齊學(xué)元 鄧廣哲 黃康
摘 要:采用理論分析和數(shù)值模擬的方法,以陜北煤田韓家灣礦近距離煤層2-2煤和3-1煤為研究對(duì)象,對(duì)煤柱的應(yīng)力分布及傳遞規(guī)律進(jìn)行研究。結(jié)合煤層具體賦存條件計(jì)算煤柱的塑性區(qū)寬度,分析韓家灣礦殘留煤柱支撐能力。對(duì)4種尺寸的煤柱應(yīng)力在底板中的分布規(guī)律進(jìn)行力學(xué)分析,得到不同尺寸煤柱在底板各深度的應(yīng)力曲線。運(yùn)用FLAC3D軟件對(duì)韓家灣煤礦2-2煤房柱區(qū)留設(shè)的4種尺寸的間隔煤柱應(yīng)力分布進(jìn)行模擬,得出不同尺寸煤柱應(yīng)力在底板巖層中的分布圖。結(jié)果表明:殘留煤柱承載著上覆巖層的重量,沿煤柱中心線向下傳遞到底板巖層中,呈半橢圓型分布,在煤柱下方形成應(yīng)力增高區(qū),應(yīng)力以中心線為軸向兩側(cè)形成對(duì)稱分布;煤柱應(yīng)力在底板巖層中的傳遞與煤柱的尺寸大小有關(guān),煤柱尺寸越大,應(yīng)力在底板巖層中向下傳遞的越遠(yuǎn)、分布范圍越廣;下煤層開采進(jìn)入14 m煤柱下方邊界時(shí),受雙重應(yīng)力作用,易引起頂板整體切落,對(duì)工作面造成的安全隱患較大。
關(guān)鍵詞:近距離煤層;殘留煤柱;底板;應(yīng)力傳遞;數(shù)值模擬中圖分類號(hào):TD 32
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2021)04-0649-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0410開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Stress transfer law of coal-pillar? floor in room-pillar
area of close distance coal seam
QI Xueyuan1,2,3,DENG Guangzhe1,3,HUANG Kang1,3
(1.College of Energy Science and Engineering,Xian University of Science and Technology,Xian 710054,China;
2.School of Mines,Inner Mongolia University of Technology,Hohhot 010051,China;
3.Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,
Xian University of Science and Technology,Xian 710054,China)
Abstract:Taking close distance coal seams in 2-2 coal and 3-1 coal in Hanjiawan coal mine of Shanbei coalfield as the research object,the stress distribution and transfer rule of coal pillar were studied by means of theoretical analysis and numerical simulation.The plastic zone width of coal pillar is calculated according to the specific conditions of coal seam occurrence,and the supporting capacity of remaining coal pillar in Hanjiawan mine is analyzed.The stress distribution of four sizes of coal pillar in the floor is examined,and the stress curves of? coal pillar with different sizes? in different depths of the floor are obtained.FLAC3D software was used to simulate the stress transfer? of spaced coal pillars of four sizes in the 2-2 coal room and pillar area of Hanjiawan coal mine,the stress distribution maps? of coal pillars of different sizes in the floor strata are obtained.The results show that the weight of overlying strata which is distributed in a semi-ellipse shape along the central line of the coal pillar to the floor strata is carried by the residual coal pillar.The stress-concentrated area is formed under the coal pillar and the stress which takes the center line as the axis forms a symmetric distribution on both sides.The stress transfer of coal pillar in floor rock stratum is related to the size of coal pillar.The larger the coal pillar is,the farther the stress is transferred downward in the floor rock stratum and the wider the distribution range is.When the mining of the lower coal seam enters the lower boundary of the 14 m interval coal pillar,it is easy to trigger the whole roof cutting off under the influence of double stress,which causes a great hidden danger to the working face.Key words:close distance coal seam;residual coal pillar;floor;stress transfer;numerical simulation
0 引 言神東礦區(qū)是中國(guó)西北部目前較大的淺埋煤田之一,在大規(guī)模開發(fā)之前采用房式或刀柱式開采方式,隨著開采規(guī)模和強(qiáng)度的不斷擴(kuò)大,礦井之前開采的淺部煤層資源逐漸枯竭,開始轉(zhuǎn)向煤層群下部進(jìn)行長(zhǎng)壁式開采。然而,當(dāng)下部煤層開采時(shí),上部煤層進(jìn)行房柱式開采后殘留煤柱的集中應(yīng)力通過(guò)底板形成煤柱底板應(yīng)力場(chǎng)[1-2],并向下傳遞到下煤層回采巷道和工作面中,改變了下部煤層覆巖應(yīng)力的分布狀態(tài)[3-5],從而影響下煤層的正常開采及巷道的穩(wěn)定性,可能引起較大的動(dòng)載礦壓災(zāi)害,嚴(yán)重制約著礦井的安全高效生產(chǎn)[6-9]。因此,對(duì)殘留煤柱應(yīng)力在底板巖層內(nèi)的傳遞及應(yīng)力分布規(guī)律進(jìn)行系統(tǒng)的研究具有重要意義,尤其是對(duì)下層煤巷道的合理布置及動(dòng)載礦壓防治具有一定的指導(dǎo)意義[10-13]。國(guó)內(nèi)外相關(guān)學(xué)者對(duì)近距離煤層殘余煤柱的穩(wěn)定性及其致災(zāi)機(jī)理進(jìn)行了研究。黃慶享等運(yùn)用FLAC3D分析工作面同采區(qū)段煤柱寬度和不同留設(shè)方式的應(yīng)力和塑性區(qū)分布規(guī)律,以及不同煤柱錯(cuò)距地表下沉規(guī)律[14]。馬瑞等通過(guò)物理相似模擬實(shí)驗(yàn),分析出開采時(shí)大面積來(lái)壓是由于保護(hù)煤柱逐漸被壓垮引起覆巖大面積冒落,致使近距煤層之間采空區(qū)導(dǎo)通,垮落從直接頂開始,逐步擴(kuò)散至地表[15]。朱衛(wèi)兵等認(rèn)為下煤層工作面開切眼側(cè)與工作面正上方的房采煤柱呈現(xiàn)橫向不均勻承載特征以及受水平拉伸變形影響,最終導(dǎo)致邊界處房采煤柱易出現(xiàn)對(duì)角斜切破壞模式[16]。付興玉等提出
工作面出集中煤柱期間,下煤層工作面覆巖的回轉(zhuǎn)運(yùn)動(dòng)使上覆集中煤柱支撐寬度減小,超前支承壓力導(dǎo)致該部分集中煤柱及前方大面積小煤柱失穩(wěn),破壞工作面覆巖承載結(jié)構(gòu)的穩(wěn)定性,從而誘發(fā)動(dòng)載礦壓[17]。高曉龍等通過(guò)工作面礦壓監(jiān)測(cè)和變形分析,提出木瓜煤礦工作面過(guò)煤柱應(yīng)力集中區(qū)具體措施[18]。張華磊等建立了采動(dòng)應(yīng)力在底板中傳播的力學(xué)模型,并計(jì)算得出底板下某點(diǎn)的采動(dòng)應(yīng)力集中系數(shù)隨著埋深的增加而逐漸減小,底板下某點(diǎn)的卸壓程度隨著埋深的增加而逐漸減弱[19]。劉新杰等通過(guò)數(shù)值計(jì)算得出煤柱壓力傳播深度與煤柱寬度呈指數(shù)關(guān)系,傳播方向與重力方向重合,在底板中呈半橢圓形分布[20]。丁永紅等認(rèn)為在上層護(hù)巷煤柱集中應(yīng)力作用下,底板煤巖層中應(yīng)力會(huì)產(chǎn)生重新分布,并伴有部分區(qū)域煤巖體塑性破碎發(fā)生,應(yīng)力集中系數(shù)與該點(diǎn)到煤柱的位置距離有關(guān)[21]。何富連等對(duì)典型煤礦房柱采空區(qū)下近距離煤層開采進(jìn)行研究,認(rèn)為隨著煤柱寬度增加,壓剪破壞傾向性依次呈現(xiàn)橢圓型、“X”+半橢圓型、半橢圓+雙漏斗型、半橢圓+雙梯形型結(jié)構(gòu)特征[22]??v觀已有文獻(xiàn),均未對(duì)下煤層采動(dòng)過(guò)程中上覆房采煤柱群底板應(yīng)力分布及傳遞規(guī)律進(jìn)行系統(tǒng)的分析,對(duì)煤柱塑性區(qū)寬度及煤柱的支撐能力沒(méi)有相應(yīng)的理論計(jì)算。以陜北礦業(yè)集團(tuán)韓家灣煤礦淺埋近距離煤層2-2煤層開采殘余煤柱為研究對(duì)象,采用理論分析與數(shù)值模擬相結(jié)合的方法對(duì)煤柱應(yīng)力在底板中的分布及傳播規(guī)律進(jìn)行深入研究。
1 工作面地質(zhì)條件韓家灣煤礦2-2煤層主要采用房柱式和長(zhǎng)壁式開采,2010年2-2煤層開采完畢后,3-1煤層采用長(zhǎng)壁式開采方法進(jìn)行開采,煤層間距33.5 m。2-2煤層埋深94 m,可采厚度0.6~5.59 m,平均厚度4.85 m,頂?shù)装鍘r性以泥巖為主,房柱式開采留設(shè)3.4,7,10 m煤柱及長(zhǎng)壁式開采前的14 m區(qū)段煤柱。下部的3-1煤層位于陜北侏羅紀(jì)延安組第3段上部,煤層厚度2.05~3.41 m,平均2.80 m??刹珊穸?.48~3.41 m,平均厚度2.65 m。煤層結(jié)構(gòu)簡(jiǎn)單,局部含一層夾矸,夾矸一般厚0.30 m左右,巖性以粉砂巖和細(xì)粒砂巖為主,屬穩(wěn)定煤層。
2 煤柱應(yīng)力傳遞的理論分析
2.1 煤柱塑性區(qū)寬度房柱式開采后在煤柱周邊會(huì)形成一定范圍的塑性區(qū)[23],其對(duì)頂板基本已無(wú)支撐作用,但是作為煤柱的一部分,塑性區(qū)和煤柱的彈性核區(qū)一同組成煤柱的整體寬度。因此,有必要確定煤柱的塑性區(qū)范圍。根據(jù)煤巖體的極限平衡理論,煤柱支承壓力的峰值與其邊界之間的距離即為塑性區(qū)的寬度,如圖1所示。
塑性區(qū)寬度x0計(jì)算公式為
x0=M2ξ·f
ln
kγH+C·cot φ
ξ(pi+C·cot φ)
(1)
式中 M為煤層開采厚度,4.85 m;k為應(yīng)力集中系數(shù),3.0;γ為采場(chǎng)上覆巖層的平均容重,18.5 kN/m3;H為煤層埋藏深度,94 m;C為煤的內(nèi)聚力,2.43 MPa,取0.5倍;φ為煤的內(nèi)摩擦角,30°;f為煤層與頂?shù)装褰佑|面的摩擦系數(shù),f=tan φ/4;pi為支架對(duì)煤幫的阻力,忽略不計(jì);ξ為三軸應(yīng)力系數(shù),ξ=1+sin φ1-sin φ。根據(jù)韓家灣煤礦2-2煤層房柱式實(shí)際開采條件,計(jì)算得出2-2煤層煤柱的塑性區(qū)寬度為2.56 m。然而,韓家灣煤礦房柱式開采留設(shè)小煤柱平均3.4 m,其彈性核區(qū)寬度約為0.86 m,能夠支撐上部載荷,但隨著下煤層的向前推進(jìn),彈性核區(qū)寬度將會(huì)逐步減小,其支撐能力迅速降低直至煤柱完全失穩(wěn)破壞。而其余較大尺寸煤柱的穩(wěn)定性相對(duì)較高,下煤層開采過(guò)程中能較長(zhǎng)時(shí)間的保持具有一定寬度的彈性核區(qū),對(duì)頂板有足夠的支撐能力。
2.2 煤柱應(yīng)力分布規(guī)律分析 在煤層的開采過(guò)程中,由于煤柱彈性核區(qū)的存在,煤柱應(yīng)力的集中程度會(huì)逐漸增加,其下部底板巖層內(nèi)將會(huì)形成一定范圍的應(yīng)力增高區(qū)[24]。假設(shè)煤柱為均質(zhì)的彈性體,考慮到應(yīng)力在底板中傳遞的長(zhǎng)度效應(yīng),建立均勻布置條形載荷下的應(yīng)力模型,如圖2(a)所示。為了運(yùn)算的方便,將均布載荷化簡(jiǎn)為集中力q作用在半無(wú)限平面體內(nèi)任一點(diǎn)處的應(yīng)力影響,如圖2(b)所示,運(yùn)用彈性力學(xué)理論得出M點(diǎn)處所受的應(yīng)力
σz=3q2πz2
1+
x2
252
(2)
式中 q為作用在底板巖體上的均布載荷,MPa;z為點(diǎn)M在煤柱底板下方的深度;x為點(diǎn)M到煤柱中央的水平距離,m。通過(guò)疊加原理可推廣至均布載荷在半無(wú)限平面體內(nèi)任一點(diǎn)處的應(yīng)力傳遞,設(shè)均布載荷寬度為L(zhǎng),對(duì)式(2)積分可得均布載荷對(duì)底板下部任一點(diǎn)M的垂直應(yīng)力為
σz=qπ
arctanL-xz
+arctan
L+xz
-
2L(x2-z2-L2)
(x2+z2-L2)2+4L2z2
(3)
式中 L為煤柱寬度,m。
結(jié)合韓家灣煤礦2-2煤層房柱式開采實(shí)際,開采深度94 m,留設(shè)4種不同寬度的煤柱。從式(3)可計(jì)算得出4種不同寬度煤柱在底板巖層中的應(yīng)力分布,如圖3所示。
圖3給出了4種不同煤柱寬度在均布荷載作用下底板豎向應(yīng)力分布。在底板巖層中煤柱應(yīng)力的傳遞規(guī)律具有以下幾點(diǎn):1)隨著下煤層的向前推進(jìn),上層煤開采已形成的支承壓力得到重新分布,通過(guò)房柱式采空區(qū)內(nèi)未受破壞的殘留煤柱傳遞到底板巖層中,在煤柱下方形成應(yīng)力增高區(qū),應(yīng)力集中系數(shù)相對(duì)較大。2)沿垂直方向,煤柱傳遞到底板的應(yīng)力集中程度與距離煤柱的深度有關(guān),距離煤柱越近,其應(yīng)力集中系數(shù)越高,應(yīng)力越大。3)底板巖層豎向應(yīng)力以煤柱中心軸線為中心呈對(duì)稱特征,當(dāng)上層煤柱寬度較小不能形成穩(wěn)定煤柱時(shí),煤柱載荷在下方底板巖層同一水平截面處的應(yīng)力集中系數(shù)隨著煤柱寬度的增大而增大。4)煤柱寬度越大,煤柱載荷對(duì)下方底板巖層的影響深度也越大,水平方向上應(yīng)力范圍也增大。
3 煤柱應(yīng)力傳遞的數(shù)值模擬分析以韓家灣煤礦2-2煤層房柱式開采圍巖為模擬原型,根據(jù)巖層物理力學(xué)參數(shù)見表1。2-2煤層房柱開采后殘余煤柱分布如圖4所示。
模型采用Mohr-Coulumb屈服準(zhǔn)則的圍巖本構(gòu)關(guān)系建模。巖石力學(xué)參數(shù)以巖石的強(qiáng)度和變形為主,具體包括彈性模量、泊松比、內(nèi)摩擦角、內(nèi)聚力以及體積力。依照煤層柱狀圖及巖石力學(xué)參數(shù)和邊界條件進(jìn)行模型建立,并將上部風(fēng)化層和松散層等效為1.3 MPa載荷加載到模型上部。
模型設(shè)計(jì)尺寸為200 m×10 m×97 m,網(wǎng)格按照10 mm×10 mm劃分單元,
結(jié)構(gòu)模型如圖5所示,本次實(shí)驗(yàn)只對(duì)2-2煤層進(jìn)行房柱式開采,分析房柱式開采后殘余煤柱的應(yīng)力分布情況。通過(guò)數(shù)值計(jì)算,不同寬度煤柱應(yīng)力在底板巖層中的分布如圖6所示。
從圖6可知
1)3.4 m煤柱存在一定的彈性核區(qū),未完全發(fā)生塑性變形,上層煤覆巖應(yīng)力通過(guò)煤柱傳遞到底板巖層中,在煤柱下方底板巖層內(nèi)形成應(yīng)力集中區(qū),在水平和垂直方向均有一定范圍的分布。在兩層煤之間的垂直方向上,煤柱的應(yīng)力集中系數(shù)與
距煤柱的距離有關(guān),距離煤柱越遠(yuǎn),受影響的應(yīng)力集中范圍越小。
2)與3.4 m煤柱相比,大于3.4 m寬度煤柱在其底板形成較大范圍的應(yīng)力集中區(qū),應(yīng)力集中程度增高,影響深度增大。因此,煤柱的尺寸大小直接影響著其在底板巖層中的應(yīng)力分布和影響范圍。
3)上部煤層殘留煤柱寬度的大小不同,所產(chǎn)生的應(yīng)力集中程度不同,由此造成傳遞到底板中的應(yīng)力分布也各異。當(dāng)煤柱寬度較小時(shí)不能形成穩(wěn)定煤柱,煤柱的承載能力將會(huì)發(fā)生改變,煤柱向底板煤巖體傳遞的應(yīng)力的集中程度明顯降低;當(dāng)煤柱寬度較大,能夠形成穩(wěn)定煤柱時(shí),煤柱中部存在穩(wěn)定的彈性核,煤柱向底板煤巖體傳遞的應(yīng)力的集中程度增高,煤柱下的底板煤巖體內(nèi)會(huì)有一個(gè)影響范圍較大的應(yīng)力增高區(qū)。
4)14 m間隔煤柱的最大垂直應(yīng)力分布向小煤柱方向稍偏于煤柱中心線,隨著下煤層向前推進(jìn),工作面推出間隔煤柱一定距離后,頂板會(huì)受到煤柱集中應(yīng)力與工作面超前應(yīng)力的雙重作用,容易出現(xiàn)巖層的整體切落。
通過(guò)對(duì)不同寬度煤柱底部5,10,15,20及25 m處的最大應(yīng)力集中系數(shù)曲線圖7分析可知,在煤柱寬度一定情況下,距離煤柱越遠(yuǎn),受到應(yīng)力集中的影響越小,因此煤柱頂板應(yīng)力集中系數(shù)隨底板深度增大而減小。而對(duì)于同一底板深度情況下,當(dāng)煤柱寬度小于7 m時(shí),應(yīng)力集中系數(shù)隨煤柱寬度增加而增大;當(dāng)煤柱寬度大于7 m時(shí),應(yīng)力集中系數(shù)隨煤柱寬度增加而減小或持平。
4 結(jié) 論1)房柱式采空區(qū)的殘留煤柱承載著上覆巖層的重量,沿煤柱中心線向下傳遞到底板巖層中,呈半橢圓型分布,在煤柱下方形成應(yīng)力增高區(qū),距離煤柱越近,應(yīng)力越集中,并以中心線為軸向兩側(cè)形成對(duì)稱分布。2)煤柱應(yīng)力在底板巖層中的傳遞與煤柱的尺寸大小有關(guān)。煤柱尺寸越大,應(yīng)力在底板巖層中向下傳遞的越遠(yuǎn),應(yīng)力分布范圍越廣。3)14 m間隔煤柱的最大垂直應(yīng)力偏向于鄰近小煤柱方向分布,下煤層推出其下方邊界時(shí)易引起頂板整體切落。4)在煤柱寬度一定情況下,距離煤柱越遠(yuǎn),受到應(yīng)力集中的影響越小,因此煤柱頂板應(yīng)力集中系數(shù)隨底板深度增大而減小。而對(duì)于同一底板深度情況下,當(dāng)煤柱寬度小于7 m時(shí),應(yīng)力集中系數(shù)隨煤柱寬度增加而增大;當(dāng)煤柱寬度大于7 m時(shí),應(yīng)力集中系數(shù)隨煤柱寬度增加而減小或持平。
參考文獻(xiàn)(References):
[1] 王貴虎,何廷峻.帶壓開采底板應(yīng)力場(chǎng)及變形破壞特征試驗(yàn)研究[J].貴州大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,24(6):630-634.WANG Guihu,HE Tingjun.The laboratory research of stress fields and deformation and breakage characters of coal floor on mining above aquifer[J].Journal of Guizhou University(Natural Sciences),2007,24(6):630-634.
[2]王旭宏,張緒言,張百勝.煤柱集中載荷對(duì)不同錯(cuò)距巷道圍巖應(yīng)力的影響[J].煤炭工程,2009,41(8):84-89.WANG Xuhong,ZHANG Xuyan,ZHANG Baisheng.Concentrate loading of pillar and its effect on the tunnel surrounding rock stress of differ location[J].Coal Engineering,2009,41(8):84-89.
[3]李忠華,朱麗媛,唐治.大安山礦煤柱對(duì)下部煤層開采影響[J].遼寧工程程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,33(6):741-744.LI Zhonghua,ZHU Liyuan,TANG Zhi.Numerical simulation on the effects of coal pillar on mining of the lower coal seams in Daanshan mine[J].Journal of Liaoning Technical University(Natural Science),2014,33(6):741-744.
[4]王永革,肖輝贊.大采高工作向區(qū)段煤柱合理尺寸的數(shù)值模擬[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,30(5):645-648.WANG Yongge,XIAO Huizan.Numerical simulation on reasonable size of section coal pillar in the face of big mining height[J].Journal of Liaoning Technical University(Natural Science),2011,30(5):645-648.
[5]
WU H,WANG X K,
WANG W J.Deformation characteristics and mechanism of deep subsize coal pillar of the tilted stratum[J].Energy Science & Engineering,2020,8:544-561.
[6]錢鳴高,石平五,許家林.礦山壓力與巖層控制[M].北京:中國(guó)礦業(yè)大學(xué)出版社,2010.
[7]XUE Y,CAO Z Z,LI Z H.Destabilization mechanism and energy evolution of coal pillar in rockburst disaster[J].Arabian Journal of Geosciences,2020,13(12):287-306.
[8]
SHANG H F,NING J G,HU
S C.Field and numerical investigations of gateroad system failure under an irregular residual coal pillar in close-distance coal seams[J].Energy Science & Engineering,2019,7(6):2720-2740.
[9]翟新獻(xiàn),錢鳴高,李化敏.小煤礦復(fù)采煤柱塑性區(qū)特征及采準(zhǔn)巷道支護(hù)技術(shù)[J].巖石力學(xué)與工程學(xué)報(bào),2004,23(22):3799-3802.ZHAI Xinxian,QIAN Minggao,LI Huamin.Characteristics of plastic zone of second mining pillar and support technology of gateway in small mines[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(22):3799-3802.
[10]
ZHANG Z Z,DENG M,
WANG X Y.Field and numerical investigations on the lower coal seam entryfailure analysis under the remnant pillar[J].Engineering Failure Analysis,2020,115:104638.
[11]
LIU J W,LIU C Y,LI X H.Determination of fracture location of double-sided directional fracturing pressure relief for hard roof of large upper goaf-side coal pillars[J].Energy Exploration & Exploitation,2020,38(1):111-136.
[12]
范公勤,閆瑞兵,雷照源.“應(yīng)力-滲流-損傷”分析下的煤柱寬度設(shè)計(jì)[J].西安科技大學(xué)學(xué)報(bào),2017,37(2):164-170.FAN Gongqin,YAN Ruibing,LEI Zhaoyuan.Design of “stress-seepage-damage” analysis width of section coal pillar[J].Journal of Xian University of Science & Technology,2017,37(2):164-170.
[13]
張百勝,楊雙鎖,康立勛,等.極近距離煤層同采巷道合理位置確定方法探討[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(1):102-106.ZHNAG Baisheng,YANG Shuangsuo,KANG Lixun,et al.Discussion on method for determining reasonable position of roadway for ultra-close multi-seam[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(1):102-106.
[14]
黃慶享,杜君武,劉寅超.淺埋煤層群工作面合理區(qū)段煤柱留設(shè)研究[J].西安科技大學(xué)學(xué)報(bào),2016,36(1):19-23.HUANG Qingxiang,DU Junwu,LIU Yinchao.Study on section coal pillar of group mining in shallow buried coal seams[J].Journal of Xian University of Science & Technology,2016,36(1):19-23.
[15]馬瑞,來(lái)興平,曹建濤.淺埋近距煤層采空區(qū)覆巖移動(dòng)規(guī)律相似模擬[J].西安科技大學(xué)學(xué)報(bào),2013,33(3):249-253.MA Rui,LAI Xingping,CAO Jiantao.Similar simulation on strata movement of gob in shallow-contiguous seams[J].Journal of Xian University of Science & Technology,2013,33(3):249-253.
[16]朱衛(wèi)兵,許家林,陳璐,等.淺埋近距離煤層開采房式煤柱群動(dòng)態(tài)失穩(wěn)致災(zāi)機(jī)制[J].煤炭學(xué)報(bào),2019,44(2):358-366.ZHU Weibing,XU Jialin,CHEN Lu,et al.Mechanism of disaster induced by dynamic instability of coal pillar group in room-and-pillar mining of shallow and close coal seams[J].Journal of China Coal Society,2019,44(2):358-366.
[17]付興玉,李宏艷,李鳳明,等.房式采空區(qū)集中煤柱誘發(fā)動(dòng)載礦壓機(jī)理及防治[J].煤炭學(xué)報(bào),2016,41(6):1375-1383.
FU Xingyu,LI Hongyan,LI Fengming,et al.Mechanism and prevention of strong strata behaviors induced by the concentration coal pillar of a room mining goaf[J].Journal of China Coal Society,2016,41(6):1375-1383.
[18]高曉龍,何峰,王振偉.近距離下煤層過(guò)遺留煤柱應(yīng)力集中區(qū)研究[J].山西焦煤科技,2013,37(7):50-53.GAO Xiaolong,HE Feng,WANG Zhenwei.Research on left over pillar stress concentration zone in close distance lower coal seam mining[J].Shanxi Coking Coal Science & Technology,2013,37(7):50-53.
[19]
張華磊.采場(chǎng)底板應(yīng)力傳播規(guī)律及其對(duì)底板巷道穩(wěn)定性影響研究[D].徐州:中國(guó)礦業(yè)大學(xué),2011.ZHANG Hualei.Study on stress transmission laws of mining floor and its influence on stability of floor roadway[D].Xuzhou:China University of Mining & Technology,2011.
[20]
劉新杰,王慶,代進(jìn).水平煤柱支承壓力底板傳播規(guī)律研究[J].煤礦安全,2013,44(12):58-61.LIU Xinjie,WANG Qing,DAI Jin.Study on horizontal pillars abutment pressure propagation laws in floor[J].Safety in Coal Mines,2013,44(12):58-61.
[21]
丁永紅,崔千里.近距離煤層上層煤柱下應(yīng)力分布規(guī)律及巷道支護(hù)技術(shù)[J].煤礦開采,2013,18(4):82-84,23.DING Yonghong,CUI Qianli.Stress distribution law and roadway support technology under coal pillar in upper seam of close distance coal seam[J].Coal mining Technology,2013,18(4):82-84,23.
[22]
何富連,康慶濤.近距離煤層頂板煤柱集中應(yīng)力影響機(jī)制[J].巖石力學(xué)與工程學(xué)報(bào),2020,37(6):1077-1083.HE Fulian,KANG Qingtao.Influence mechanism of concentrated stress on coal roof pillars of close coal seam[J].Chinese Journal of Rock Mechanics and Engineering,2020,37(6):1077-1083.
[23]
朱術(shù)云,姜振泉,姚普,等.采場(chǎng)底板巖層應(yīng)力的解析法計(jì)算及應(yīng)用[J].采礦與安全工程學(xué)報(bào),2007,24(2):191-194.ZHU Shuyun,JIANG Zhenquan,YAO Pu,et al.Application of analytic method in calculating floor stress of a working face[J].Journal of Mining & Safety Engineering,2007,24(2):191-194.
[24]
秦忠誠(chéng),王同旭.深井孤島綜放而支承壓力分布及其在底板中的傳遞規(guī)律[J].巖石力學(xué)與工程學(xué)報(bào),2004,23(7):1127-1131.QIN Zhongcheng,WANG Tongxu.Abutment pressure distribution and its transfer law in floor of deep isolated fully-mechanized mining faces using sublevel caving[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(7):1127-1131.