology公司,美國,貨號(hào):7074)。分光光度計(jì)(Thermo Scientific公司,美國,Nanodrop 2000型);流式細(xì)胞儀(Beckman Coulter公司,美國,F(xiàn)C500型)。實(shí)時(shí)熒光定量PCR系統(tǒng)(Applied Biosystem公司,美國,ABI 7500型)。
1.2 方法
1.2.1 細(xì)胞培養(yǎng)與給藥處理 A549和H1299細(xì)胞均在添加了10%胎牛血清、100 U/mL青霉素和100 μg/mL鏈霉素的DMEM培養(yǎng)基中,培養(yǎng)條件為37 ℃、5% CO2。將SA溶解在DMSO中。采用不同劑量的SA(0 μmol/L、5 μmol/L、10 μmol/L、20 μmol/L、50 μmol/L)孵育A549和H1299細(xì)胞24 h、48 h和72 h。
1.2.2 細(xì)胞增殖檢測(cè) 采用細(xì)胞計(jì)數(shù)盒-8(CCK-8)檢測(cè)A549和H1299細(xì)胞增殖情況。將細(xì)胞置于96孔板中,細(xì)胞密度為3×104個(gè)/孔。每孔加入10 μL CCK8,37 ℃孵育2 h,按照CCK-8說明書的方法每隔24 h檢測(cè)各組細(xì)胞增殖情況,以DMSO作為陰性對(duì)照組。
1.2.3 細(xì)胞凋亡分析 根據(jù)說明書的操作步驟,收集每組細(xì)胞(3×105個(gè)細(xì)胞)并用PBS洗滌。然后,將細(xì)胞轉(zhuǎn)移到試管中,并在400 mL的結(jié)合緩沖液中重懸。將Annexin V(5 mL)和碘化丙啶(PI,5 mL)添加到細(xì)胞懸液中,并在室溫黑暗中孵育15 min。收集細(xì)胞并使用FC500流式細(xì)胞儀分析。
1.2.4 傷口愈合實(shí)驗(yàn) 將3×105個(gè)細(xì)胞接種在12孔板上。細(xì)胞達(dá)到80%融合后,用200 μL移液槍尖頭做一細(xì)胞劃痕,用磷酸鹽緩沖液沖洗3次,去除脫落細(xì)胞,采用劑量為10 μmol/L的SA孵育24 h,分別于0 h和24 h觀察并拍照。
1.2.5 細(xì)胞侵襲分析 使用Transwell(孔徑8 μmol/L)檢測(cè)細(xì)胞侵襲。采用劑量為10 μmol/L的SA處理細(xì)胞24 h。收集3×105個(gè)細(xì)胞并放入含有200 μL無血清培養(yǎng)液的上室中,上室預(yù)先用Matrigel涂覆。下室加入600 μL含有10%胎牛血清的培養(yǎng)液。24 h后,用4%多聚甲醛固定侵襲至下室的細(xì)胞,用1%結(jié)晶紫染色,顯微鏡下隨機(jī)選擇5個(gè)視野計(jì)數(shù)。
1.2.6 實(shí)時(shí)定量逆轉(zhuǎn)錄聚合酶鏈反應(yīng) 使用TRIzol試劑分離細(xì)胞總RNA,并通過Nanodrop 2000分光光度計(jì)定量。使用PrimeScriptTMRT-PCR試劑盒從1 μg提取的總RNA樣品中合成cDNA。使用SYBR Premix Ex TaqTMⅡ在ABI 7500型實(shí)時(shí)熒光定量PCR系統(tǒng)上進(jìn)行PCR。使用2-△△Ct方法計(jì)算mRNA的相對(duì)表達(dá)。GAPDH用作CCAT1內(nèi)部對(duì)照。具體的引物序列設(shè)計(jì)如下:CCAT1,正向,5′-CAGCGAAGGGGTTGAATGCA-3′,反向,5′-ACCTTAGCCCAGGAGCATAC-3′;GAPDH,正向引物,5′-GTGTTCACCTATTACTTGGTCC-3′,反向引物,5′-GTGACTGCTCTATTCTTACCAT-3′。
1.2.7 Western Blotting分析 用RIPA裂解緩沖液提取細(xì)胞蛋白,用BCA試劑盒測(cè)定蛋白濃度。將等量的蛋白質(zhì)(50 μg)進(jìn)行10%十二烷基硫酸鈉聚丙烯酰胺凝膠電泳,然后轉(zhuǎn)移至PVDF膜進(jìn)行條帶分離。隨后,在含有Tween-20(TBS-T)的Tris緩沖鹽水中用10%脫脂牛奶將膜封閉。將膜與p-PI3K(1∶1 000)、PI3K(1∶1 000)、p-AKT(1∶2 000)、AKT(1∶2 000)、PTEN(1∶2 000)、E-cadherin(1∶3 000)、MMP2(1∶3 000)、MMP9(1∶3 000)和GAPDH(1∶2 000)在4 ℃孵育過夜。第二天用0.1% PBS洗滌后,將膜與辣根過氧化物酶標(biāo)記的山羊抗兔IgG抗體(1∶2 000)一起孵育,并通過ECL化學(xué)發(fā)光檢測(cè)試劑盒進(jìn)行顯影。將目的蛋白水平標(biāo)準(zhǔn)化為GAPDH的蛋白水平。
1.3 統(tǒng)計(jì)學(xué)方法
采用SPSS 21.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析,其中計(jì)數(shù)資料以百分率表示,采用χ2檢驗(yàn),計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(±s)表示,采用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 SA降低肺癌細(xì)胞活力
在第24 h,與0 μmol/L比較,5 μmol/L、10 μmol/L、20 μmol/L、50 μmol/L處理的A549和H1299細(xì)胞活力顯著降低,2種細(xì)胞活性均呈劑量依賴性下降(P<0.05)。本研究中10 μmol/L的SA處理A549和H1299細(xì)胞24 h均顯著降低了細(xì)胞活力(P<0.01),因此選擇10 μmol/L的SA進(jìn)行后續(xù)實(shí)驗(yàn)。用10 μmol/L SA處理2種細(xì)胞,在處理24 h、48 h和72 h時(shí),與DMSO組比較,SA 10 μmol/L組的A549和H1299細(xì)胞活力均呈時(shí)間依賴性下降(P<0.05)。見圖1。
2.2 SA誘導(dǎo)肺癌細(xì)胞凋亡
通過流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡,與DMSO組比較,SA 10 μmol/L組的A549和H1299細(xì)胞凋亡率顯著升高了5.71倍(3.14±0.15%相比21.06±1.13%,t=11.142,P<0.001)和3.48倍(4.21±0.21%相比18.85±0.94%,t=12.336,P<0.001)。見圖2。
2.3 SA抑制肺癌細(xì)胞的遷移和侵襲
通過傷口愈合實(shí)驗(yàn)檢測(cè)細(xì)胞遷移能力,與DMSO組比較,SA 10 μmol/L組A549和H1299細(xì)胞的傷口愈合面積顯著降低了63.42%[(61.32±3.35)%相比(22.43±1.54)%,t=14.352,P<0.001]和59.15%[(57.35±2.65)%相比(23.43±1.06)%,t=14.325,P<0.001]。通過Transwell檢測(cè)細(xì)胞侵襲能力,與DMSO組比較,SA 10 μmol/L組A549和H1299細(xì)胞的侵襲細(xì)胞數(shù)顯著降低了53.98%[(387.21±22.07)%相比(178.18±7.80)%,t=9.542,P<0.001]和53.36%[(367.43±19.41)%相比(171.38±8.02)%,t=11.313,P<0.001]。通過Western Blotting檢測(cè)細(xì)胞中E-cadherin、MMP-2和MMP-9的蛋白表達(dá),與DMSO組比較,SA 10 μmol/L組A549細(xì)胞中E-cadherin的蛋白表達(dá)水平升高了3.15倍,而MMP-2和MMP-9的蛋白表達(dá)水平降低了71.43%和51.56%(P<0.001);SA 10 μmol/L組H1299細(xì)胞中E-cadherin的蛋白表達(dá)水平升高了1.14倍,而MMP-2和MMP-9的蛋白表達(dá)水平降低了64.71%和60.66%(P<0.001)。見圖3~5。
2.4 SA抑制肺癌細(xì)胞中CCAT1的表達(dá)
通過qRT-PCR檢測(cè)細(xì)胞中CCAT1的mRNA表達(dá),與DMSO組比較,SA 10 μmol/L組A549和H1299細(xì)胞中CCAT1的mRNA表達(dá)水平分別降低了73.00%和77.00%(P<0.01)。見圖6。
2.5 SA抑制肺癌細(xì)胞中PI3K/AKT信號(hào)通路
通過Western Blotting檢測(cè)細(xì)胞中PI3K/AKT信號(hào)通路關(guān)鍵分子的蛋白表達(dá),與DMSO組比較,SA 10 μmol/L組A549細(xì)胞中p-PI3K和p-AKT的蛋白表達(dá)水平顯著降低了73.21%和70.69%(P<0.01),PTEN的蛋白表達(dá)水平顯著升高了1.95倍(P<0.01),而PI3K和AKT蛋白表達(dá)水平無明顯變化(P>0.05)。與DMSO組比較,SA 10 μmol/L組H1299細(xì)胞中p-PI3K和p-AKT的蛋白表達(dá)水平顯著降低了64.18%和73.91%(P<0.01),PTEN的蛋白表達(dá)水平顯著升高了1.45倍(P<0.01),而PI3K和AKT蛋白表達(dá)水平無明顯變化(P>0.05)。見圖7。
3 討論
五味子酯甲(Schisantherin A,SA)是從中藥五味子中提取的主要藥效成分。據(jù)報(bào)道,SA可以抑制核因子κB和MAPK的活性以發(fā)揮其抗炎作用,被認(rèn)為是一種核因子κB抑制劑[12]。許多研究也證實(shí)SA對(duì)神經(jīng)和肝臟損傷有保護(hù)作用[5-6]。另外,在治療癌癥方面,Wang等[13]研究顯示,SA通過素通過激活ROS/JNK和抑制Nrf2信號(hào)通路誘導(dǎo)人胃癌細(xì)胞凋亡,并抑制細(xì)胞遷移。然而,目前尚無文獻(xiàn)報(bào)道SA在肺癌中的作用。因此,本研究考察了SA對(duì)肺癌細(xì)胞的作用及其機(jī)制。
本研究結(jié)果顯示,SA對(duì)A549和H1299細(xì)胞的活力均有抑制作用,且呈濃度和時(shí)間依賴性。此外,SA誘導(dǎo)了A549和H1299細(xì)胞的凋亡。上述結(jié)果提示,SA可能是一種新型肺癌治療藥物。腫瘤轉(zhuǎn)移涉及許多生物學(xué)過程,如細(xì)胞黏附、細(xì)胞外基質(zhì)降解、腫瘤細(xì)胞遷移和侵襲等。本研究中,SA抑制了A549和H1299細(xì)胞的遷移和侵襲。此外,SA處理后,A549和H1299細(xì)胞中細(xì)胞黏附E-cadherin的表達(dá)增加,而基質(zhì)金屬蛋白酶MMP-9和MMP-2的表達(dá)水平則降低。這些發(fā)現(xiàn)表明SA可以顯著抑制肺癌細(xì)胞的轉(zhuǎn)移能力。
近年來,LncRNAs已成為腫瘤研究的熱點(diǎn),參與調(diào)節(jié)腫瘤細(xì)胞的增殖、侵襲、遷移、凋亡等生物學(xué)過程。LncRNAs的異常表達(dá)與癌癥的發(fā)生發(fā)展密切相關(guān)。雖然LncRNA參與腫瘤發(fā)生發(fā)展的具體調(diào)控機(jī)制尚不清楚,但已證實(shí)多種LncRNA促進(jìn)癌細(xì)胞的增殖、遷移、侵襲和轉(zhuǎn)移,其中包括HOX基因的反義基因間RNA、轉(zhuǎn)移相關(guān)肺腺癌轉(zhuǎn)錄本-1、SLC7A11-AS1、LINC01606等[14-17]。結(jié)腸癌相關(guān)轉(zhuǎn)錄本-1(Colon Cancer Associated Transcript-1,CCAT1)位于染色體8q24.21上,全長2 628個(gè)核苷酸,是一種與多種腫瘤相關(guān)的致癌基因,可被c-Myc激活,促進(jìn)癌癥的發(fā)展[18-20]。CCAT1在各種類型的腫瘤中異常表達(dá)并表現(xiàn)出致癌作用,例如胃癌、肝癌和肺癌[21-23]。更重要的是,在耐多西他賽的肺癌細(xì)胞中,CCAT1被發(fā)現(xiàn)起癌基因的作用并促進(jìn)其化學(xué)耐藥性[21]。在胃癌中,敲除Carlo-5基因降低了ERK和MAPK(P38)的磷酸化[24]。有研究證實(shí)CCAT1通過激活PI3K/AKT在FTC-133甲狀腺癌細(xì)胞中發(fā)揮致癌作用[25]。本研究發(fā)現(xiàn)SA抑制了A549和H1299細(xì)胞中CCAT1的表達(dá)。因此,SA的對(duì)肺癌細(xì)胞轉(zhuǎn)移的抑制作用可能是通過抑制CCAT1介導(dǎo)的。
磷脂酰肌醇3-激酶(Phosphatidylinositol 3-kinase,PI3K)是生長因子受體酪氨酸激酶(Receptor Tyrosine Kinase,RTK)下游的主要信號(hào)成分,它可以激活A(yù)KT,調(diào)節(jié)一系列調(diào)控細(xì)胞增殖、成活、生長和其他過程的靶蛋白[9]。PI3K/AKT信號(hào)通路是人類腫瘤中最頻繁激活的信號(hào)通路之一,與腫瘤細(xì)胞對(duì)特定治療藥物的敏感性或耐藥性有關(guān),并參與控制上皮細(xì)胞向間充質(zhì)細(xì)胞的轉(zhuǎn)化[10]。PI3K/AKT信號(hào)通路具有防止細(xì)胞凋亡和促進(jìn)惡性轉(zhuǎn)化的作用。AKT的激活促進(jìn)腫瘤轉(zhuǎn)移和侵襲,拮抗細(xì)胞周期停滯和血管生成,并使mTOR蛋白激酶磷酸化。據(jù)報(bào)道,CCAT1作為一種癌癥增強(qiáng)子RNA(eRNA),通過與TP63和SOX2以及與EGFR DNA分子相互作用來激活PI3K/AKT信號(hào)通路[26]。此外,PI3K/AKT信號(hào)通路的活性受RAS的正向調(diào)節(jié)和PTEN的負(fù)向調(diào)節(jié)[27]。本研究顯示,SA抑制了A549和H1299細(xì)胞中PI3K和AKT的磷酸化,并上調(diào)了抑癌基因PTEN的表達(dá)。表明SA通過抑制PI3K/AKT信號(hào)通路來抑制肺癌細(xì)胞的生長和轉(zhuǎn)移。
總之,本研究表明SA通過抑制CCAT1和PI3K/AKT信號(hào)通路抑制肺癌細(xì)胞的生長和轉(zhuǎn)移。通過對(duì)SA進(jìn)行結(jié)構(gòu)和化學(xué)修飾來提高其溶解性并降低其對(duì)正常細(xì)胞的毒性,有望將其開發(fā)成一種新型抗癌藥物。
參考文獻(xiàn)
[1]Jonna S,Subramaniam DS.Molecular diagnostics and targeted therapies in non-small cell lung cancer(NSCLC):an update[J].Discov Med,2019,27(148):167-170.
[2]Osmani L,Askin F,Gabrielson E,et al.Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma(NSCLC):Moving from targeted therapy to immunotherapy[J].Semin Cancer Biol,2018,52(Pt 1):103-109.
[3]Proto C,F(xiàn)errara R,Signorelli D,et al.Choosing wisely first line immunotherapy in non-small cell lung cancer(NSCLC):what to add and what to leave out[J].Cancer Treat Rev,2019,75:39-51.
[4]Gong J,Wang X.Schisantherin A protects renal tubular epithelial cells from hypoxia/reoxygenation injury through the activation of PI3K/AKT signaling pathway[J].J Biochem Mol Toxicol,2018,32(7):e22160.
[5]Liu C,Sun W,Li N,et al.Schisantherin A Improves Learning and Memory of Mice with D-Galactose-Induced Learning and Memory Impairment Through Its Antioxidation and Regulation of p19/p53/p21/Cyclin D1/CDK4/RB Gene Expressions[J].J Med Food,2018,21(7):678-688.
[6]Zheng N,Liu F,Lu H,et al.Schisantherin A protects against liver ischemia-reperfusion injury via inhibition of mitogen-activated protein kinase pathway[J].Int Immunopharmacol,2017,47:28-37.
[7]Nasrollahzadeh-Khakiani M,Emadi-Baygi M,Schulz WA,et al.Long noncoding RNAs in gastric cancer carcinogenesis and metastasis[J].Brief Funct Genomics,2017,16(3):129-145.
[8]Alzahrani AS.PI3K/Akt/mTOR inhibitors in cancer:At the bench and bedside[J].Semin Cancer Biol,2019,59:125-132.
[9]Costa R,Han HS,Gradishar WJ.Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer:a review[J].Breast Cancer Res Treat,2018,169(3):397-406.
[10]Hoxhaj G,Manning BD.The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J].Nat Rev Cancer,2020,20(2):74-88.
[11]O′Donnell JS,Massi D,Teng M,et al.PI3K-AKT-mTOR inhibition in cancer immunotherapy,redux[J].Semin Cancer Biol,2018,48:91-103.
[12]Liao S,Zhou K,Li D,et al.Schisantherin A suppresses interleukin-1β-induced inflammation in human chondrocytes via inhibition of NF-κB and MAPKs activation[J].Eur J Pharmacol,2016,780:65-70.
[13]Wang Z,Yu K,Hu Y,et al.Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells[J].Biochem Pharmacol,2020,173:113673.
[14]Chiyomaru T,F(xiàn)ukuhara S,Saini S,et al.Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells[J].J Biol Chem,2014,289(18):12550-12565.
[15]Hirata H,Hinoda Y,Shahryari V,et al.Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205[J].Cancer Res,2015,75(7):1322-1331.
[16]Luo Y,Tan W,Jia W,et al.The long non-coding RNA LINC01606 contributes to the metastasis and invasion of human gastric cancer and is associated with Wnt/β-catenin signaling[J].Int J Biochem Cell Biol,2018,103:125-134.
[17]Luo Y,Wang C,Yong P,et al.Decreased expression of the long non-coding RNA SLC7A11-AS1 predicts poor prognosis and promotes tumor growth in gastric cancer[J].Oncotarget,2017,8(68):112530-112549.
[18]Coni P,Madeddu A,Kuqi L,et al.LncRNA colon cancer-associated transcript 1(CCAT1) in ovarian cancer[J].Eur Rev Med Pharmacol Sci,2018,22(6):1525-1527.
[19]Lai XJ,Cheng HF.LncRNA colon cancer-associated transcript 1(CCAT1) promotes proliferation and metastasis of ovarian cancer via miR-1290[J].Eur Rev Med Pharmacol Sci,2018,22(2):322-328.
[20]Yang C,Pan Y,Deng SP.Downregulation of lncRNA CCAT1 enhances 5-fluorouracil sensitivity in human colon cancer cells[J].BMC Mol Cell Biol,2019,20(1):9-19.
[21]Chen J,Zhang K,Song H,et al.Long noncoding RNA CCAT1 acts as an oncogene and promotes chemoresistance in docetaxel-resistant lung adenocarcinoma cells[J].Oncotarget,2016,7(38):62474-62489.
[22]Deng L,Yang SB,Xu FF,et al.Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge[J].J Exp Clin Cancer Res,2015,34(1):18-27.
[23]Yang F,Xue X,Bi J,et al.Long noncoding RNA CCAT1,which could be activated by c-Myc,promotes the progression of gastric carcinoma[J].J Cancer Res Clin Oncol,2013,139(3):437-445.
[24]Zhang Y,Ma M,Liu W,et al.Enhanced expression of long noncoding RNA CARLo-5 is associated with the development of gastric cancer[J].Int J Clin Exp Pathol,2014,7(12):8471-8479.
[25]Yang T,Zhai H,Yan R,et al.lncRNA CCAT1 promotes cell proliferation,migration,and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line[J].Braz J Med Biol Res,2018,51(6):e7046.
[26]Jiang Y,Jiang YY,Xie JJ,et al.Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression[J].Nat Commun,2018,9(1):3619-3621.
[27]Stambolic V,Suzuki A,de la Pompa JL,et al.Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN[J].Cell,1998,95(1):29-39.
(2020-11-19收稿 責(zé)任編輯:吳珊,徐穎)